JPH0735935A - Production of optical branching and coupling device - Google Patents

Production of optical branching and coupling device

Info

Publication number
JPH0735935A
JPH0735935A JP22835293A JP22835293A JPH0735935A JP H0735935 A JPH0735935 A JP H0735935A JP 22835293 A JP22835293 A JP 22835293A JP 22835293 A JP22835293 A JP 22835293A JP H0735935 A JPH0735935 A JP H0735935A
Authority
JP
Japan
Prior art keywords
substrate
layer
stress
coupling device
optical branching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22835293A
Other languages
Japanese (ja)
Other versions
JPH0820573B2 (en
Inventor
Takao Shioda
孝夫 塩田
Takeru Fukuda
長 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22835293A priority Critical patent/JPH0820573B2/en
Publication of JPH0735935A publication Critical patent/JPH0735935A/en
Publication of JPH0820573B2 publication Critical patent/JPH0820573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To easily produce the optical branching and coupling device by substrate waveguides having a property to preserve the plane of polarization. CONSTITUTION:A stress imparting layer 2, a core layer 3 and a stress imparting layer 4 are successively and continuously deposited from a gaseous phase on a substrate 1 by a gaseous phase deposition stage. The stress imparting layer 2, core layer 3 and stress imparting layer 4 formed on the substrate 1 are then etched according to Y-branch type waveguide patterns and thereafter both ends of the substrate where the patterns are not formed are etched. Optical fiber housing grooves 11 are formed in the positions corresponding to the ends of the Y branch type waveguide patterns.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光分岐・結合器の製
造方法に関し、とくに偏波面保存性を持つ単一モード光
ファイバの分岐・結合を行なうのに好適な光分岐・結合
器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical branching / coupling device, and more particularly to manufacturing an optical branching / coupling device suitable for branching / coupling a single mode optical fiber having polarization plane conservation. Regarding the method.

【0002】[0002]

【従来の技術】従来より、偏波面保存性を持つ単一モー
ド光ファイバの分岐・結合を行なうのに用いる光分岐・
結合器としては、ファイバ型導波路で構成したものが知
られている。
2. Description of the Related Art Conventionally, optical branching / splitting used for branching / coupling single-mode optical fibers having polarization-preserving properties.
As the coupler, a coupler formed of a fiber type waveguide is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ファイ
バ型導波路で構成した光分岐・結合器は生産性が悪く、
特性も安定しないという問題がある。そこで、基板型導
波路を用いて光分岐・結合器を構成することも考えられ
るが、基板型導波路の場合、偏波面保存性を持たせるこ
とが難しいことが問題である。
However, the productivity of the optical branching / coupling device composed of the fiber type waveguide is poor,
There is a problem that the characteristics are not stable. Therefore, it is conceivable to configure the optical branching / coupling device by using the substrate type waveguide, but in the case of the substrate type waveguide, it is difficult to provide polarization plane conservation.

【0004】この発明は、上記に鑑み、偏波面保存性を
有する基板導波路による光分岐・結合器を容易に製造す
ることができる、光分岐・結合器の製造方法を提供する
ことを目的とする。
In view of the above, it is an object of the present invention to provide a method of manufacturing an optical branching / coupling device which can easily manufacture an optical branching / coupling device using a substrate waveguide having a polarization plane preserving property. To do.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明による光分岐・結合器の製造方法において
は、まず、気相堆積工程により、基板上に、応力付与層
とコア層と応力付与層とを順次連続して気相から析出さ
せ、つぎに、該基板上に形成されたこれら応力付与層と
コア層と応力付与層とをY分岐型導波路パターンにした
がってエッチングし、その後、上記パターンが形成され
ていない基板両端部分をエッチングして、上記Y分岐型
導波路パターンの端部に対応した位置に光ファイバ収容
溝を形成することが特徴となっている。
In order to achieve the above object, in a method of manufacturing an optical branching / coupling device according to the present invention, first, a stress applying layer and a core layer are formed on a substrate by a vapor deposition process. The stress-applying layer and the stress-applying layer are successively and sequentially deposited from the vapor phase, and then the stress-applying layer, the core layer and the stress-applying layer formed on the substrate are etched according to a Y-branch waveguide pattern, and then, It is characterized in that both ends of the substrate on which the pattern is not formed are etched to form optical fiber accommodating grooves at positions corresponding to the ends of the Y-branch waveguide pattern.

【0006】[0006]

【作用】気相堆積工程によって、基板上に、応力付与層
とコア層と応力付与層とを順次連続して気相から析出さ
せ、つぎに、この基板上に形成されたこれら応力付与層
とコア層と応力付与層とをY分岐型導波路パターンにし
たがってエッチングすると、2つの応力付与層でコア層
が挟まれたサンドイッチ構造の導波路がY分岐型導波路
パターンとされることになり、基板型導波路による、偏
波面保存性を有する光分岐・結合器を容易に製造でき
る。さらに、その後、基板両端部分をエッチングして、
上記Y分岐型導波路パターンの端部に対応した位置に光
ファイバ収容溝を形成するため、この溝に光ファイバを
固定すれば光ファイバと導波路との良好な結合が得られ
るが、そのような溝を上記のように連続したエッチング
工程により形成しているので、製造が容易である。
By the vapor deposition process, the stress-applying layer, the core layer and the stress-applying layer are successively and successively deposited on the substrate from the vapor phase, and then the stress-applying layer formed on the substrate is formed. When the core layer and the stress-applying layer are etched according to the Y-branch waveguide pattern, the waveguide having the sandwich structure in which the core layer is sandwiched by the two stress-providing layers becomes the Y-branch waveguide pattern. It is possible to easily manufacture an optical branching / coupling device having a polarization preserving property by using the substrate type waveguide. Furthermore, after that, etching both ends of the substrate,
Since the optical fiber accommodating groove is formed at a position corresponding to the end of the Y-branch type waveguide pattern, if the optical fiber is fixed in this groove, good coupling between the optical fiber and the waveguide can be obtained. Since the groove is formed by the continuous etching process as described above, the manufacturing is easy.

【0007】[0007]

【実施例】以下、この発明の好ましい一実施例について
図面を参照しながら詳細に説明する。この発明の一実施
例にかかる製造方法の各工程は図1のA〜Gに示す通り
であり、具体的には、たとえば図2に示すようなCVD
装置6を用いて行なわれる。これによって作られた光分
岐・結合器は図3に示すようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the drawings. Each step of the manufacturing method according to the embodiment of the present invention is as shown in FIGS. 1A to 1G, and specifically, for example, the CVD as shown in FIG.
This is done using the device 6. The optical branching / combining device produced by this is as shown in FIG.

【0008】説明の便宜上、先に、出来上がった光分岐
・結合器について図3を参照して説明すると、石英ある
いはシリコンの基板1の上に、この基板1の表面に垂直
な方向に、応力付与層2と、コア層3と、応力付与層4
とが順次積層された構造となっている。これら応力付与
層2、コア層3および応力付与層4は図3に示すように
Y分岐型のパターンに形成されている。そして基板1の
両端にはそれぞれ2条ずつV溝11が形成されていて、
このV溝のそれぞれに定偏波単一モード光ファイバ12
が配置されるようになっている。2つの応力付与層2、
4によりコア層3に対して基板面に垂直な方向に応力が
付与され、コア層3を伝搬する光信号の軸方向の伝搬定
数に相違が生じて偏波面が保存される。こうして、定偏
波単一モード光ファイバ用の、偏波面保存性を持つ光分
岐・結合器が構成される。なお、図3では省略している
が、応力付与層2、コア層3、応力付与層4を覆って保
護するSiO2薄膜の保護層(図1Gの5参照)が設け
られている。
For convenience of explanation, the completed optical branching / combining device will be described first with reference to FIG. 3. Stress is applied on a quartz or silicon substrate 1 in a direction perpendicular to the surface of the substrate 1. Layer 2, core layer 3, and stress imparting layer 4
It has a structure in which and are sequentially stacked. The stress applying layer 2, the core layer 3, and the stress applying layer 4 are formed in a Y-branch pattern as shown in FIG. Two V-grooves 11 are formed on each end of the substrate 1,
A constant polarization single mode optical fiber 12 is provided in each of the V grooves.
Are arranged. Two stress applying layers 2,
Stress is applied to the core layer 3 in a direction perpendicular to the substrate surface by 4, and a difference occurs in the propagation constant in the axial direction of the optical signal propagating in the core layer 3 to preserve the plane of polarization. Thus, an optical branching / coupling device having a polarization plane preserving property for the constant polarization single mode optical fiber is constructed. Although not shown in FIG. 3, a protective layer of a SiO 2 thin film (see 5 in FIG. 1G) that covers and protects the stress applying layer 2, the core layer 3, and the stress applying layer 4 is provided.

【0009】つぎに、製造方法について説明する。上記
の応力付与層2、4、コア層3は、CVD法(化学気相
堆積法)により基板1上に材質の異なるガラス膜を連続
的に3層形成し、このガラス膜形成工程が終了した後、
エッチングを行なって図3に示すようなY分岐型の導波
路パターンを形成することによって作られる。このよう
な方法で製造されることにより、製造工程が簡略化で
き、しかも応力付与層2、4とコア層3との界面状態を
良好に保つことができる。
Next, the manufacturing method will be described. The stress applying layers 2 and 4 and the core layer 3 are formed by continuously forming three glass films of different materials on the substrate 1 by the CVD method (chemical vapor deposition method), and the glass film forming step is completed. rear,
It is formed by etching to form a Y-branch type waveguide pattern as shown in FIG. By being manufactured by such a method, the manufacturing process can be simplified, and the interface state between the stress applying layers 2 and 4 and the core layer 3 can be kept good.

【0010】具体的には、たとえば図2に示すようなC
VD装置6を用いる。このCVD装置6は反応容器61
とその周囲に配置された加熱装置62とからなり、反応
容器61には原料ガスの供給口63と排気口64とが設
けられている。基板1はこの反応容器61内で保持具6
5により保持される。
Specifically, for example, C as shown in FIG.
The VD device 6 is used. The CVD device 6 is a reaction container 61.
And a heating device 62 arranged around it, and the reaction vessel 61 is provided with a source gas supply port 63 and an exhaust port 64. The substrate 1 holds the holder 6 inside the reaction container 61.
Held by 5.

【0011】この実施例では基板1として熱酸化膜付シ
リコンウェハを用い、まず原料ガスとしてSiCl4
60cc/min,GeCl4;2cc/min,BBr;12cc/mi
nをO2;2000cc/minとともに、1400℃に加熱さ
れた反応容器61内に送り込み、図1Aに示すように、
基板1の上に応力付与層2であるSiO2−B23−G
eO2系ガラス層を2μm/minで成長させた。このSi
2−B23−GeO2系ガラス層は、SiO2;90
%,B23;2%,GeO2;8%の組成で屈折率は
1.4585である。
In this embodiment, a silicon wafer with a thermal oxide film is used as the substrate 1, and SiCl 4 is used as a source gas;
60cc / min, GeCl 4 ; 2cc / min, BBr; 12cc / mi
n was sent together with O 2 ; 2000 cc / min into the reaction vessel 61 heated to 1400 ° C., and as shown in FIG. 1A,
SiO 2 —B 2 O 3 —G which is the stress applying layer 2 on the substrate 1
An eO 2 based glass layer was grown at 2 μm / min. This Si
O 2 -B 2 O 3 -GeO 2 based glass layer, SiO 2; 90
%, B 2 O 3 ; 2%, GeO 2 ; 8%, and the refractive index is 1.4585.

【0012】この応力付与層2が18μmの厚さにまで
成長したとき以降、SiCl4;60cc/min,GeC
4;12cc/min,O2;2000cc/min、温度を145
0℃として、SiO2−Ge−O2系ガラス層のコア層3
を、図1Bに示すように、上記の応力付与層2に連続し
て9μmの厚さにまで成長させる。このSiO2−Ge
−O2系ガラス層は、SiO2;87%,GeO2;13
%の組成で屈折率は1.464であった。
After the stress applying layer 2 has grown to a thickness of 18 μm, SiCl 4 ; 60 cc / min, GeC
l 4 ; 12 cc / min, O 2 ; 2000 cc / min, temperature 145
At 0 ° C., the core layer 3 of the SiO 2 —Ge—O 2 based glass layer
1B, the stress applying layer 2 is continuously grown to a thickness of 9 μm as shown in FIG. 1B. This SiO 2 -Ge
The —O 2 type glass layer is composed of SiO 2 ; 87%, GeO 2 ; 13
% Composition had a refractive index of 1.464.

【0013】次いで、図1Cに示すように、上記と同様
のSiO2−B23−GeO2系ガラス層からなる応力付
与層4を、上記と同様の条件で厚さ18μmに形成し
た。
Next, as shown in FIG. 1C, a stress-applying layer 4 made of a SiO 2 —B 2 O 3 —GeO 2 -based glass layer similar to the above was formed to a thickness of 18 μm under the same conditions as above.

【0014】これらの3層のCVD法によるガラス膜
2、3、4は3層連続的に成長させられ、これが終了し
た後、図1Dのようにフォトレジスト71の塗布を行な
い、次にUV露光してY分岐型導波路パターンにしたが
って窓72を形成する。この窓72の部分に、スパッタ
法により、マスク層73として金属チタンを付着させた
後フォトレジスト71を除去する(図1E参照)。次に
エッチングガスとしてCF4を用い、導波路パターン以
外のガラス膜2、3、4をRIE(リアクティブ・イオ
ン・エッチング)により取り去る(図1F参照)。次に
図1Gに示すように、これらの上を覆うようにして、有
機金属化合物、この実施例ではSi(OC24)の分解
により保護層5として1μmの厚さのSiO2層を設け
た。そしてシリコン基板1の両端には異方性エッチング
により光ファイバ12の固定用のV溝11を図3に示す
ように設ける。なお、実施例における各部の寸法は図3
に書き込まれている通りである。
These three layers of glass films 2, 3 and 4 by the CVD method are continuously grown in three layers, and after this is finished, a photoresist 71 is applied as shown in FIG. 1D, and then UV exposure is performed. Then, the window 72 is formed according to the Y-branch waveguide pattern. Metallic titanium is deposited as a mask layer 73 on the window 72 by sputtering, and then the photoresist 71 is removed (see FIG. 1E). Next, CF 4 is used as an etching gas, and the glass films 2, 3 and 4 other than the waveguide pattern are removed by RIE (reactive ion etching) (see FIG. 1F). Next, as shown in FIG. 1G, a SiO 2 layer having a thickness of 1 μm is provided as a protective layer 5 by decomposing an organometallic compound, Si (OC 2 H 4 ) in this embodiment, so as to cover them. It was Then, both ends of the silicon substrate 1 are provided with V grooves 11 for fixing the optical fiber 12 by anisotropic etching as shown in FIG. The dimensions of each part in the embodiment are shown in FIG.
As written in.

【0015】[0015]

【発明の効果】以上実施例について説明したように、こ
の発明による光分岐・結合器の製造方法では、気相堆積
工程と、その後に行なわれる2つのエッチング工程とに
より製造できるため、非常に容易に、基板型導波路によ
る、偏波面保存性を有する光分岐・結合器を製造でき
る。また、この製造方法によって作られる光分岐・結合
器は、光ファイバ収容溝に光ファイバを固定すれば光フ
ァイバと導波路との良好な結合が得られるのであるが、
そのように光ファイバとの結合が簡単な基板型導波路に
よる光分岐・結合器が容易に製造できることになる。そ
のため、この発明によれば、偏波面保存性を持つ単一モ
ード光ファイバと簡単に接続でき、その光ファイバを伝
搬する光の偏波面を保存したまま分岐・結合できる光分
岐・結合器を、基板型導波路によって容易に製造できる
のである。
As described in the above embodiments, the method of manufacturing an optical branching / coupling device according to the present invention is very easy because it can be manufactured by the vapor deposition process and the two etching processes performed thereafter. In addition, it is possible to manufacture an optical branching / coupling device having a polarization preserving property by using the substrate type waveguide. Further, in the optical branching / coupling device produced by this manufacturing method, if the optical fiber is fixed in the optical fiber housing groove, good coupling between the optical fiber and the waveguide can be obtained.
In this way, an optical branching / coupling device using a substrate-type waveguide that can be easily coupled with an optical fiber can be easily manufactured. Therefore, according to the present invention, an optical branching / combining device that can be easily connected to a single-mode optical fiber having a polarization-preserving property and that can be branched / coupled while preserving the polarization plane of light propagating through the optical fiber, It can be easily manufactured by the substrate type waveguide.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例にかかる製造工程の各々に
おける断面図。
FIG. 1 is a sectional view in each of the manufacturing steps according to an embodiment of the present invention.

【図2】同実施例で用いるCVD装置の模式図。FIG. 2 is a schematic diagram of a CVD apparatus used in the same example.

【図3】同実施例にかかる光分岐・結合器の模式的な斜
視図。
FIG. 3 is a schematic perspective view of an optical branching / coupling device according to the embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2、4 応力付与層 3 コア層 5 保護層 6 CVD装置 1 substrate 2, 4 stress imparting layer 3 core layer 5 protective layer 6 CVD apparatus

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、応力付与層とコア層と応力付
与層とを順次連続して気相から析出させる気相堆積工程
と、該基板上に形成されたこれら応力付与層とコア層と
応力付与層とをY分岐型導波路パターンにしたがってエ
ッチングするエッチング工程と、その後、上記パターン
が形成されていない基板両端部分をエッチングして、上
記Y分岐型導波路パターンの端部に対応した位置に光フ
ァイバ収容溝を形成する工程とからなる光分岐・結合器
の製造方法。
1. A vapor deposition step of sequentially depositing a stress-applying layer, a core layer and a stress-applying layer from a vapor phase on a substrate, and the stress-applying layer and the core layer formed on the substrate. And an stress applying layer are etched according to the Y-branch waveguide pattern, and then both ends of the substrate on which the pattern is not formed are etched to correspond to the ends of the Y-branch waveguide pattern. A method of manufacturing an optical branching / coupling device, which comprises a step of forming an optical fiber accommodation groove at a position.
JP22835293A 1993-08-20 1993-08-20 Optical branching / combining method Expired - Lifetime JPH0820573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22835293A JPH0820573B2 (en) 1993-08-20 1993-08-20 Optical branching / combining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22835293A JPH0820573B2 (en) 1993-08-20 1993-08-20 Optical branching / combining method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59194326A Division JPH0664213B2 (en) 1984-09-17 1984-09-17 Optical splitter / coupler

Publications (2)

Publication Number Publication Date
JPH0735935A true JPH0735935A (en) 1995-02-07
JPH0820573B2 JPH0820573B2 (en) 1996-03-04

Family

ID=16875120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22835293A Expired - Lifetime JPH0820573B2 (en) 1993-08-20 1993-08-20 Optical branching / combining method

Country Status (1)

Country Link
JP (1) JPH0820573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116967A1 (en) * 2000-01-13 2001-07-18 Contraves Space AG Light waveguide coupler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116967A1 (en) * 2000-01-13 2001-07-18 Contraves Space AG Light waveguide coupler
US6501885B2 (en) 2000-01-13 2002-12-31 Contraves Space Ag Optical waveguide coupler and method for producing same

Also Published As

Publication number Publication date
JPH0820573B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JP2002221630A (en) Interference device optical circuit and its manufacturing method
JPH11174246A (en) Planar type optical waveguide
CN105739013B (en) A method of manufacture planar optical waveguide device
JPH09211240A (en) Optical waveguide with phase adjusting function and its manufacture
US6483964B1 (en) Method of fabricating an optical component
JPH0735935A (en) Production of optical branching and coupling device
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
JPH0664213B2 (en) Optical splitter / coupler
JP3715206B2 (en) Interferometer optical circuit manufacturing method
JP3196797B2 (en) Manufacturing method of laminated quartz optical waveguide
JPS6343105A (en) Single mode optical waveguide
KR100377929B1 (en) Optical waveguide device and manufacturing method thereof
JPS63184707A (en) Manufacture of planar light waveguide
JPS6365406A (en) Optical waveguide and its production
JP2603652B2 (en) Optical waveguide manufacturing method
JPH0720336A (en) Structure of optical waveguide and its production
JPH03245107A (en) Branching/multiplexing optical waveguide circuit
KR100277362B1 (en) Optical waveguide forming method having dummy layer and optical waveguide by the method
JP2003262749A (en) Method of manufacturing optical waveguide substrate, optical waveguide substrate and optical waveguide
JPH06331844A (en) Quartz optical waveguide and its production
JP2002196170A (en) Manufacturing method of optical waveguide
JPH1048460A (en) Plane type optical waveguide
JP2002236231A (en) Method for manufacturing resin waveguide
JPS632006A (en) Production of optical waveguide
JPH0682645A (en) Production of optical directional coupler and optical filter