JPH0737334B2 - Heat-resistant ceramics molded body and manufacturing method thereof - Google Patents

Heat-resistant ceramics molded body and manufacturing method thereof

Info

Publication number
JPH0737334B2
JPH0737334B2 JP3031314A JP3131491A JPH0737334B2 JP H0737334 B2 JPH0737334 B2 JP H0737334B2 JP 3031314 A JP3031314 A JP 3031314A JP 3131491 A JP3131491 A JP 3131491A JP H0737334 B2 JPH0737334 B2 JP H0737334B2
Authority
JP
Japan
Prior art keywords
glass
solid solution
less
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3031314A
Other languages
Japanese (ja)
Other versions
JPH04367538A (en
Inventor
敬一 向井
貞吉 林
純 玉置
康二 菊月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Glass Co Ltd
Original Assignee
Okamoto Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Glass Co Ltd filed Critical Okamoto Glass Co Ltd
Priority to JP3031314A priority Critical patent/JPH0737334B2/en
Publication of JPH04367538A publication Critical patent/JPH04367538A/en
Publication of JPH0737334B2 publication Critical patent/JPH0737334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面の平滑性が良好な
耐熱性セラミックス成形体およびその製造法に関するも
のである。本発明はまた、耐熱性が良く高温度での使用
に耐える反射鏡基材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant ceramic compact having a good surface smoothness and a method for producing the same. The present invention also relates to a reflector substrate that has good heat resistance and can be used at high temperatures.

【0002】[0002]

【従来の技術】照明装置、映写機等の光源ランプは、そ
れが高輝度のものになるほど発熱も著しく、したがっ
て、ランプと組み合わせて使用される反射鏡の温度上昇
も激しい。特に、近年はランプの高輝度化と小型化が多
くの分野で進んでおり、反射鏡部分で550℃を超える
こともあるようになった。反射鏡は基材とその表面にコ
ーティングされた反射膜からなり、そのいずれもが反射
鏡の耐熱性を支配することは言うまでもないが、基材部
分の耐熱性について考えると、最高使用温度と耐熱衝撃
性の二つが重要である。基材としてよく使われるガラス
の場合、最高使用温度は転移点以下の温度となるため、
最高度の耐熱性を有するパイレックス級ガラスでも55
0℃以下でしか使用できず、耐熱衝撃性はムク棒(直径
5mm)による試験でも温度差250℃が限界であるか
ら、上述のような苛酷な条件では安心して使用すること
ができない。また、基材の耐熱限界によってランプや反
射鏡の小型化が制限されてしまうことになる。
2. Description of the Related Art Light source lamps for lighting devices, projectors, etc., generate more heat as they become brighter, and therefore the temperature of the reflecting mirror used in combination with the lamp also rises sharply. In particular, in recent years, the brightness and the size of the lamp have been increasing in many fields, and the temperature of the reflecting mirror may exceed 550 ° C. It goes without saying that the reflector consists of a base material and a reflective film coated on the surface, and both of them control the heat resistance of the reflector, but considering the heat resistance of the base material, the maximum operating temperature and heat resistance are considered. Two of the impact properties are important. In the case of glass that is often used as a base material, the maximum operating temperature is below the transition point,
55 even Pyrex grade glass with the highest heat resistance
Since it can be used only at 0 ° C. or lower, and the thermal shock resistance is limited to a temperature difference of 250 ° C. even in a test with a solid rod (diameter 5 mm), it cannot be used safely under the severe conditions described above. Further, the heat resistance limit of the base material limits the miniaturization of the lamp and the reflecting mirror.

【0003】より耐熱性の高い材料としては石英ガラス
があるが、このガラスは成形加工が容易でなく、量産が
困難できわめて高価なものとなる欠点がある。セラミッ
クスは、一般に耐熱性は優れているが、十分な光学特性
を備えた反射鏡を製造するのに必要な高精度曲面を形成
することが難しく、また表面平滑性にも問題があり、反
射鏡基材として実用化された例はない。Li2O、Al2
3およびSiO2の3成分を基本成分とする低熱膨張率ガ
ラスを熱処理してβ−スポジュウメン固溶体(Li2O−
Al23−4SiO2)またはβ−ユークリプタイト固溶
体(Li2O−Al23−2SiO2)を生じさせることに
より得られるセラミックス(いわゆる結晶化ガラス)
は、優れた耐熱性を有し、また反射鏡基材とするのに必
要な成形および研磨は結晶化させる前のガラスの段階で
容易に行うことができるので、反射鏡基材として好まし
い材料である。しかしながら、ガラスの段階でいかに平
滑に仕上げておいた表面も結晶化にともない粗面化して
しまうことが、反射鏡基材として利用する場合の欠点と
なる。すなわち、反射鏡基材に真空蒸着等の手段でコー
ティングされる多層反射膜は全体でも2μm程度の薄い
ものであるから、基材の表面が平滑性が悪いと反射膜も
また平滑にならず、反射率の高い反射膜は得られない
が、従来の結晶化ガラスの表面は平均粗さが0.1μ前
後、場所によっては0.5μを超える粗さであるから、
高反射率反射鏡の基材として使用することはできなかっ
た(パイレックスガラス系反射鏡基材の研磨された反射
面の平均粗さは通常0.001〜0.003μm程度であ
る。ただし、“平均粗さ”はJIS B0601の「中
心線平均粗さRa」である。)。
Quartz glass is used as a material having higher heat resistance, but this glass has the drawback that it is not easy to mold, mass production is difficult, and it is extremely expensive. Ceramics are generally excellent in heat resistance, but it is difficult to form a highly accurate curved surface necessary for manufacturing a reflecting mirror having sufficient optical characteristics, and there is a problem in surface smoothness. There is no example that has been put to practical use as a base material. Li 2 O, Al 2 O
A glass having a low coefficient of thermal expansion containing 3 components of 3 and SiO 2 as a basic component is heat-treated to form a β-spodumene solid solution (Li 2 O-
Al 2 O 3 -4SiO 2 ) or a ceramic obtained by forming a β-eucryptite solid solution (Li 2 O-Al 2 O 3 -2SiO 2 ) (so-called crystallized glass)
Has excellent heat resistance, and the molding and polishing necessary for forming the reflector substrate can be easily performed in the stage of glass before crystallization, so that it is a preferable material for the reflector substrate. is there. However, it is a drawback when used as a reflecting mirror base material that even a smooth finished surface at the glass stage becomes rough due to crystallization. That is, since the multilayer reflective film coated on the reflector base material by means such as vacuum deposition is as thin as about 2 μm as a whole, if the surface of the base material is poor in smoothness, the reflective film will not be smooth either. Although a reflective film having a high reflectance cannot be obtained, the average roughness of the surface of the conventional crystallized glass is about 0.1 μ, and the roughness exceeds 0.5 μ in some places.
It could not be used as a base material for a high-reflectance reflecting mirror (the average roughness of the polished reflecting surface of the Pyrex glass-based reflecting mirror base material is usually about 0.001 to 0.003 μm. "Average roughness" is "center line average roughness Ra" of JIS B0601.).

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上述
のように反射鏡基材として有利な性質を備えているにも
かかわらず表面の平滑度が不十分なために高反射率反射
鏡の基材として使用することができなかった結晶化ガラ
ス製品の表面平滑性を改良することにある。本発明の他
の目的は、反射鏡基材以外の用途にも有用な、本質的に
平滑な光沢表面を有する結晶化ガラス系耐熱性セラミッ
クス成形体およびその製造法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-reflectivity reflecting mirror due to insufficient surface smoothness even though it has advantageous properties as a reflecting mirror substrate as described above. The object is to improve the surface smoothness of crystallized glass products that could not be used as a base material of Another object of the present invention is to provide a crystallized glass-based heat-resistant ceramics molded article having an essentially smooth glossy surface, which is useful for applications other than the reflector substrate, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明が提供することに
成功した耐熱性セラミックス成形体およびそれよりなる
反射鏡基材は、マグネシウム、カルシウム、亜鉛、鉛、
およびバナジウムからなる群から選ばれた金属の1種以
上を酸化物として0.3〜7.0%(重量%;以下同じ)
含有するβ−スポジュウメン固溶体もしくはβ−ユーク
リプタイト固溶体からなり、その表面の平均粗さが本質
的に0.03μm以下であることを特徴とする。ここで、
“平均粗さが本質的に0.03μm以下である”とは、β
−スポジュウメン固溶体もしくはβ−ユークリプタイト
固溶体を生成させる結晶化処理後いかなる研磨処理も施
されていない本来の表面が0.03μm以下の平均粗さを
示すことをいう。
Means for Solving the Problems The heat-resistant ceramics molded body and the reflector substrate made of the same, which have been successfully provided by the present invention, include magnesium, calcium, zinc, lead,
And at least one metal selected from the group consisting of vanadium as an oxide in an amount of 0.3 to 7.0% (% by weight; the same applies hereinafter)
It is characterized by comprising a β-spodumen solid solution or a β-eucryptite solid solution contained therein, and having an average surface roughness of essentially 0.03 μm or less. here,
“The average roughness is essentially 0.03 μm or less” means β
-It means that the original surface which has not been subjected to any polishing treatment after the crystallization treatment for producing the Spodumene solid solution or the β-eucryptite solid solution exhibits an average roughness of 0.03 µm or less.

【0006】本発明はまた、酸化物組成がSiO2 50
〜65%、Al23 18〜30%、Li2O 3〜8%、
TiO2+ZrO23〜5%、P25および(または)B2
3を合計量で8重量%以下、RO(ただしRはマグネ
シウム、カルシウム、亜鉛、鉛、およびバナジウムから
なる群から選ばれた金属原子を表す)0.3〜7.0%、
2O(ただしRはカリウム原子またはナトリウム原子
を表す)3.0%以下のガラスを所定の形状と平滑な表
面を有する成形体に成形し、得られたガラス成形体を、
上記ガラスの変形温度以下の温度で熱処理して結晶核を
生成させた後、昇温してβ−スポジュウメン固溶体また
はβ−ユークリプタイト固溶体を生成させることを特徴
とする上記表面平滑な耐熱性セラミックス成形体の製造
法を提供するものである。ただし、直径5mm、長さ30
mmの丸棒状にしたガラスを垂直に支持し、頂部より5g
の荷重をかけた状態で毎分5℃の昇温速度で温度を上昇
させたとき試料棒が曲がり始める温度をガラスの変形温
度とする。
The present invention also has an oxide composition of SiO 2 50.
~ 65%, Al 2 O 3 18-30%, Li 2 O 3-8%,
TiO 2 + ZrO 2 3-5%, P 2 O 5 and / or B 2
O 3 in a total amount of 8% by weight or less, RO (wherein R represents a metal atom selected from the group consisting of magnesium, calcium, zinc, lead, and vanadium) 0.3 to 7.0%,
R 2 O (where R represents a potassium atom or sodium atom) 3.0% or less of glass with a predetermined shape and a smooth surface.
Molded into a molded body having a surface , the obtained glass molded body,
After heat treatment at a temperature equal to or lower than the deformation temperature of the glass to generate crystal nuclei, the temperature is raised to generate a β-spodumen solid solution or a β-eucryptite solid solution, the surface-smooth heat-resistant ceramics. The present invention provides a method for manufacturing a molded body. However, diameter 5mm, length 30
5mm glass is supported vertically with a round bar of 5mm.
The temperature at which the sample rod begins to bend when the temperature is increased at a rate of temperature increase of 5 ° C. per minute with the load applied is defined as the glass deformation temperature.

【0007】[0007]

【作用】マグネシウム、カルシウム、亜鉛、鉛、バナジ
ウムからなる群から選ばれた金属の1種以上を酸化物と
して0.3〜7.0%含有するβ−スポジュウメン固溶体
もしくはβ−ユークリプタイト固溶体からなり、表面の
平均粗さが本質的に0.03μm以下である本発明のセラ
ミックス成形体は、β−スポジュウメン固溶体またはβ
−ユークリプタイト固溶体からなる結晶化ガラス特有の
優れた耐熱性を示すとともに、本質的に優れた表面平滑
性により、困難な研磨仕上げを要することなしに、反射
鏡基材等、耐熱性と高度の表面平滑性を要求される分野
に使用することができる。以下、上記セラミックス成形
体の製造法を工程順に説明しながら本発明につき詳述す
る。
[Function] From a β-spodumene solid solution or a β-eucryptite solid solution containing 0.3 to 7.0% of one or more metals selected from the group consisting of magnesium, calcium, zinc, lead and vanadium as oxides. In addition, the ceramic molded body of the present invention having an average surface roughness of essentially 0.03 μm or less is a β-spodumene solid solution or β-spodumene solid solution.
-It exhibits excellent heat resistance peculiar to crystallized glass made of eucryptite solid solution, and due to its inherently excellent surface smoothness, it does not require difficult polishing finish, and it has high heat resistance and It can be used in the fields where the surface smoothness is required. Hereinafter, the present invention will be described in detail while explaining the method for manufacturing the above-mentioned ceramic molded body in the order of steps.

【0008】まず、酸化物組成がSiO2 50〜65
%、Al23 18〜30%、Li2O 5〜8%、TiO2
+ZrO2 3〜5%、P25および(または)B23
合計量で8%以下、RO(ただしRはマグネシウム、カ
ルシウム、亜鉛、鉛、バナジウムからなる群から選ばれ
た金属原子を表す)0.3〜7.0%、R2O(ただしR
はカリウム原子またはナトリウム原子を表す)3.0%
以下のガラスを得るのに必要な原料鉱物を用意し、これ
をガラス製造の常法に従って粉砕、混合し、さらに加熱
して溶融状態で混合することによりガラス化させる。上
記ガラス組成の特徴の第一は、従来のこの種ガラスと比
べて溶融温度がやや低いことであり、このため、約15
00℃以下の温度で溶融してガラス化させることができ
る。RO成分の配合は、表面平滑性のよい製品を得るの
に特に重要な意味を持ち、高反射率反射鏡の基材になり
得るような表面平滑性のよい結晶化ガラス製品は適量の
RO成分を配合しかつ後述するやや低い温度で結晶化を
進めることによって初めて製造可能である。RO成分と
して特に好ましいのは、PbOおよびVOである。
First, the oxide composition is SiO 2 50-65.
%, Al 2 O 3 18-30%, Li 2 O 5-8%, TiO 2
+ ZrO 2 3 to 5%, P 2 O 5 and / or B 2 O 3 in a total amount of 8% or less, RO (where R is a metal atom selected from the group consisting of magnesium, calcium, zinc, lead and vanadium). Represents 0.3 to 7.0%, R 2 O (however, R
Represents a potassium atom or a sodium atom) 3.0%
Raw material minerals necessary for obtaining the following glass are prepared, and the raw material minerals are pulverized and mixed according to a conventional method for producing glass, and further heated and mixed in a molten state to be vitrified. The first characteristic of the above glass composition is that the melting temperature is slightly lower than that of the conventional glass of this type, and therefore, about 15
It can be melted and vitrified at a temperature of 00 ° C. or lower. The blending of the RO component is particularly important for obtaining a product having a good surface smoothness, and a crystallized glass product having a good surface smoothness that can serve as a base material for a high-reflectance reflecting mirror has an appropriate amount of the RO component. Can be produced only by blending and crystallization at a slightly lower temperature described later. Especially preferred as RO components are PbO and VO.

【0009】その他の成分の比率も、本発明の目的を達
成するためには上記範囲に限定される。SiO2は、50
%未満ではガラスが成形中に失透し易く、65%を超え
ると溶融が困難になる。Al23は17%未満では熱膨
張係数が大きくなって耐熱衝撃性が悪くなり、30%を
超えると溶融が困難になる。Li2Oは、3%未満では溶
融が困難であり、8%を超えると熱膨張係数が大きくな
りすぎる。TiO2およびZrO2は結晶核形成剤として配
合される成分であって、これらの合計量が3%未満では
結晶化に時間がかかりすぎるが、5%を超えると、溶融
が困難になるとともにガラス成形中に失透を起こしやす
くなる。その他、P25、B23、およびR2Oは溶融
性と作業性の向上に有効な成分であるが、多すぎると、
失透、ガラス成形体の変形等、好ましくない結果を生じ
るので、過剰量の配合は避ける。P25およびB2
3は、単独では5%を超えないことが望ましい。
The proportions of the other components are also limited to the above range in order to achieve the object of the present invention. 50 for SiO 2
If it is less than%, the glass tends to devitrify during molding, and if it exceeds 65%, melting becomes difficult. If Al 2 O 3 is less than 17%, the thermal expansion coefficient becomes large and the thermal shock resistance deteriorates. If it exceeds 30%, melting becomes difficult. If Li 2 O is less than 3%, it is difficult to melt, and if it exceeds 8%, the coefficient of thermal expansion becomes too large. TiO 2 and ZrO 2 are components blended as a crystal nucleating agent. If the total amount of these is less than 3%, it takes too long to crystallize, but if it exceeds 5%, melting becomes difficult and the glass becomes glass. Devitrification tends to occur during molding. In addition, P 2 O 5 , B 2 O 3 , and R 2 O are effective components for improving the meltability and workability, but if too much,
Avoid undesired blending, as it may cause devitrification, deformation of the glass molding, and other undesirable results. P 2 O 5 and B 2 O
It is desirable that 3 alone does not exceed 5%.

【0010】得られたガラスは、通常のガラスの場合と
同様に、ブロー法、プレス法、ロール法、キャスト法
等、任意の方法で、所定の形状に成形する。その後、成
形精度および表面平滑度を重要視する部分、たとえば反
射鏡基材とする場合における反射膜コーティング面に
は、必要に応じて研磨仕上げを施す。次いでガラス成形
体を加熱炉に入れ、結晶化のための二段の熱処理を施
す。第一段の熱処理は、β−ユークリプタイトまたはβ
−スポジュウメンの微結晶を均一に生成させるための、
結晶核形成工程である。熱処理を二段に分けて行うこと
により均一な微結晶を生じさせることは従来の結晶化ガ
ラス製造法においても行われているが、従来の製造法に
おける第一段熱処理ではもっぱら結晶核生成促進の観点
からのみ条件が選ばれて通常750〜800℃に達する
高温で行われている。これに対し、本発明の製造法にお
いては、ここでの処理温度を上記組成のガラスの変形温
度(標準的な組成のもので約450〜650℃)よりも
低い温度、望ましくは約50〜100℃低い温度にする
ので、第一段熱処理温度が650℃を超えることはな
い。この温度条件は最終的に得られる結晶化ガラスの表
面を平滑性のよい光沢面にするために重要であって、理
由は定かでないが、上記組成のガラス成形体でも処理温
度が高すぎると粗い表面のものになってしまう。
The obtained glass is formed into a predetermined shape by an arbitrary method such as a blowing method, a pressing method, a roll method, a casting method or the like, as in the case of ordinary glass. Thereafter, a portion where importance is placed on molding precision and surface smoothness, for example, a reflection film coating surface in the case of using a reflecting mirror base material, is subjected to polishing finish as necessary. Then, the glass molded body is placed in a heating furnace and subjected to a two-step heat treatment for crystallization. The first stage heat treatment is β-eucryptite or β
-To uniformly generate fine crystals of spodumene,
This is a crystal nucleus forming step. Generation of uniform crystallites by performing the heat treatment in two steps is also performed in the conventional crystallized glass manufacturing method, but the first-step heat treatment in the conventional manufacturing method exclusively promotes the formation of crystal nuclei. The conditions are selected only from the viewpoint, and it is usually performed at a high temperature of 750 to 800 ° C. On the other hand, in the production method of the present invention, the treatment temperature here is lower than the deformation temperature of the glass having the above composition (about 450 to 650 ° C. for the standard composition), preferably about 50 to 100. Since the temperature is lower by ℃, the first stage heat treatment temperature does not exceed 650 ℃. This temperature condition is important for making the surface of the finally obtained crystallized glass a glossy surface with good smoothness, and the reason is not clear, but even the glass molded product of the above composition is rough if the treatment temperature is too high. It will be on the surface.

【0011】上記温度に約30分〜2時間保持して結晶
核を生成させた後、温度を約650〜850℃、望まし
くは700〜800℃に上昇させ、この温度に約30分
〜数時間保持すると、β−ユークリプタイト固溶体、次
いでβ−スポジュウメン固溶体が生成する。β−スポジ
ュウメン固溶体は、β−ユークリプタイト固溶体よりも
熱膨張係数がやや高いが強度が優れている。従来の結晶
化ガラスの場合、β−スポジュウメン固溶体を生成させ
るには結晶化工程において約900〜1200℃という
高温での熱処理を必要としていたが、本発明による上述
のガラス組成の場合、熱処理温度は高くても800℃で
よいから、熱エネルギーの消費がはるかに少なくて済
む。
After the temperature is maintained for about 30 minutes to 2 hours to generate crystal nuclei, the temperature is raised to about 650 to 850 ° C., preferably 700 to 800 ° C., and the temperature is maintained for about 30 minutes to several hours. Upon holding, a β-eucryptite solid solution and then a β-spodumen solid solution are formed. The β-spodumen solid solution has a slightly higher coefficient of thermal expansion than the β-eucryptite solid solution, but is superior in strength. In the case of the conventional crystallized glass, heat treatment at a high temperature of about 900 to 1200 ° C. was required in the crystallization step to form the β-spodumene solid solution, but in the case of the above glass composition according to the present invention, the heat treatment temperature is Since it can be as high as 800 ° C, it consumes far less heat energy.

【0012】得られる結晶化ガラスは、β−スポジュウ
メン固溶体の場合、結晶化にともない完全に失透してい
るが、それによる表面の荒れは最小限度に抑えられてい
て、平均粗さは通常0.03μ以下である。表面の平均
粗さが0.02μの結晶化ガラスからなる基材を用いて
製作された反射鏡は、平均粗さが0.002以下の耐熱
性ガラスを基材として同様に製作された反射鏡の反射率
の90%以上の反射率を示し、反射鏡基材として十分使
用可能である。β−スポジュウメン固溶体からなる製品
の軟化変形温度は900℃以上であり、700℃までの
温度で連続使用に耐える。耐熱衝撃性にも優れ、600
℃に加熱してから冷水中に投入する試験によっても破損
しなかった。
In the case of the β-spodumene solid solution, the obtained crystallized glass is completely devitrified with crystallization, but the surface roughness due to it is suppressed to a minimum, and the average roughness is usually 0. It is 0.03 μ or less. A reflecting mirror manufactured using a base material made of crystallized glass having an average surface roughness of 0.02μ is also a reflecting mirror manufactured using heat-resistant glass having an average roughness of 0.002 or less as a base material. It exhibits a reflectance of 90% or more of the reflectance of the above, and can be sufficiently used as a reflector substrate. The softening deformation temperature of a product made of β-spodumene solid solution is 900 ° C or higher, and it can withstand continuous use at a temperature up to 700 ° C. Excellent thermal shock resistance, 600
It was not damaged even by a test in which it was heated to ℃ and put in cold water.

【0013】[0013]

【実施例】【Example】

実施例1 SiO2 60%、Al23 21%、Li2O 5.5%、Ti
2+ZrO2 4%、P25 5%、B23 2.5%、Z
nO+MgO 4%、K2O+Na2O1.5%の組成にな
るよう原料を調合し、1500℃で溶融してガラス化
し、これをプレス法により直径80mmの反射鏡の基材形
状に成形した。変形温度が660℃のこのガラス成形体
を570℃に1時間保持した後、毎分3℃の昇温速度で
770℃に昇温し、この温度で1時間保持してから冷却
した。熱処理前透明であった成形体は乳白色になってお
り、X線回折図から、β−スポジュウメン固溶体になっ
たことが確認された。熱膨張係数(室温〜400℃の平
均値)は6×10-7/℃、曲げ強度は900kgf/cm2であ
った。また、600℃に加熱して冷水中に投入しても破
損せず、耐熱衝撃性も優れていることが確認された。表
面は美麗な光沢面で、その平均粗さは0.03μm以下で
あった。製品の所定の位置にTa2O-SiO2交互多層膜
を蒸着して得られた反射鏡の反射率は、上記と同じガラ
スの反射鏡基材に熱処理を施さずに同じ反射膜を蒸着し
て得られた反射鏡の反射率を100とすると全可視光領
域にわたり90以上であった。
Example 1 SiO 2 60%, Al 2 O 3 21%, Li 2 O 5.5%, Ti
O 2 + ZrO 2 4%, P 2 O 5 5%, B 2 O 3 2.5%, Z
nO + MgO 4%, to prepare a raw material so that the K 2 O + Na 2 O1.5% of the composition, and vitrified by melting at 1500 ° C., and molded into a substrate shape of the reflecting mirror having a diameter of 80mm by this pressing. This glass molded body having a deformation temperature of 660 ° C. was held at 570 ° C. for 1 hour, then heated to 770 ° C. at a heating rate of 3 ° C./min, held at this temperature for 1 hour, and then cooled. The molded body that was transparent before the heat treatment was milky white, and it was confirmed from the X-ray diffraction pattern that it became a β-spodumen solid solution. The coefficient of thermal expansion (average value from room temperature to 400 ° C.) was 6 × 10 −7 / ° C., and the bending strength was 900 kgf / cm 2 . Further, it was confirmed that even if it was heated to 600 ° C. and put into cold water, it was not damaged and the thermal shock resistance was excellent. The surface was a beautiful glossy surface, and the average roughness was 0.03 μm or less. The reflectance of the reflecting mirror obtained by depositing the Ta 2 O-SiO 2 alternating multilayer film on the predetermined position of the product is the same as the above, and the same reflecting film is deposited on the reflecting mirror base material of glass without heat treatment. When the reflectance of the reflecting mirror thus obtained was 100, it was 90 or more over the entire visible light region.

【0014】実施例2 SiO2 53%、Al23 25%、Li2O 6%、TiO2
+ZrO2 4.3%、P25 3%、B23 3%、PbO
+MgO 3.5%、K2O+Na2O 1.4%の組成にな
るよう原料を調合し、1470℃で溶融してガラス化
し、これをプレス法により直径80mmの反射鏡の基材形
状に成形した。変形温度が650℃のこのガラス成形体
を600℃に1時間保持した後、毎分5℃の昇温速度で
750℃に昇温し、この温度で1時間保持してから冷却
した。熱処理前透明であった成形体は半透明の乳白色に
なっており、X線回折図から、β−スポジュウメン固溶
体になったことが確認された。熱膨張係数は15×10
-7/℃、曲げ強度は950kgf/cm2であった。また、60
0℃に加熱して冷水中に投入しても破損せず、耐熱衝撃
性も優れていることが確認された。表面は美麗な光沢面
で、その平均粗さは0.025μm以下であった。製品の
所定の位置にTa2O−SiO2交互多層膜を蒸着して得ら
れた反射鏡の反射率は、上記と同じガラスの反射鏡基材
に熱処理を施さずに同じ反射膜を蒸着して得られた反射
鏡の反射率を100とすると全可視光領域にわたり90
以上であった。
Example 2 SiO 2 53%, Al 2 O 3 25%, Li 2 O 6%, TiO 2
+ ZrO 2 4.3%, P 2 O 5 3%, B 2 O 3 3%, PbO
+ MgO 3.5%, K 2 O + Na 2 O 1.4% are mixed and the raw materials are mixed and melted at 1470 ° C to be vitrified, which is then pressed into a base material of a reflector with a diameter of 80 mm. did. The glass molded body having a deformation temperature of 650 ° C. was held at 600 ° C. for 1 hour, then heated to 750 ° C. at a heating rate of 5 ° C./min, held at this temperature for 1 hour, and then cooled. The molded body which was transparent before the heat treatment was translucent and milky white, and it was confirmed from the X-ray diffraction pattern that it was a β-spodumen solid solution. Thermal expansion coefficient is 15 × 10
The bending strength was -7 / ° C and the bending strength was 950 kgf / cm 2 . Also, 60
It was confirmed that even if it was heated to 0 ° C. and put into cold water, it did not break and had excellent thermal shock resistance. The surface was a beautiful glossy surface, and the average roughness was 0.025 μm or less. The reflectance of the reflecting mirror obtained by depositing the Ta 2 O—SiO 2 alternating multilayer film at a predetermined position on the product is the same as that described above, but the same reflecting film is deposited on the reflecting mirror base material of glass without heat treatment. If the reflectance of the obtained reflector is 100, it is 90 over the entire visible light range.
That was all.

【0015】比較例1 PbOおよびMgOを含まないほかは実施例2の場合と
同様の原料、すなわちSiO2 53%、Al23 25
%、Li2O 6%、TiO2+ZrO2 4.3%、P25
%、B23 3%、K2O+Na2O 1.4%の原料を1
470℃で溶融してガラス化し、これを実施例2の場合
と同様にして直径80mmの反射鏡の基材形状に成形し
た。変形温度が650℃のこのガラス成形体を600℃
に1時間保持した後、毎分5℃の昇温速度で750℃に
昇温し、この温度で1時間保持してから冷却した。熱処
理前透明であった成形体は半透明の乳白色になってお
り、β−スポジュウメン固溶体の生成が確認されたが、
製品の表面粗さにむらがあり、粗いところは0.3μmを
超えた。また、全体としても変形していることが認めら
れた。その結果、これに実施例2の場合と同様に多層反
射膜を蒸着して得られた反射鏡の反射率は、研磨ガラス
面に同じ反射膜を蒸着して得られた反射鏡の反射率を1
00とすると、全可視光領域において90に達しなかっ
た。
Comparative Example 1 The same raw material as in Example 2 except that PbO and MgO were not included, that is, SiO 2 53%, Al 2 O 3 25
%, Li 2 O 6%, TiO 2 + ZrO 2 4.3%, P 2 O 5 3
%, B 2 O 3 3%, K 2 O + Na 2 O 1.4% as a raw material
It was melted at 470 ° C. to be vitrified, and this was molded into a substrate shape of a reflecting mirror having a diameter of 80 mm in the same manner as in Example 2. This glass molding with a deformation temperature of 650 ℃ is 600 ℃
After the temperature was maintained for 1 hour, the temperature was raised to 750 ° C. at a temperature rising rate of 5 ° C./min, and the temperature was maintained for 1 hour and then cooled. The molded body which was transparent before the heat treatment was translucent milky white, and the formation of β-spodumene solid solution was confirmed,
The surface roughness of the product was uneven, and the roughness was over 0.3 μm. In addition, it was confirmed that it was deformed as a whole. As a result, the reflectance of the reflecting mirror obtained by vapor-depositing the multilayer reflecting film thereon in the same manner as in Example 2 is the reflectance of the reflecting mirror obtained by vapor-depositing the same reflecting film on the polished glass surface. 1
When it was set to 00, it did not reach 90 in the entire visible light region.

【0016】比較例2 実施例2と同様にして得られたガラス成形体を、650
℃で1時間保持した後、830℃に昇温して1時間熱処
理した。熱処理前透明であった成形体は乳白色になって
おり、X線回折図からβ−スポジュウメン固溶体になっ
たことが確認され、曲げ強度は1400kgf/cm2と高か
ったが、熱膨張係数は20×10-7/℃、耐熱衝撃性は
500℃以下であった。表面の平均粗さは0.05μm以
上であり、さらに、肉眼で認められるシワもあった。こ
の成形体に実施例2の場合と同様にして多層反射膜を蒸
着して得られた反射鏡の反射率は、研磨ガラス面に同じ
反射膜を蒸着して得られた反射鏡の反射率を100とす
ると全可視光領域において80前後であった。
Comparative Example 2 A glass molded body obtained in the same manner as in Example 2 was replaced with 650
After holding at ℃ for 1 hour, it was heated to 830 ℃ and heat-treated for 1 hour. The molded body that was transparent before heat treatment was milky white, and it was confirmed from the X-ray diffraction pattern that it was a β-spodumene solid solution. The bending strength was high at 1400 kgf / cm 2 , but the thermal expansion coefficient was 20 ×. The thermal shock resistance was 10 -7 / ° C and 500 ° C or less. The average roughness of the surface was 0.05 μm or more, and there were wrinkles visually observed. The reflectance of the reflecting mirror obtained by depositing the multilayer reflecting film on this molded body in the same manner as in Example 2 is the reflectance of the reflecting mirror obtained by depositing the same reflecting film on the polished glass surface. When it was 100, it was around 80 in the entire visible light region.

【0017】[0017]

【発明の効果】上述のように、耐熱性、耐熱衝撃性およ
び機械的強度にすぐれ、しかも従来の結晶化ガラスと違
ってきわめて平滑な光沢表面を本質的に有する本発明の
セラミックス成形体は、反射鏡基材として優れているだ
けでなく、その特長を生かして、各種光学材料、電気絶
縁体、電子部品材料など、多くの用途に利用することが
できる。また、本発明の製造法によれば、従来の結晶化
ガラスを製造する場合よりもずっと低い温度で結晶化を
起こさせて安価に提供することができ、しかも製品は通
常研磨仕上げを必要としないほど高度の平滑性を有する
表面のものであるから、本発明により、多くの分野で従
来よりも容易に平滑度の高い耐熱性材料を利用すること
が可能になる。
As described above, the ceramic molded body of the present invention which has excellent heat resistance, thermal shock resistance and mechanical strength, and which has an extremely smooth glossy surface, which is different from conventional crystallized glass, is Not only is it excellent as a reflector substrate, but it can also be used for many applications such as various optical materials, electrical insulators, electronic component materials, etc., by making use of its features. Further, according to the production method of the present invention, crystallization can be performed at a much lower temperature than that in the case of producing a conventional crystallized glass, and the product can be provided at a low cost, and the product usually does not need a polishing finish. Since the surface has a relatively high degree of smoothness, the present invention makes it possible to utilize a heat-resistant material having a high degree of smoothness in many fields more easily than conventional ones.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム、カルシウム、亜鉛、鉛、
およびバナジウムからなる群から選ばれた金属の1種以
上を酸化物として0.5〜7.0重量%含有するβ−スポ
ジュウメン固溶体もしくはβ−ユークリプタイト固溶体
からなり、表面の平均粗さが本質的に0.03μm以下で
あることを特徴とする耐熱性セラミックス成形体。
1. Magnesium, calcium, zinc, lead,
And β-spodumen solid solution or β-eucryptite solid solution containing 0.5 to 7.0% by weight of one or more metals selected from the group consisting of vanadium and oxide as an oxide, and the average surface roughness is essentially A heat-resistant ceramics compact characterized by having a particle size of 0.03 μm or less.
【請求項2】 酸化物組成がSiO2 50〜65重量
%、Al23 18〜30重量%、Li2O 3〜8重量
%、TiO2+ZrO2 3〜5重量%、P25および(ま
たは)B23を合計量で8重量%以下、RO(ただしR
はマグネシウム、カルシウム、亜鉛、鉛、およびバナジ
ウムからなる群から選ばれた金属原子を表す)0.3〜
7.0重量%、R2O(ただしRはカリウム原子またはナ
トリウム原子を表す)3.0重量%以下のガラスを所定
の形状と平滑な表面を有する成形体に成形し、得られた
ガラス成形体を、上記ガラスの変形温度以下の温度で熱
処理して結晶核を生成させた後、昇温してβ−スポジュ
ウメン固溶体またはβ−ユークリプタイト固溶体を生成
させることを特徴とする、平均粗さが0.03μm以下で
ある平滑な表面を有する耐熱性セラミックス成形体の製
造法。
2. The oxide composition of SiO 2 is 50-65 wt%, Al 2 O 3 18-30 wt%, Li 2 O 3-8 wt%, TiO 2 + ZrO 2 3-5 wt%, P 2 O 5 And / or B 2 O 3 in a total amount of 8% by weight or less, RO (however, R
Represents a metal atom selected from the group consisting of magnesium, calcium, zinc, lead, and vanadium) 0.3-
Specified glass is 7.0 wt% and R 2 O (where R represents potassium atom or sodium atom) 3.0 wt% or less.
To form a molded body having a smooth surface, and the glass molded body obtained is heat-treated at a temperature not higher than the deformation temperature of the glass to generate crystal nuclei, and then heated to a β-spodumene solid solution. Alternatively, a β-eucryptite solid solution is produced, and the average roughness is 0.03 μm or less.
A method for producing a heat-resistant ceramic compact having a certain smooth surface .
【請求項3】 マグネシウム、カルシウム、亜鉛、鉛、
およびバナジウムからなる群から選ばれた金属の酸化物
の1種以上を0.3〜7.0重量%含有するβ−スポジュ
ウメン固溶体もしくはβ−ユークリプタイト固溶体から
なり表面の平均粗さが本質的に0.03μm以下であるこ
とを特徴とする反射鏡基材。
3. Magnesium, calcium, zinc, lead,
And β-spodumen solid solution or β-eucryptite solid solution containing 0.3 to 7.0% by weight of one or more metal oxides selected from the group consisting of vanadium and the average surface roughness is essentially A reflecting mirror substrate having a thickness of 0.03 μm or less.
【請求項4】 酸化物組成がSiO2 50〜65重量
%、Al23 18〜30重量%、Li2O 3〜8重量
%、TiO2+ZrO2 3〜5重量%、P25および(ま
たは)B23を合計量で8重量%以下、RO(ただしR
はマグネシウム、カルシウム、亜鉛、鉛、およびバナジ
ウムからなる群から選ばれた金属原子を表す)0.3〜
7.0重量%、R2O(ただしRはカリウム原子またはナ
トリウム原子を表す)3.0重量%以下のガラスを所定
の形状と平滑な表面を有する成形体に成形し、得られた
ガラス成形体を、上記ガラスの変形温度よりも50〜1
00℃低い温度で熱処理して結晶核を生成させた後、昇
温してβ−スポジュウメン固溶体またはβ−ユークリプ
タイト固溶体を生成させることを特徴とする、平均粗さ
が0.03μm以下である平滑な表面を有する耐熱性セラ
ミックス成形体の製造法。
4. The oxide composition of SiO 2 is 50-65 wt%, Al 2 O 3 18-30 wt%, Li 2 O 3-8 wt%, TiO 2 + ZrO 2 3-5 wt%, P 2 O 5 And / or B 2 O 3 in a total amount of 8% by weight or less, RO (however, R
Represents a metal atom selected from the group consisting of magnesium, calcium, zinc, lead, and vanadium) 0.3-
7.0 wt%, R 2 O (where R represents a potassium atom or sodium atom) 3.0 wt% or less of glass is molded into a molded product having a predetermined shape and a smooth surface, and the obtained glass molding The body should be 50 to 1 above the deformation temperature of the glass.
After heat treatment at a low temperature of 00 ° C. to generate crystal nuclei, the temperature is raised to generate β-spodumen solid solution or β-eucryptite solid solution, and the average roughness is 0.03 μm or less. A method for producing a heat-resistant ceramic molded body having a smooth surface.
JP3031314A 1991-02-01 1991-02-01 Heat-resistant ceramics molded body and manufacturing method thereof Expired - Lifetime JPH0737334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3031314A JPH0737334B2 (en) 1991-02-01 1991-02-01 Heat-resistant ceramics molded body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031314A JPH0737334B2 (en) 1991-02-01 1991-02-01 Heat-resistant ceramics molded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04367538A JPH04367538A (en) 1992-12-18
JPH0737334B2 true JPH0737334B2 (en) 1995-04-26

Family

ID=12327823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031314A Expired - Lifetime JPH0737334B2 (en) 1991-02-01 1991-02-01 Heat-resistant ceramics molded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0737334B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249206A (en) * 1999-12-28 2001-09-14 Asahi Techno Glass Corp Reflection mirror and transparent crystallized glass used for the reflection mirror
DE10110225A1 (en) * 2001-03-02 2002-09-26 Schott Glas Glass ceramic
JP2004131372A (en) * 2002-08-16 2004-04-30 Carl-Zeiss-Stiftung Component consisting of lithium-aluminosilicate glass ceramic
JP2007197310A (en) * 2005-12-28 2007-08-09 Nippon Electric Glass Co Ltd Crystallized glass, reflection mirror base material and reflection mirror using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715059B1 (en) * 2000-02-15 2007-05-07 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Electric lamp/reflector unit
JP2001342036A (en) * 2000-03-31 2001-12-11 Ngk Insulators Ltd Glass material, crystallized glass product and method of manufacturing crystallized glass material
DE10017696B4 (en) * 2000-04-08 2006-05-11 Schott Ag Transparent cover of the radiation source of luminaires
JP2002098817A (en) * 2000-09-21 2002-04-05 Nippon Electric Glass Co Ltd Reflecting mirror
JP4886928B2 (en) * 2000-11-10 2012-02-29 日本電気硝子株式会社 Method for producing a crystallized glass reflector substrate
DE10139188A1 (en) 2001-08-16 2003-03-06 Schott Glas Glass ceramic for X-ray optical components
EP1625099A2 (en) 2003-04-01 2006-02-15 Corning Incorporated Lamp reflector substrate, glass, glass-ceramic materials and process for making the same
JP2005037906A (en) * 2003-06-25 2005-02-10 Nippon Electric Glass Co Ltd Reflection mirror and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038386B2 (en) * 1972-05-30 1975-12-09

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249206A (en) * 1999-12-28 2001-09-14 Asahi Techno Glass Corp Reflection mirror and transparent crystallized glass used for the reflection mirror
DE10110225A1 (en) * 2001-03-02 2002-09-26 Schott Glas Glass ceramic
EP1291328A2 (en) 2001-03-02 2003-03-12 Schott Glas Method for the production of a substrate material for a mirror film
DE10110225C2 (en) * 2001-03-02 2003-07-17 Schott Glas Glass-ceramic support material, process for its preparation and its use
US6673729B2 (en) 2001-03-02 2004-01-06 Schott Glas Glass ceramic
JP2004131372A (en) * 2002-08-16 2004-04-30 Carl-Zeiss-Stiftung Component consisting of lithium-aluminosilicate glass ceramic
JP2007197310A (en) * 2005-12-28 2007-08-09 Nippon Electric Glass Co Ltd Crystallized glass, reflection mirror base material and reflection mirror using the same

Also Published As

Publication number Publication date
JPH04367538A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
TWI297332B (en) Glass-ceramic
TWI271389B (en) Lamp reflector substrate, glass, glass-ceramic materials and process for making the same
US10562808B2 (en) Highly crystalline lithium aluminium silicate glass-ceramic and its use
JP5539204B2 (en) Heat resistant glass ceramic
JP3421284B2 (en) Negatively heat-expandable glass ceramics and method for producing the same
US20060166804A1 (en) Crystallisable glass and the use thereof for producing extremely solid and break resistant glass-ceramics having an easily polished surface
JP2004131371A (en) Method for forming glass or glass ceramic
JPH0737334B2 (en) Heat-resistant ceramics molded body and manufacturing method thereof
JPS62100450A (en) Flat plate display device, glass therefor and manufacture
JP2007197310A (en) Crystallized glass, reflection mirror base material and reflection mirror using the same
JPH0792527B2 (en) Reflector
JP2004131372A (en) Component consisting of lithium-aluminosilicate glass ceramic
JP4977372B2 (en) Crystallized glass and method for producing the same
US3519445A (en) Al2o3-p2o5-b2o3 glass-ceramic articles and methods
US20090042710A1 (en) Glass-ceramics and method for manufacturing the same
US3467534A (en) Barium silicate glass-ceramic body and method of making it
US20060014026A1 (en) Reflecting mirror
JP4886928B2 (en) Method for producing a crystallized glass reflector substrate
EP0202751B1 (en) B2o3-p2o5-sio2 glass-ceramics
JP2001316132A (en) Li2O-Al2O3-SiO2 BASE TRANSPARENT CRYSTALLIZED GLASS ARTICLE AND OPTICAL COMMUNICATION DEVICE USING SAME
US3723140A (en) Glass-ceramics containing pollucite
JP4274683B2 (en) Reflector
JP3637261B2 (en) Reflector
EP1281688B1 (en) Glass-ceramic and reflecting mirror substrate
US6652973B2 (en) Glass-ceramic and reflecting mirror substrate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 16