JPH0737485A - Oxide negative electrode and manufacture thereof - Google Patents

Oxide negative electrode and manufacture thereof

Info

Publication number
JPH0737485A
JPH0737485A JP20276293A JP20276293A JPH0737485A JP H0737485 A JPH0737485 A JP H0737485A JP 20276293 A JP20276293 A JP 20276293A JP 20276293 A JP20276293 A JP 20276293A JP H0737485 A JPH0737485 A JP H0737485A
Authority
JP
Japan
Prior art keywords
carbonate
oxide
metal oxide
metal
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20276293A
Other languages
Japanese (ja)
Other versions
JP3400499B2 (en
Inventor
Yasuhisa Koga
康久 古賀
Taro Yoneda
太郎 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU NORITAKE KK
Noritake Co Ltd
Original Assignee
KYUSHU NORITAKE KK
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU NORITAKE KK, Noritake Co Ltd filed Critical KYUSHU NORITAKE KK
Priority to JP20276293A priority Critical patent/JP3400499B2/en
Publication of JPH0737485A publication Critical patent/JPH0737485A/en
Application granted granted Critical
Publication of JP3400499B2 publication Critical patent/JP3400499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To improve the adhesion strength of a ternary carbonate coated layer without reducing the emission characteristic. CONSTITUTION:An oxide negative electrode is provided by forming an electron emission coated layer 3 of ternary alkaline earth metal carbonate primarily consisting of Ba, Sr, Ca on a metal core 1. The coated layer 3 has a metal oxide layer 2 between the core 1 and the carbonate layer 3, and the metal oxide concentration of the oxide layer indicates a maximum value on the surface of a core electrode, while its concentration grading is gradually lowered to the carbonate side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空管、陰極線管(C
RT)、電子顕微鏡、蛍光表示管などの各種電子管に使
用される酸化物陰極およびその製造方法に関する。
The present invention relates to a vacuum tube, a cathode ray tube (C
The present invention relates to an oxide cathode used in various electron tubes such as RT), electron microscopes, and fluorescent display tubes, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来より酸化物陰極フィラメントとし
て、タングステン合金等からなる直径10〜30μmと
いう極めて細い芯線に、電子放射物質として、炭酸バリ
ウム,炭酸カルシウム,炭酸ストロンチウムのアルカリ
土類金属炭酸塩(以下三元炭酸塩という)の微粉末を膜
厚8〜15μm程度被覆したものが使用されている。こ
の酸化物陰極を蛍光表示管に使用する場合、管球内に組
み込んだ後、蛍光表示管の管内を高真空化して1000
℃程度の温度で加熱分解させる。これによって、三元炭
酸塩は酸化物(Ba,Sr,Ca)Oに変化し、その後
に活性化処理をすることにより、遊離Baを作って電子
放出源とする。
2. Description of the Related Art Conventionally, as an oxide cathode filament, a very thin core wire made of a tungsten alloy or the like having a diameter of 10 to 30 μm is used, and as an electron emitting substance, an alkaline earth metal carbonate of barium carbonate, calcium carbonate or strontium carbonate A fine powder of ternary carbonate) coated with a film thickness of about 8 to 15 μm is used. When this oxide cathode is used in a fluorescent display tube, it is installed in a tube and then the inside of the fluorescent display tube is evacuated to a high vacuum.
Heat decomposition at a temperature of about ℃. As a result, the ternary carbonate is converted into an oxide (Ba, Sr, Ca) O, and then activated to produce free Ba to serve as an electron emission source.

【0003】このようなタングステン等からなる芯線へ
の三元炭酸塩の被覆方法として、従来、三元炭酸塩の懸
濁液を容器に入れてこの中に基体金属芯線を浸漬し、基
体金属表面に三元炭酸塩を被覆する浸漬法、三元炭酸塩
をアルコールに混ぜてスプレーガンによって基体金属に
吹き付けて被覆する吹き付け法、また三元炭酸塩を懸濁
した溶液に基体金属を1極として電気泳動原理を応用し
た電着法が採用されている。
As a method of coating a ternary carbonate on a core wire made of tungsten or the like, conventionally, a suspension of the ternary carbonate is placed in a container and the base metal core wire is immersed in the suspension to form a base metal surface. Dip coating with ternary carbonate, spraying with ternary carbonate mixed with alcohol and spraying on the base metal with a spray gun, and basing the base metal on a solution in which the ternary carbonate is suspended. An electrodeposition method applying the electrophoresis principle is adopted.

【0004】この中でも電着による塗布法は、形成され
る被覆層が極めて緻密で、また表面も平滑にでき、CR
T,TWT,磁電管、蛍光表示管などの、イオン,電子
などの衝撃を受けるもので密度の高いことを必要とする
陰極や、スパークをきらう整流管などの陰極に使用され
ている。
Among them, the coating method by electrodeposition is extremely dense in the coating layer to be formed, and the surface can be made smooth, so that the CR
It is used for cathodes such as T, TWT, magneto-electric tubes, and fluorescent display tubes that are subject to impact from ions, electrons, etc. and require high density, and cathodes such as rectifying tubes that resist sparks.

【0005】一方、このような電着法による酸化物陰極
における解決すべき課題として、エミッション特性の向
上、及び被覆層の剥離を防止して長寿命化を達成するた
めの付着力向上が挙げられる。
On the other hand, problems to be solved in the oxide cathode by such an electrodeposition method include improvement of emission characteristics and improvement of adhesion force for preventing peeling of the coating layer and achieving a long life. .

【0006】前者のエミッション特性の向上について
は、例えば特公平2−28218号公報、特開平1−1
24926号公報、特開昭63−271843号公報、
特開昭63−32836号公報、特開昭59−9162
5号公報等に各種製造技術が提案され、これらによって
一応の成果を修めている。
Regarding the former improvement of emission characteristics, for example, Japanese Patent Publication No. 28218/1990 and Japanese Patent Laid-Open No. 1-118 / 1989
24926, JP-A-63-271843,
JP-A-63-32836, JP-A-59-9162
Various manufacturing techniques have been proposed in Japanese Patent Publication No. 5, etc., and these have achieved tentative results.

【0007】しかしながら、上記公報に開示された酸化
物陰極の製造技術は、専らエミッション特性の向上にの
み終始し、第2点目の解決課題である、三元炭酸塩被覆
層の付着力の向上にはなんら寄与していない。
However, the manufacturing technique of the oxide cathode disclosed in the above publication is limited to improving the emission characteristics, and the second problem to be solved is to improve the adhesive force of the ternary carbonate coating layer. Has not contributed to.

【0008】また、特開昭53−963号公報には、ア
クリル樹脂やニトロセルローズを結合剤として使用する
従来製法の問題点を解消して、機械的強度が大きく、巻
き枠への剥がれを有効に防止できる陰極の製造技術が記
載されている。
Further, in Japanese Patent Laid-Open No. 53-963, the problems of the conventional manufacturing method using acrylic resin or nitrocellulose as a binder are solved, the mechanical strength is large, and the peeling to the reel is effective. The manufacturing technique of the cathode which can be prevented is described.

【0009】しかしながら同公報に開示された方法にお
いても、基本的には結合剤としてニトロセルローズを使
用するものであり、根本的な解決にはならない。
However, even in the method disclosed in the publication, nitrocellulose is basically used as a binder, and it is not a fundamental solution.

【0010】すなわち、少量のニトロセルローズを電着
液に添加することにより、電着速度及び熱分解前の生強
度は向上するものの、量が多過ぎると電着特性が悪くな
るばかりでなく、炭酸塩の分解の際にニトロセルローズ
も分解され、これが亀裂発生の原因となって結果的に陰
極線管としての使用時に強度低下をきたすこととなる。
さらには、このニトロセルローズは、蛍光表示管として
使用する場合、上記したように三元炭酸塩を酸化物化す
る際に同時に焼成させるため、使用時における付着力の
向上には寄与しない。また、熱分解によって管内に残留
したガス成分がエミッション特性にダメージを及ぼすと
いう問題もある。
That is, by adding a small amount of nitrocellulose to the electrodeposition solution, the electrodeposition rate and the green strength before thermal decomposition are improved, but if the amount is too large, not only the electrodeposition characteristics deteriorate, but also the carbon dioxide. When the salt is decomposed, nitrocellulose is also decomposed, which causes cracks to occur, resulting in a reduction in strength when used as a cathode ray tube.
Further, when this nitrocellulose is used as a fluorescent display tube, it does not contribute to the improvement of the adhesive force during use because it is fired at the same time when the ternary carbonate is oxidized as described above. There is also a problem that the gas component remaining in the pipe due to thermal decomposition damages the emission characteristics.

【0011】[0011]

【発明が解決しようとする課題】そこで、本発明におい
て解決すべき課題は、エミッション特性を低下させるこ
となく三元炭酸塩被覆層の付着強度に優れた酸化物陰極
及びその製造方法を提供することにある。
Therefore, an object to be solved in the present invention is to provide an oxide cathode excellent in adhesion strength of a ternary carbonate coating layer without lowering emission characteristics and a method for producing the same. It is in.

【0012】[0012]

【課題を解決するための手段】本発明者は三元炭酸塩被
覆層の付着強度を向上させるため、電着液内に種々の金
属酸化物を添加することを試み、本発明を完成するに至
ったものである。
In order to improve the adhesion strength of the ternary carbonate coating layer, the present inventor tried to add various metal oxides into the electrodeposition solution to complete the present invention. It has come.

【0013】すなわち、本発明の酸化物陰極は、金属芯
線上にCa,Ba,Sr,を主成分とする三元アルカリ
土類金属炭酸塩の電子放射用被覆層が形成されてなる酸
化物陰極において、上記被覆層は上記芯線と上記炭酸塩
の間に金属酸化物層を有し、前記酸化物層の金属酸化物
濃度が芯線極表面において最高値を示し、炭酸塩側に低
くなる濃度勾配を持つことを特徴とする。
That is, the oxide cathode of the present invention is an oxide cathode in which a coating layer for electron emission of a ternary alkaline earth metal carbonate containing Ca, Ba and Sr as the main components is formed on a metal core wire. In the above, the coating layer has a metal oxide layer between the core wire and the carbonate, the metal oxide concentration of the oxide layer shows the highest value on the surface of the core wire, and the concentration gradient becomes low on the carbonate side. It is characterized by having.

【0014】ここで、前記金属酸化物の平均粒径が、前
記炭酸塩の平均粒径よりも小さい微粉末であり、前記被
覆層中の金属酸化物量が炭酸塩の0.5〜20重量%含
有されてなるものとし、また、前記金属酸化物がIn2
3 ,ZnO,Al2 3 ,La2 3 ,ZrO2 ,T
hO2 ,SnO2 ,MgO及びTa2 5 のうち1種又
は2種以上のものとすることができる。
Here, the average particle size of the metal oxide is fine powder smaller than the average particle size of the carbonate, and the amount of the metal oxide in the coating layer is 0.5 to 20% by weight of the carbonate. In addition, the metal oxide is In 2
O 3 , ZnO, Al 2 O 3 , La 2 O 3 , ZrO 2 , T
One or more of hO 2 , SnO 2 , MgO and Ta 2 O 5 can be used.

【0015】また、本発明は、Ba,Sr,Caを主成
分とする三元アルカリ土類金属炭酸塩と結合剤と溶剤と
からなる電着液を形成し、この液中に酸化物陰極用の芯
線を通し、電気泳動により前記芯線の表面に前記炭酸塩
を被覆する電着法による酸化物陰極の製造方法におい
て、前記電着液内に前記炭酸塩の平均粒径よりも小さい
微粉末である、In2 3 ,ZnO,Al2 3 ,La
2 3 ,ZrO2 ,ThO2 ,SnO2 ,MgO及びT
2 5 の何れかの金属酸化物、またはこれら金属酸化
物の2種以上の混合物を、炭酸塩に対し0.5〜20重
量%添加してなることを特徴とする。
Further, according to the present invention, an electrodeposition solution comprising a ternary alkaline earth metal carbonate containing Ba, Sr and Ca as main components, a binder and a solvent is formed, and this solution is used for an oxide cathode. In the method for producing an oxide cathode by an electrodeposition method in which the surface of the core wire is coated with the carbonate by electrophoresis, a fine powder smaller than the average particle size of the carbonate salt is contained in the electrodeposition liquid. In 2 O 3 , ZnO, Al 2 O 3 , La
2 O 3 , ZrO 2 , ThO 2 , SnO 2 , MgO and T
It is characterized in that 0.5 to 20% by weight of a carbonate is added to any metal oxide of a 2 O 5 or a mixture of two or more kinds of these metal oxides.

【0016】ここで酸化物陰極用の芯線としては純タン
グステンが好適に使用できるが、無論これに限定され
ず、例えばトリウムタングステンなどのタングステン合
金を使用することができる。
Here, pure tungsten can be preferably used as the core wire for the oxide cathode, but the core wire is not limited to this, and for example, a tungsten alloy such as thorium tungsten can be used.

【0017】金属酸化物の平均粒径は、三元炭酸塩の平
均粒径よりも小さいことが必要で、特に三元炭酸塩の平
均粒径の1/10程度が、芯線極表面において最高値を
示し、炭酸塩側に低くなる濃度勾配を持つ勾配になりや
すく、少ない添加量でも炭酸塩付着強度の改善効果が発
揮できる。
The average particle size of the metal oxide needs to be smaller than the average particle size of the ternary carbonate. Particularly, about 1/10 of the average particle size of the ternary carbonate is the highest value on the surface of the core wire. The tendency is to have a concentration gradient that decreases toward the carbonate side, and the effect of improving the carbonate adhesion strength can be exhibited even with a small amount of addition.

【0018】また、添加する金属酸化物の添加量が0.
5%未満では、充分な付着力向上効果を発揮することが
できず、また、添加量が増えるに伴いエミッション特性
が低下し、20%を超えるとエミッション特性が著しく
低下する。
Further, the addition amount of the metal oxide to be added is 0.
If it is less than 5%, a sufficient effect of improving the adhesive force cannot be exhibited, and as the addition amount increases, the emission characteristics deteriorate, and if it exceeds 20%, the emission characteristics remarkably decrease.

【0019】上記した8種類の金属酸化物のうち、特
に、ZnO及びIn2 3 にエミッション特性及び付着
力とも優れた効果が見られる。
Among the above eight kinds of metal oxides, ZnO and In 2 O 3 exhibit excellent effects in terms of emission characteristics and adhesion.

【0020】また、これら金属酸化物は電着時に、超音
波分散やボールミル分散等により電着液中に三元炭酸塩
と共に均一に分散していることが必要である。
Further, it is necessary that these metal oxides are uniformly dispersed together with the ternary carbonate in the electrodeposition liquid by ultrasonic dispersion or ball mill dispersion during electrodeposition.

【0021】[0021]

【作用】図1は、芯線1として直径13μmのタングス
テンワイヤーを用い、平均粒径約3.0μmの三元炭酸
塩に対し、平均粒径0.3μmのIn2 3 を5重量%
添加した場合の酸化物陰極の断面の模式図、図2はIn
2 3 の濃度勾配(EPMAでInの特性X線強度を測
定)を示し、芯線1の表面により近い部分に粒径の細か
い金属酸化物2が付着し、この周りに三元炭酸塩3が付
着し、芯線1と三元炭酸塩3の間に金属酸化物2の中間
層を形成した構造となっている。
In FIG. 1, a tungsten wire having a diameter of 13 μm is used as the core wire 1, and 5% by weight of In 2 O 3 having an average particle diameter of 0.3 μm is added to ternary carbonate having an average particle diameter of about 3.0 μm.
Schematic diagram of the cross section of the oxide cathode when added, FIG.
2 shows a concentration gradient of 2 O 3 (measures the characteristic X-ray intensity of In by EPMA), and a metal oxide 2 having a small particle size is attached to a portion closer to the surface of the core wire 1, and a ternary carbonate 3 is provided around this It has a structure in which an intermediate layer of the metal oxide 2 is formed between the core wire 1 and the ternary carbonate 3 attached.

【0022】この金属酸化物は、三元炭酸塩よりも粒径
が小さいため電気泳動性に優れ、電着液中の三元炭酸塩
よりも先に芯線表面に付着し、微粒子であることから、
粒子と芯線及び粒子間の接触部分が多くなり、この結果
芯線に強力に付着する。さらにこの微粒子の存在によっ
て、三元炭酸塩の粒子間空隙を埋めることにより、表面
凹凸を平滑化する効果を及ぼし、三元炭酸塩の密着性に
優れ付着生強度が向上するものと推察される。
Since this metal oxide has a smaller particle size than the ternary carbonate, it is excellent in electrophoretic property and adheres to the surface of the core wire before the ternary carbonate in the electrodeposition liquid and is a fine particle. ,
The contact area between the particles and the core wire and particles increases, and as a result, the particles strongly adhere to the core wire. Further, it is speculated that the presence of these fine particles has the effect of smoothing the surface irregularities by filling the inter-particle voids of the ternary carbonate, and the adhesiveness of the ternary carbonate is excellent and the adhesion strength is improved. .

【0023】一般に芯線と被覆層に形成される中間層の
存在は、半導体としての抵抗層を形成するために好まし
いものではないとされているが、中間層が形成されれば
必ず中間層抵抗が発達するというものではなく、中間層
は生じてもそれが充分に活性化された状態にあれば良
い。本発明による酸化物陰極の中間層は、この活性化し
た状態を維持することができるものである。
It is generally said that the presence of the intermediate layer formed on the core wire and the coating layer is not preferable for forming the resistance layer as a semiconductor. It does not mean that it develops, but it is sufficient that the intermediate layer is in a fully activated state even if it occurs. The intermediate layer of the oxide cathode according to the present invention can maintain this activated state.

【0024】また、金属酸化物の中間層を持たない従来
の酸化物陰極では、実装の際の熱分解時に三元炭酸塩の
被覆層が収縮してクラックが生じ、これが成長して円筒
状の剥離へと繋がっているが、本発明品では、金属酸化
物の中間層が熱分解時の膜厚方向への収縮を抑制し、緩
衝材的効果を発揮し、熱分解後のクラックの発生及びこ
れに起因する剥離を有効に防止することができる。
Further, in the conventional oxide cathode having no intermediate layer of metal oxide, the coating layer of the ternary carbonate contracts and cracks occur during thermal decomposition at the time of mounting, which grows to form a cylindrical shape. Although it leads to peeling, in the product of the present invention, the intermediate layer of the metal oxide suppresses shrinkage in the film thickness direction during thermal decomposition, exerts a buffering effect, and the occurrence of cracks after thermal decomposition and Peeling resulting from this can be effectively prevented.

【0025】[0025]

【実施例】平均粒径3μmの(Ba,Sr,Ca)CO
3 の三元炭酸塩と、結合剤としてアクリル系樹脂(デュ
ポン製:エルバサイト2045)を用い、アセトン(試
薬特級):45重量%、MIBK(試薬特級):24重
量%、IPA(試薬特級):24重量%、エルバサイト
2045:5重量%、三元炭酸塩:2重量%を周知の混
合方法にて混合し、添加量の違いによる効果を確認する
ため、この液に、平均粒径を0.3〜3.0μmの間に
変化させた、ZnO,Al2 3 ,La2 3 ,ZrO
2 ,ThO2 ,SnO2 ,In2 3 ,Ta2 5 ,M
gOを、0.5重量%、2重量%、5重量%、10重量
%、20重量%添加し電着液を作製した。なお、三元炭
酸塩及び金属酸化物の粒径は、レーザ回折式粒度分析計
(マイクロトラックFRA)を用いて測定した。
Example: (Ba, Sr, Ca) CO having an average particle size of 3 μm
Using the ternary carbonate of 3 and an acrylic resin (manufactured by DuPont: Elvasite 2045) as a binder, acetone (special reagent grade): 45% by weight, MIBK (special grade reagent): 24% by weight, IPA (special grade reagent) : 24 wt%, Elvacite 2045: 5 wt%, and ternary carbonate: 2 wt% are mixed by a well-known mixing method, and the average particle size is added to this liquid in order to confirm the effect due to the difference in the addition amount. 0.3~3.0μm was varied between, ZnO, Al 2 O 3, La 2 O 3, ZrO
2 , ThO 2 , SnO 2 , In 2 O 3 , Ta 2 O 5 , M
0.5% by weight, 2% by weight, 5% by weight, 10% by weight and 20% by weight of gO were added to prepare an electrodeposition solution. The particle sizes of the ternary carbonate and the metal oxide were measured using a laser diffraction particle size analyzer (Microtrac FRA).

【0026】この電着液内に直径13μmのタングステ
ンワイヤーを、16m/分で通過させ、電着により炭酸
塩の被覆層を形成した。なお電着条件は、定電流電源装
置を用い、電流値は60±10μA、電圧値は60〜1
00Vとした。
A tungsten wire having a diameter of 13 μm was passed through the electrodeposition solution at a rate of 16 m / min to form a carbonate coating layer by electrodeposition. The electrodeposition conditions were a constant current power supply, current value was 60 ± 10 μA, and voltage value was 60-1.
It was set to 00V.

【0027】また、比較例として、同様の粒径のSiO
2 ,TiO2 ,WO3 を用いて、同様の条件でフィラメ
ント状陰極を製造した。
Further, as a comparative example, SiO having a similar particle size.
A filamentary cathode was manufactured under the same conditions by using 2 , TiO 2 , and WO 3 .

【0028】まず、電着後の炭酸塩付着生強度を確認す
るために、500m毎にスプールに巻取り、合計10ス
プールを内径1mmのガラス管を接触させながら通過さ
せ、その剥離状況を確認した。
First, in order to confirm the carbonate adhesion growth strength after electrodeposition, it was wound on a spool every 500 m, and a total of 10 spools were passed while contacting a glass tube having an inner diameter of 1 mm, and the peeling condition was confirmed. .

【0029】図3はガラス管とスプールの位置関係を示
し、図中10はスプール、11はガラス管をそれぞれ示
す。図4は金属酸化物の添加量と10スプール分の剥離
発生数(0.5mm以上の長さが剥離した部所を数え
た)の関係を示す。
FIG. 3 shows the positional relationship between the glass tube and the spool. In the figure, 10 indicates the spool and 11 indicates the glass tube. FIG. 4 shows the relationship between the amount of metal oxide added and the number of occurrences of peeling for 10 spools (the number of peeled portions having a length of 0.5 mm or more was counted).

【0030】図4に示すように、従来品は、剥離発生数
が50点程で、付着生強度が弱いことが判る。これに対
し実施例の金属酸化物添加品は、その種類に関係なく、
0.5重量%添加量からその効果が出始め、特に平均粒
子径の小さいものの方がその効果が顕著である。なお、
0.3μmの金属酸化物を1重量%以上添加したものの
剥離は皆無であった。
As shown in FIG. 4, in the conventional product, the number of peeling occurrences was about 50, and it was found that the adhesive strength was weak. On the other hand, the metal oxide-added products of the Examples are irrespective of their types,
The effect starts to appear from the addition amount of 0.5% by weight, and the effect is more remarkable especially in the case where the average particle size is small. In addition,
No peeling was observed in the sample containing 1% by weight or more of 0.3 μm metal oxide.

【0031】さらにこのフィラメント状陰極を、図5及
び図6に示す蛍光表示管に実装し、管内を高真空化して
1000℃程度の温度で加熱分解させ、三元炭酸塩を酸
化物に変化させて活性化処理を施し、電子放出源とすべ
く酸化物陰極とした。
Further, this filament cathode is mounted on the fluorescent display tube shown in FIGS. 5 and 6, and the inside of the tube is evacuated to a high vacuum to be thermally decomposed at a temperature of about 1000 ° C. to change the ternary carbonate into an oxide. Then, activation treatment was performed to obtain an oxide cathode to serve as an electron emission source.

【0032】このようにして得られた酸化物陰極の付着
強度を確認するために、熱分解後のSEM写真観察を行
い、また2000Gの製品衝撃を加えた場合の酸化物層
の剥離実験を行った。
In order to confirm the adhesion strength of the oxide cathode thus obtained, SEM photograph observation after thermal decomposition was performed, and a peeling experiment of the oxide layer was performed when a product impact of 2000 G was applied. It was

【0033】図5は蛍光表示管の断面図、図6は図5に
示す蛍光表示管の外観を示す斜視図である。図中21は
プレートガラス、22は導電層、23はアノード電極、
24は絶縁層、25は蛍光体、26は排気管、27はグ
リッド、28は導電ペースト、29は酸化物陰極(フィ
ラメント)、30はゲッター、31はフロントガラス、
32はスペーサガラス、33はリードピン、34はフィ
ラメントを配設支持するアンカーをそれぞれ示す。
FIG. 5 is a sectional view of the fluorescent display tube, and FIG. 6 is a perspective view showing the appearance of the fluorescent display tube shown in FIG. In the figure, 21 is a plate glass, 22 is a conductive layer, 23 is an anode electrode,
24 is an insulating layer, 25 is a phosphor, 26 is an exhaust pipe, 27 is a grid, 28 is a conductive paste, 29 is an oxide cathode (filament), 30 is a getter, 31 is a windshield,
32 is a spacer glass, 33 is a lead pin, and 34 is an anchor for disposing and supporting the filament.

【0034】フィラメント状陰極29は、アンカー34
にてテンションンを加えた状態で張架配設しているた
め、衝撃を加えると振れる構造になっている。本実験に
おいては、蛍光表示管に過度の衝撃を加え、フィラメン
ト状陰極29とグリッド27を接触させ、酸化物層の剥
離状況を評価した。
The filament cathode 29 has an anchor 34.
Since it is stretched with tension applied, it has a structure that shakes when an impact is applied. In this experiment, excessive impact was applied to the fluorescent display tube, the filament cathode 29 and the grid 27 were brought into contact with each other, and the peeling state of the oxide layer was evaluated.

【0035】図7は、蛍光表示管に2000Gの製品衝
撃を加えた後の酸化物層付着強度と金属酸化物の添加量
の関係を粒子径毎に示す。ここでAグループは、Zn
O,In2 3 を、Bグループは、Al2 3 ,La2
3 ,ZrO2 ,ThO2 ,SnO2 ,Ta2 5 ,M
gOを、またCグループは、SiO2 ,TiO2 ,WO
3 をそれぞれ単独で添加したものを表す。また強度評価
は、全く剥離が観られないものを強度5、部分的に剥離
が生じたものを強度3、また円筒状の剥離が生じたもの
を強度0とした。また、その中間を各々4,2とした。
FIG. 7 shows, for each particle size, the relationship between the adhesion strength of the oxide layer and the addition amount of the metal oxide after a product impact of 2000 G is applied to the fluorescent display tube. Here, A group is Zn
O, In 2 O 3 and B group are Al 2 O 3 and La 2
O 3 , ZrO 2 , ThO 2 , SnO 2 , Ta 2 O 5 , M
gO, and C group is SiO 2 , TiO 2 , WO
3 represents the addition of 3 respectively. As for the strength evaluation, the case where no peeling was observed was designated as strength 5, the case where partial peeling occurred was designated as strength 3, and the case where cylindrical peeling occurred was designated as strength 0. In addition, the intermediate values are set to 4 and 2, respectively.

【0036】図7に示す通り、本実施例の金属酸化物添
加品は、添加量0.5重量%からいずれも付着性が向上
しており、特にZnOとIn2 3 が顕著である。ま
た、粒子径の小さいものの方が、より少ない量で効果が
発揮できることがわかる。
As shown in FIG. 7, in the metal oxide-added product of this embodiment, the adhesion was improved from the addition amount of 0.5% by weight, and ZnO and In 2 O 3 were particularly remarkable. Further, it can be seen that the smaller the particle size, the more effective the effect can be.

【0037】さらに、この製品衝撃試験を実施した後蛍
光表示管を分解し、フィラメント状陰極をSEM観察し
た。本発明のものでは、いずれも図8に示すように、ク
ラック及びこれに伴うフィラメント円筒状剥離が全く見
られなかった(代表例としてIn2 3 の5%添加品を
示す。)のに対し、従来品では図9に示すように、熱分
解時の収縮によって円筒状のクラックが入り、また図1
0に示すような円筒状の剥離が生じていた。
Further, after carrying out this product impact test, the fluorescent display tube was disassembled and the filament cathode was observed by SEM. In the case of the present invention, as shown in FIG. 8, neither crack nor filamentous cylindrical peeling accompanying it was observed at all (as a representative example, a product containing 5% of In 2 O 3 added). As shown in FIG. 9, the conventional product has a cylindrical crack due to contraction during thermal decomposition.
Cylinder-shaped peeling as shown in 0 occurred.

【0038】次に金属酸化物を添加した酸化物陰極を実
装した蛍光表示管を駆動させ、酸化物陰極のエミッショ
ン能力を評価した。
Next, the fluorescent display tube mounted with an oxide cathode added with a metal oxide was driven to evaluate the emission capability of the oxide cathode.

【0039】図11は、金属酸化物の添加量、種類とエ
ミッション量の関係を示したグラフであり、エミッショ
ン量は、金属酸化物を添加しない時の値を100とした
場合の相対値とした。ここでA,B,Cの各グループは
図7と同じものを示す。なお、5%劣化は輝度特性に影
響を及ぼさないエミッション劣化範囲で、グリッド−フ
ィラメント間距離の微小な制御でクリアーできるレベル
であるため、95%以上を使用可能範囲とした。
FIG. 11 is a graph showing the relationship between the amount and type of metal oxide added and the amount of emission. The amount of emission is a relative value when the value when no metal oxide is added is 100. . Here, each group of A, B, and C shows the same thing as FIG. Note that 5% deterioration is an emission deterioration range that does not affect the luminance characteristics and is a level that can be cleared by minute control of the grid-filament distance, so 95% or more was set as the usable range.

【0040】この図からA,Bグループのものは、添加
量が20重量%以下ではエミッション特性に実用上影響
を及ぼさず、特にAグループであるZnOとIn2 3
については、その添加範囲が広くとれることが認められ
た。またSiO2 、TiO2、WO3 については、著し
い劣化を及ぼしていることが判明した。
As can be seen from the figure, in the A and B groups, when the addition amount is 20% by weight or less, the emission characteristics are not practically affected, and in particular, ZnO and In 2 O 3 in the A group are included.
It was confirmed that the addition range of the above can be wide. Further, it was found that SiO 2 , TiO 2 , and WO 3 are significantly deteriorated.

【0041】以上のことから三元アルカリ土類金属炭酸
塩に、In2 3 ,ZnO,Al23 ,La2 3
ZrO2 ,ThO2 ,SnO2 ,Ta2 5 ,MgOな
どの金属酸化物を0.5〜20重量%添加し、この金属
酸化物の中間層を形成したフィラメント状陰極は、三元
炭酸塩を電着した直後の付着生強度が向上し、さらに熱
分解後の酸化物層との付着強度にも優れ、特に、ZnO
とIn2 3 においては、エミッション特性にも影響を
及ぼさないことが確認された。
From the above, ternary alkaline earth metal carbonates can be added to In 2 O 3 , ZnO, Al 2 O 3 , La 2 O 3 ,
A filamentary cathode formed by adding 0.5 to 20% by weight of a metal oxide such as ZrO 2 , ThO 2 , SnO 2 , Ta 2 O 5 , and MgO and forming an intermediate layer of this metal oxide is a ternary carbonate. The adhesion strength immediately after electrodeposition of Pd is improved, and the adhesion strength with the oxide layer after thermal decomposition is also excellent.
It was confirmed that and In 2 O 3 do not affect the emission characteristics.

【0042】[0042]

【発明の効果】本発明によって以下の効果を奏すること
ができる。
According to the present invention, the following effects can be obtained.

【0043】(1)エミッション特性を低下させること
なく酸化物陰極の付着強度が大きくなり、長期に亘って
安定した使用が可能となる。
(1) The adhesion strength of the oxide cathode is increased without degrading the emission characteristics, and stable use is possible for a long period of time.

【0044】(2)エミッション特性を低下させること
なく酸化物陰極の付着強度が大きくなるため、グリッド
とフィラメント間の寸法を縮めることが可能となり、少
ない電力で高輝度の製品を得ることができ、強い衝撃や
振動を受けやすい車載用には好適に使用できる。
(2) Since the adhesion strength of the oxide cathode is increased without deteriorating the emission characteristics, the size between the grid and the filament can be reduced, and a high-brightness product can be obtained with less electric power. It can be suitably used for in-vehicle use which is susceptible to strong shock and vibration.

【0045】(3)従来の電着液に三元炭酸塩よりも小
さい微粉末の金属酸化物を添加するという簡単な方法に
よって、金属酸化物の中間層を生成し、被覆層の剥離の
無い付着力の強い酸化物陰極を得ることができる。
(3) An intermediate layer of metal oxide is formed by a simple method of adding a finely powdered metal oxide smaller than ternary carbonate to a conventional electrodeposition liquid, and the coating layer is not peeled off. An oxide cathode having strong adhesion can be obtained.

【0046】(4)添加した金属酸化物は、三元炭酸塩
の熱分解時においてもガス化することがないため、エミ
ッション特性への影響が極めて少ない。
(4) Since the added metal oxide does not gasify even during the thermal decomposition of the ternary carbonate, the effect on the emission characteristics is extremely small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により得られた酸化物陰極の模式
図である。
FIG. 1 is a schematic view of an oxide cathode obtained by the method of the present invention.

【図2】芯線表面からのIn2 3 の濃度変化(Inの
特性X線強度)を示すグラフである。
FIG. 2 is a graph showing changes in the concentration of In 2 O 3 from the surface of the core wire (intensity X-ray intensity of In).

【図3】ガラス管とスプールの位置関係を示す図であ
る。
FIG. 3 is a diagram showing a positional relationship between a glass tube and a spool.

【図4】金属酸化物の添加量と10スプール分の剥離発
生数の関係を粒径別に示す図である。
FIG. 4 is a diagram showing the relationship between the amount of metal oxide added and the number of occurrences of peeling for 10 spools for each particle size.

【図5】蛍光表示管の断面図である。FIG. 5 is a cross-sectional view of a fluorescent display tube.

【図6】図5に示す蛍光表示管の外観図である。6 is an external view of the fluorescent display tube shown in FIG.

【図7】蛍光表示管に2000Gの製品衝撃を加えた後
の酸化物層付着強度と金属酸化物の添加量の関係を粒径
別に示す図である。
FIG. 7 is a diagram showing, for each particle size, the relationship between the adhesion strength of the oxide layer and the amount of metal oxide added after a product impact of 2000 G is applied to the fluorescent display tube.

【図8】本実施例のフィラメント状陰極の衝撃試験後の
粒子構造を示すSEM写真である。
FIG. 8 is an SEM photograph showing a particle structure of the filamentary cathode of this example after an impact test.

【図9】従来品のフィラメント状陰極の加熱分解後の粒
子構造を示すSEM写真である。
FIG. 9 is an SEM photograph showing a particle structure of a conventional filament cathode after thermal decomposition.

【図10】従来品のフィラメント状陰極の衝撃試験後の
粒子構造を示すSEM写真である。
FIG. 10 is an SEM photograph showing a particle structure of a conventional filamentary cathode after an impact test.

【図11】金属酸化物の添加量とエミッション量の関係
を示すグラフである。
FIG. 11 is a graph showing the relationship between the amount of metal oxide added and the amount of emission.

【符号の説明】[Explanation of symbols]

1 芯線 2 金属酸化物 3 三元炭酸塩 1 core wire 2 metal oxide 3 ternary carbonate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 太郎 福岡県朝倉郡夜須町大字三並字八ツ並2160 番地九州ノリタケ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taro Yoneda 2160 Yatsunami, Sannami, Yasu Town, Asakura-gun, Fukuoka Prefecture Kyushu Noritake Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属芯線上にBa,Sr,Caを主成分
とする三元アルカリ土類金属炭酸塩の電子放射用被覆層
が形成されてなる酸化物陰極において、上記被覆層は上
記芯線と上記炭酸塩の間に金属酸化物層を有し、前記酸
化物層の金属酸化物濃度が芯線極表面において最高値を
示し、炭酸塩側に低くなる濃度勾配を持つことを特徴と
する酸化物陰極。
1. An oxide cathode in which a coating layer for electron emission of a ternary alkaline earth metal carbonate mainly containing Ba, Sr, and Ca is formed on a metal core wire, wherein the coating layer is the core wire. An oxide having a metal oxide layer between the carbonates, the metal oxide concentration of the oxide layer exhibits the highest value on the surface of the core wire, and has a concentration gradient that decreases toward the carbonate side. cathode.
【請求項2】 前記金属酸化物の平均粒径が、前記炭酸
塩の平均粒径よりも小さい微粉末であり、前記被覆層中
の金属酸化物量が炭酸塩の0.5〜20重量%含有され
てなる請求項1記載の酸化物陰極。
2. An average particle size of the metal oxide is a fine powder smaller than the average particle size of the carbonate, and the amount of the metal oxide in the coating layer is 0.5 to 20% by weight of the carbonate. The oxide cathode according to claim 1, wherein
【請求項3】 前記金属酸化物がIn2 3 ,ZnO,
Al2 3 ,La23 ,ZrO2 ,ThO2 ,SnO
2 ,MgO及びTa2 5 のうち1種又は2種以上であ
る請求項1又は2に記載の酸化物陰極。
3. The metal oxide is In 2 O 3 , ZnO,
Al 2 O 3 , La 2 O 3 , ZrO 2 , ThO 2 , SnO
The oxide cathode according to claim 1 or 2, which is one or more of 2 , 2 , MgO and Ta 2 O 5 .
【請求項4】 Ba,Sr,Caを主成分とする三元ア
ルカリ土類金属炭酸塩と結合剤と溶剤とからなる電着液
を形成し、この液中に酸化物陰極用の芯線を通し、電気
泳動により前記芯線の表面に前記炭酸塩を被覆する電着
法による酸化物陰極の製造方法において、 前記電着液内に前記炭酸塩の平均粒径よりも小さい微粉
末である、In2 3,ZnO,Al2 3 ,La2
3 ,ZrO2 ,ThO2 ,SnO2 ,MgO及びTa2
5 の何れかの金属酸化物、またはこれら金属酸化物の
2種以上の混合物を、炭酸塩に対し0.5〜20重量%
添加してなることを特徴とする酸化物陰極の製造方法。
4. An electrodeposition solution comprising a ternary alkaline earth metal carbonate containing Ba, Sr and Ca as main components, a binder and a solvent is formed, and a core wire for an oxide cathode is passed through the solution. In the method for producing an oxide cathode by an electrodeposition method in which the surface of the core wire is coated with the carbonate by electrophoresis, In 2 which is a fine powder smaller than the average particle size of the carbonate in the electrodeposition solution O 3 , ZnO, Al 2 O 3 , La 2 O
3 , ZrO 2 , ThO 2 , SnO 2 , MgO and Ta 2
0.5 to 20% by weight of a metal oxide of O 5 or a mixture of two or more of these metal oxides with respect to the carbonate.
A method for producing an oxide cathode, characterized by being added.
JP20276293A 1993-07-23 1993-07-23 Oxide cathode and method for producing the same Expired - Fee Related JP3400499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20276293A JP3400499B2 (en) 1993-07-23 1993-07-23 Oxide cathode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20276293A JP3400499B2 (en) 1993-07-23 1993-07-23 Oxide cathode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0737485A true JPH0737485A (en) 1995-02-07
JP3400499B2 JP3400499B2 (en) 2003-04-28

Family

ID=16462752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20276293A Expired - Fee Related JP3400499B2 (en) 1993-07-23 1993-07-23 Oxide cathode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3400499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344607B2 (en) 2008-12-02 2013-01-01 Canon Kabushiki Kaisha Electron-emitting device and display panel including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344607B2 (en) 2008-12-02 2013-01-01 Canon Kabushiki Kaisha Electron-emitting device and display panel including the same

Also Published As

Publication number Publication date
JP3400499B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
US2339392A (en) Cathode
JP2746186B2 (en) Phosphor
JPH08234682A (en) Suspension in deposition of light-emitting material by electrophoresis for manufacture of flat screen
JP3400499B2 (en) Oxide cathode and method for producing the same
US5216320A (en) Cathode for electron tube
US5073743A (en) Electrode for discharge light source
US4291252A (en) Electron tube cathode
US3374385A (en) Electron tube cathode with nickel-tungsten alloy base and thin nickel coating
JP3401296B2 (en) Manufacturing method of oxide cathode
JP3139073B2 (en) Cathode ray tube
JP2904106B2 (en) Phosphor
US6492765B1 (en) Cathode structure for cathode ray tube
JPH03289022A (en) Oxide cathode
GB2385707A (en) Directly heated oxide cathode and fluorescent display tube using the same
JPS5954145A (en) Oxide-coated cathode and its production method
KR830002360B1 (en) Direct Oxide Cathode
KR940010300B1 (en) Composition for electrostatic coating
JPH0684448A (en) Oxide cathode
JPS5887740A (en) Fluorescent display tube
JPH06223774A (en) Non-organic compound for emitter and electrode for discharge lamp employing aforesaid compound
JPS6032232A (en) Impregnated cathode
JPS61264625A (en) Impregnated type cathode
JP2001176375A (en) Oxide cathode and its manufacturing method
JPS6290819A (en) Cathode for electron tube
JPH0696661A (en) Electronic tube cathode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees