JPH0735705A - Method and equipment for x-ray quantitative analysis - Google Patents

Method and equipment for x-ray quantitative analysis

Info

Publication number
JPH0735705A
JPH0735705A JP5197755A JP19775593A JPH0735705A JP H0735705 A JPH0735705 A JP H0735705A JP 5197755 A JP5197755 A JP 5197755A JP 19775593 A JP19775593 A JP 19775593A JP H0735705 A JPH0735705 A JP H0735705A
Authority
JP
Japan
Prior art keywords
sample
ray
test
test sample
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5197755A
Other languages
Japanese (ja)
Other versions
JP3367999B2 (en
Inventor
Akihide Doshiyou
明秀 土性
Shigematsu Asano
繁松 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP19775593A priority Critical patent/JP3367999B2/en
Publication of JPH0735705A publication Critical patent/JPH0735705A/en
Application granted granted Critical
Publication of JP3367999B2 publication Critical patent/JP3367999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To allow the absorption measurement of mut and the measurement of intensity of diffracted light for a component to be inspected using a same X-ray analyzer when the quantitative analysis of a sample is conducted by absorptive diffraction method. CONSTITUTION:An unused filter and a filter adhered with a sample are weighed to determine the rhot of the sample. A standard sample 22 of poly-Si plate is then fixed to the sample stage 12 of an X-ray analyzer and the diffracted light therefrom is passed through the unused filter fixed to a sample holder 24a and the filter with adhered sample fixed to another sample holder 24b in order to detect the intensities thereof. mut of the sample is calculated based on the intensities thus detected. Subsequently, a pure sample 26 comprising only the component to be detected and a sample holder 24b fixed with the filter adhered with sample are fixed to the sample stage 12 and the intensity of each diffracted light is measured. The measurements are employed in the quantitative determination of specific component in the sample according to a specific formula.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、X線回折を利用して
複数の成分からなる被検試料の定量分析を行うX線定量
分析方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray quantitative analysis method and apparatus for quantitatively analyzing a test sample composed of a plurality of components by utilizing X-ray diffraction.

【0002】[0002]

【従来の技術】X線回折を利用した定量分析において、
最も一般的な分析条件は、N成分を含んだ被検試料を分
析する場合であって、しかも、被検成分と他の成分との
質量吸収係数が異なる場合である。このような一般的な
条件においては、定量分析方法の種類として、吸収回折
法と、内部標準法と、標準添加法とが知られている。吸
収回折法は、被検試料の平均の質量吸収係数(μ/ρ)
を実測してこれを利用する方法である。内部標準法は、
被検試料に一定量の既知物質を混入させる方法である。
標準添加法は、被検試料に一定量の被検成分の純粋物質
を一定量だけ添加する方法である。この発明は、このう
ち吸収回折法に関するものである。
2. Description of the Related Art In quantitative analysis using X-ray diffraction,
The most common analysis condition is when a test sample containing N component is analyzed, and the test component and other components have different mass absorption coefficients. Under such general conditions, absorption diffraction method, internal standard method, and standard addition method are known as types of quantitative analysis methods. The absorption diffraction method is the average mass absorption coefficient (μ / ρ) of the test sample.
Is a method of actually measuring and utilizing this. The internal standard method is
This is a method of mixing a known amount of a known substance into a test sample.
The standard addition method is a method of adding a fixed amount of a pure substance of a test component to a test sample. The present invention relates to the absorption diffraction method.

【0003】吸収回折法では被検試料の平均の質量吸収
係数(μ/ρ)を実測する必要があるが、質量吸収係数
を直接測定することはできないので、実際には、被検試
料のμt(ただし、μは被検試料の平均の線吸収係数、
tは被検試料のX線透過方向の厚さ)と、被検試料のρ
t(ただし、ρは被検試料の平均密度、tは被検試料の
X線透過方向の厚さ)とを別個に求めて、(μ/ρ)を
算出している。この場合、被検試料のμtを求めるに
は、吸収法によって被検試料のX線吸収割合を測定すれ
ばよい。被検試料のρtを求めるには被検試料の重量測
定を行えばよい。
In the absorption diffraction method, it is necessary to measure the average mass absorption coefficient (μ / ρ) of the sample to be measured, but since the mass absorption coefficient cannot be measured directly, in practice μt of the sample to be measured is actually measured. (However, μ is the average linear absorption coefficient of the test sample,
t is the thickness of the test sample in the X-ray transmission direction) and ρ of the test sample
(μ / ρ) is calculated by separately obtaining t (where ρ is the average density of the test sample and t is the thickness of the test sample in the X-ray transmission direction). In this case, to obtain μt of the test sample, the X-ray absorption rate of the test sample may be measured by the absorption method. To obtain ρt of the test sample, the weight of the test sample may be measured.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の吸収
回折法では、被検試料のμtを求めるために吸収法のX
線分析装置を用いており、その後、X線回折装置を用い
て被検試料の回折線強度を求めていた。すなわち、定量
分析のためのX線回折装置のほかに、μt測定用の吸収
法のX線分析装置が必要であった。
By the way, in the conventional absorption diffraction method, in order to obtain μt of the test sample, the X-ray absorption method is used.
The X-ray diffractometer was used to obtain the diffraction line intensity of the test sample. That is, in addition to an X-ray diffractometer for quantitative analysis, an X-ray analyzer for absorption measurement for μt was required.

【0005】この発明の目的は、吸収回折法を用いて被
検試料の定量分析をする場合に、吸収測定によるμtの
測定と、被検成分の回折線強度の測定とを、同一のX線
分析装置で可能にすることにある。
An object of the present invention is to perform the same X-ray measurement for the measurement of μt by the absorption measurement and the measurement of the diffraction line intensity of the test component when the quantitative analysis of the test sample is performed by using the absorption diffraction method. It is to be possible with an analyzer.

【0006】[0006]

【課題を解決するための手段】吸収回折法によれば、被
検試料中の被検成分(J成分)の定量値AJ(重量%)
は次の式(1)で求めることができる。
[Means for Solving the Problems] According to the absorption diffraction method, a quantitative value A J (% by weight) of a test component (J component) in a test sample is obtained.
Can be calculated by the following equation (1).

【0007】[0007]

【数1】 AJ =(IJ/IJP)・((μ/ρ)/(μ/ρ)JP) /(1−exp(−2μt/sinθJ)) …(1) ここで、IJ :J成分の回折線強度(測定値) IJP:J成分の純粋物質の回折線強度(測定値) (μ/ρ):被検試料の平均の質量吸収係数(測定値) (μ/ρ)JP:J成分の純粋物質の質量吸収係数(計算
値) μ:被検試料の平均の質量吸収係数 ρ:被検試料の平均密度 t:被検試料の厚さ θJ :J成分の回折線角度(2θJ)の2分の1(計算
値)
## EQU1 ## A J = (I J / I JP ) · ((μ / ρ) / (μ / ρ) JP ) / (1-exp (-2 μt / sin θ J )) (1) where I J : Diffraction line intensity of J component (measured value) I JP : Diffraction line intensity of pure substance of J component (measured value) (μ / ρ): Average mass absorption coefficient (measured value) of test sample (μ / ρ) JP : Mass absorption coefficient of J component pure substance (calculated value) μ: Average mass absorption coefficient of test sample ρ: Average density of test sample t: Thickness of test sample θ J : J component Half the diffraction line angle (2θ J ) (calculated value)

【0008】(μ/ρ)は直接測定できないが、ρtと
μtとをそれぞれ測定することができ、(μ/ρ)=μ
t/ρtで計算できる。ρtは被検試料の重量Wと面積
Sとからρt=W/Sで計算できる。μtはX線の吸収
量から次の式(2)で計算できる。
Although (μ / ρ) cannot be measured directly, ρt and μt can be measured respectively, and (μ / ρ) = μ
It can be calculated by t / ρt. ρt can be calculated from the weight W of the sample to be tested and the area S by ρt = W / S. μt can be calculated by the following formula (2) from the amount of X-ray absorption.

【0009】[0009]

【数2】μt=−ln(Tb/Ta) …(2) ここで、ln:自然対数関数 Tb:被検試料透過後のX線強度(測定値) Ta:被検試料透過前のX線強度(測定値)[Mathematical formula-see original document] [mu] t = -ln (Tb / Ta) (2) where ln: natural logarithmic function Tb: X-ray intensity after measurement sample transmission (measured value) Ta: X-ray before transmission of test sample Strength (measured value)

【0010】また、試料が十分厚い場合には、上述の式
(1)を簡略化して次の式(3)で近似できる。
When the sample is sufficiently thick, the above equation (1) can be simplified and approximated by the following equation (3).

【0011】[0011]

【数3】 AJ =(IJ/IJP)・((μ/ρ)/(μ/ρ)JP) …(3)[Number 3] A J = (I J / I JP) · ((μ / ρ) / (μ / ρ) JP) ... (3)

【0012】この発明は、以上の原理に基づいて被検試
料の定量分析を実施するものであるが、これらの原理自
体はすでに知られているものである。この発明の特徴
は、同一のX線分析装置を用いて、吸収測定によるμt
の測定と回折線強度測定とを実施できるようにしたこと
にある。
The present invention carries out the quantitative analysis of the test sample based on the above-mentioned principles, and these principles themselves are already known. The feature of the present invention is that the same X-ray analyzer is used to measure μt by absorption measurement.
Is to be able to carry out the measurement and the diffraction line intensity measurement.

【0013】第1の発明は、複数の成分からなる被検試
料の定量分析を行うX線定量分析方法において、次の各
段階を有するものである。 (イ)被検試料のρt(ただし、ρは被検試料の平均密
度、tは被検試料のX線透過方向の厚さ)を測定する段
階。 (ロ)X線源からのX線をゴニオメータの中心に配置し
たモノクロメータで反射させて単色化し、その反射X線
が被検試料を透過しないときの強度Taを測定する段
階。 (ハ)X線源からのX線を前記モノクロメータで反射さ
せて単色化し、被検試料をその面内で動かしながら、前
記単色化したX線が被検試料を透過した後の強度Tbを
測定する段階。 (ニ)TaとTbから被検試料のμt(ただし、μは被
検試料の平均の線吸収係数、tは被検試料のX線透過方
向の厚さ)を求める段階。 (ホ)ゴニオメータの中心に被検成分のみからなる純粋
試料を配置して、X線源からのX線を純粋試料に照射
し、そこからの回折X線の強度IJPを測定する段階。 (ヘ)ゴニオメータの中心に被検試料を配置して、被検
試料をその面内で動かしながら、X線源からのX線を被
検試料に照射し、そこからの回折X線の強度IJを測定
する段階。 (ト)被検成分の質量吸収係数(μ/ρ)JPと、これま
でに求めたρt、μt、IJP、IJとに基づいて、被検
試料中の被検成分の重量割合AJを求める段階。
The first invention is an X-ray quantitative analysis method for quantitatively analyzing a test sample composed of a plurality of components, and has the following steps. (A) A step of measuring ρt of the test sample (where ρ is the average density of the test sample and t is the thickness of the test sample in the X-ray transmission direction). (B) A step of measuring the intensity Ta when the X-ray from the X-ray source is reflected by a monochromator arranged at the center of the goniometer to make it monochromatic, and the reflected X-ray does not pass through the sample to be tested. (C) The intensity Tb after the monochromatic X-rays have passed through the test sample while the X-ray from the X-ray source is reflected by the monochromator to be monochromatic, and the test sample is moved within the plane. Measuring stage. (D) A step of obtaining μt of the test sample from Ta and Tb (where μ is the average linear absorption coefficient of the test sample, and t is the thickness of the test sample in the X-ray transmission direction). (E) A step of arranging a pure sample consisting only of the test component at the center of the goniometer, irradiating the pure sample with X-rays from the X-ray source, and measuring the intensity I JP of the diffracted X-rays therefrom. (F) The test sample is placed in the center of the goniometer, the test sample is irradiated with X-rays from the X-ray source while the test sample is moved within the plane, and the intensity I of diffracted X-rays from the sample is irradiated. Measuring J. (G) Based on the mass absorption coefficient (μ / ρ) JP of the test component and the ρt, μt, I JP , and I J obtained thus far, the weight ratio A J of the test component in the test sample The stage of seeking.

【0014】この発明では、重量測定による被検試料の
ρtの測定と、吸収測定による被検試料のμtの測定
と、回折測定による純粋試料および被検試料の回折線強
度の測定とを行っているが、これらの測定の間の時間的
前後関係は任意である。すなわち、重量測定と吸収測定
と回折測定は、どの順番で実施しても構わない。
In the present invention, the ρt of the test sample is measured by weight measurement, the μt of the test sample is measured by absorption measurement, and the diffraction line intensities of the pure sample and the test sample are measured by diffraction measurement. However, the temporal context between these measurements is arbitrary. That is, the weight measurement, the absorption measurement, and the diffraction measurement may be performed in any order.

【0015】第2の発明は、第1の発明における純粋試
料の代わりに、被検試料の成分とは異なる標準試料を用
いて、標準試料からの回折X線の強度ISを測定し、被
検成分の質量吸収係数(μ/ρ)JPと、これまでに求め
たρt、μt、IS、IJと、被検成分と標準試料とが異
なることに起因する補正係数とに基づいて、被検試料中
の被検成分の重量割合AJを求めるものである。すなわ
ち、この場合は被検成分と標準試料とが異なっているの
で、上述の式(1)及び式(3)はそのままでは使えな
い。そこで、純粋試料を使えば得られるであろう回折線
強度IJPと、標準試料を用いて測定した回折線強度IS
との比率を、補正係数CPSで補正してやればよい。例え
ば、上述の式(3)は次の式(4)のように変更する。
According to a second aspect of the invention, instead of the pure sample of the first aspect, a standard sample different from the components of the sample to be tested is used to measure the intensity I S of the diffracted X-ray from the standard sample, Based on the mass absorption coefficient (μ / ρ) JP of the test component, ρt, μt, I S , and I J obtained so far, and the correction coefficient due to the difference between the test component and the standard sample, The weight ratio A J of the test component in the test sample is determined. That is, in this case, since the test component and the standard sample are different, the above formulas (1) and (3) cannot be used as they are. Therefore, the diffraction line intensity I JP that would be obtained by using a pure sample and the diffraction line intensity I S measured using the standard sample
It suffices to correct the ratio with the correction coefficient C PS . For example, the above equation (3) is changed to the following equation (4).

【0016】[0016]

【数4】 AJ =(IJ/(CPSS))・(μt/ρt)/(μ/ρ)JP …(4) ただし、CPSは被検成分と標準試料とが異なることによ
る補正係数
## EQU4 ## A J = (I J / (C PS I S )) · (μt / ρt) / (μ / ρ) JP (4) However, in C PS, the test component and the standard sample are different. Correction coefficient by

【0017】第3の発明は、複数の成分からなる被検試
料の定量分析を行うX線定量分析装置において、次の構
成を有するものである。 (イ)X線源と試料台とX線検出器との相対位置関係を
変化させて試料台に配置した試料からの回折X線の強度
を測定できるようにしたX線回折測定系。 (ロ)試料台に着脱可能なモノクロメータ。 (ハ)試料台とX線検出器との間に配置された吸収測定
台。 (ニ)試料台と吸収測定台のいずれにも着脱可能な試料
ホルダー。 (ホ)試料ホルダーを試料台と吸収測定台のいずれに装
着した場合でも、試料ホルダーに取り付けた被検試料を
その面内で動かすことができる試料運動機構。
A third invention is an X-ray quantitative analyzer for quantitatively analyzing a test sample composed of a plurality of components, which has the following constitution. (A) An X-ray diffraction measurement system capable of measuring the intensity of diffracted X-rays from a sample placed on the sample stage by changing the relative positional relationship among the X-ray source, the sample stage and the X-ray detector. (B) A monochromator that can be attached to and detached from the sample table. (C) An absorption measuring table arranged between the sample table and the X-ray detector. (D) A sample holder that can be attached to and detached from both the sample table and the absorption measurement table. (E) A sample movement mechanism that can move the test sample attached to the sample holder within the plane of the sample holder, whether it is attached to the sample table or the absorption measurement table.

【0018】[0018]

【作用】この発明は、被検成分の回折線強度を測定する
ためのX線回折光学系を用いて、被検試料のμtも測定
できるようにしたものであり、これにより、吸収測定と
回折測定の両方を同一のX線分析装置で可能にしたもの
である。実際の手順は、重量測定により被検試料のρt
を求め、吸収測定により被検試料のμtを求め、回折測
定により被検成分の純粋試料の回折線強度を求め、回折
測定により被検試料中の被検成分からの回折線強度を求
めて、最後に、これら測定データを基にして、被検試料
中の被検成分の重量割合を算出するものである。その
際、吸収測定にあっては、通常のX線回折測定の光学系
を用いて、ゴニオメータ中央の試料台にモノクロメータ
を配置して、このモノクロメータとX線検出器との間に
被検試料を配置して吸収測定をするようにしている。回
折測定を行う場合は、試料台に純粋試料や被検試料を配
置することになる。
The present invention uses the X-ray diffractive optical system for measuring the intensity of the diffracted rays of the component to be measured so that the μt of the sample to be measured can also be measured. Both measurements can be performed with the same X-ray analyzer. The actual procedure is to measure the ρt of the test sample by weighing.
Then, the μt of the test sample is determined by absorption measurement, the diffraction line intensity of a pure sample of the test component is determined by diffraction measurement, and the diffraction line intensity from the test component in the test sample is determined by diffraction measurement, Finally, the weight ratio of the test component in the test sample is calculated based on these measurement data. At that time, in the absorption measurement, an ordinary X-ray diffraction measurement optical system is used, and a monochromator is arranged on the sample stage in the center of the goniometer, and the test object is placed between the monochromator and the X-ray detector. The sample is placed and the absorption is measured. When performing the diffraction measurement, a pure sample or a test sample is placed on the sample table.

【0019】装置構成としては、試料台とX線検出器の
間に吸収測定台を設けて、試料ホルダーを試料台と吸収
測定台のいずれに装着した場合でも、試料ホルダーに取
り付けた被検試料をその面内で動かすことができるよう
にしている。これにより、吸収測定及び回折測定におい
て、測定中は被検試料をその面内で回転運動または並進
往復運動をさせることができ、被検試料のX線照射領域
を平均化して、測定結果の信頼性を高めている。
As for the apparatus configuration, an absorption measurement table is provided between the sample table and the X-ray detector, and the sample holder attached to the sample holder can be mounted on either the sample table or the absorption measurement table. So that it can be moved within that plane. As a result, in absorption measurement and diffraction measurement, the test sample can be rotationally or translationally reciprocally moved in the plane during the measurement, and the X-ray irradiation region of the test sample is averaged to obtain reliable measurement results. It is increasing the nature.

【0020】[0020]

【実施例】次に、原子炉の排水を濾過するためのフィル
ターに付着した付着物の定量分析を例にとって、本発明
の実施例を説明する。この付着物(以下、被検試料とい
う。)の定量分析をするには、被検試料にどのような成
分が含まれているかをあらかじめ知る必要がある。この
被検成分はすでに分かっている場合もあるが、もし分か
っていなければ、あらかじめ定性分析によって被検成分
を特定しておく必要がある。この実施例では、被検試料
には表1に示すような4種類の被検成分が含まれてい
る。
EXAMPLES Next, examples of the present invention will be described by taking as an example the quantitative analysis of deposits attached to a filter for filtering wastewater of a nuclear reactor. In order to quantitatively analyze this adhered substance (hereinafter referred to as a test sample), it is necessary to know in advance what component the test sample contains. This test component may be already known, but if it is not known, it is necessary to identify the test component by qualitative analysis in advance. In this example, the test sample contains four types of test components as shown in Table 1.

【0021】[0021]

【表1】 被検成分 回折角度(2θJ ) 質量吸収係数(μ/ρ)JP [cm2/g] Fe3 4 35.4° 226.0 γFeOOH 14.1° 197.8 αFeOOH 21.2° 197.8 Fe23 24.2° 218.9[Table 1] Test component Diffraction angle (2θ J ) Mass absorption coefficient (μ / ρ) JP [cm 2 / g] Fe 3 O 4 35.4 ° 226.0 γFeOOH 14.1 ° 197.8 αFeOOH 21. 2 ° 197.8 Fe 2 O 3 24.2 ° 218.9

【0022】質量吸収係数(μ/ρ)JPはX線の波長に
依存するが、表1ではCuKα線を用いたときの値を示
してある。各元素の質量吸収係数は公知であり、また、
化合物の質量吸収係数は、元素の質量吸収係数を用いて
公知の計算式から容易に求めることができる。
The mass absorption coefficient (μ / ρ) JP depends on the wavelength of X-rays, but Table 1 shows values when CuKα rays are used. The mass absorption coefficient of each element is known, and
The mass absorption coefficient of a compound can be easily obtained from a known calculation formula using the mass absorption coefficient of an element.

【0023】次に、被検試料のρtの決定方法を説明す
る。被検試料のρtは次の式(5)で求めることができ
る。フィルターの重量は天秤で測定する。
Next, a method of determining ρt of the test sample will be described. Ρt of the test sample can be obtained by the following equation (5). The weight of the filter is measured with a balance.

【0024】[0024]

【数5】ρt=(Wb−Wa)/S …(5) ここで、ρ:被検試料の平均密度 t:被検試料の厚さ Wb:被検試料の付着しているフィルターの重量 Wa:被検試料の付着していないフィルターの重量 S:被検試料が付着したフィルター部分の面積[Mathematical formula-see original document] [rho] t = (Wb-Wa) / S (5) Here, [rho]: average density of test sample t: thickness of test sample Wb: weight of filter to which test sample adheres Wa : Weight of filter without test sample attached S: Area of filter part with test sample attached

【0025】次に、X線定量分析装置の基本構成を説明
する。図1は、この実施例のX線定量分析方法におい
て、上述のρtの決定以後の吸収測定から回折測定に至
るまでの手順を示した平面図である。
Next, the basic structure of the X-ray quantitative analyzer will be described. FIG. 1 is a plan view showing a procedure from absorption measurement to diffraction measurement after determination of ρt in the X-ray quantitative analysis method of this example.

【0026】図1(A)において、試料台12とX線検
出器14は1対2の角度比で回転できるようにゴニオメ
ータに搭載されている。X線源10からのX線は、発散
スリト16を通過して、試料台12上の試料に照射さ
れ、そこからの回折X線は受光スリット18を通過して
X線検出器14で検出される。すなわち、このX線定量
分析装置は、基本的な回折測定光学系を備えている。さ
らに、試料台12とX線検出器14の間には吸収測定台
20が配置されている。この吸収測定台20と受光スリ
ット18とX線検出器14は同一の2θ回転台上に搭載
されている。X線源10としてはCuターゲットのX線
管を用いている。
In FIG. 1A, the sample stage 12 and the X-ray detector 14 are mounted on a goniometer so that they can rotate at an angle ratio of 1: 2. The X-ray from the X-ray source 10 passes through the divergence slit 16 and is applied to the sample on the sample stage 12, and the diffracted X-ray from there passes through the light-receiving slit 18 and is detected by the X-ray detector 14. It That is, this X-ray quantitative analyzer is equipped with a basic diffraction measurement optical system. Further, an absorption measuring table 20 is arranged between the sample table 12 and the X-ray detector 14. The absorption measuring table 20, the light receiving slit 18, and the X-ray detector 14 are mounted on the same 2θ rotating table. As the X-ray source 10, a Cu target X-ray tube is used.

【0027】次に、被検試料のμtの決定手順を説明す
る。まず、試料台12に多結晶Si板からなる標準試料
22を取り付ける。そして、Si(422)面からの回
折線が検出できるように、試料台12とX線検出器14
の角度をセットする。この場合の標準試料22は、X線
を単色化させるためのモノクロメータとしての役割を果
たしている。未使用フィルターを取り付けた試料ホルダ
ー24aは、吸収測定台20に取り付ける。X線源10
から出たX線は、標準試料22で回折して、特定の波長
のX線(CuKα線)に単色化され、この回折線が未使
用フィルターを透過して、X線検出器14で検出され
る。なお、標準試料22からの回折線は、吸収測定台2
0に触れることなく、この吸収測定台20の貫通孔21
を通過できるようになっている。
Next, the procedure for determining μt of the test sample will be described. First, the standard sample 22 made of a polycrystalline Si plate is attached to the sample table 12. Then, the sample stage 12 and the X-ray detector 14 are arranged so that the diffraction line from the Si (422) plane can be detected.
Set the angle of. The standard sample 22 in this case serves as a monochromator for converting the X-ray into a single color. The sample holder 24a to which the unused filter is attached is attached to the absorption measurement table 20. X-ray source 10
The X-ray emitted from the sample is diffracted by the standard sample 22 to be monochromatic into an X-ray (CuKα ray) of a specific wavelength, and this diffracted ray passes through an unused filter and is detected by the X-ray detector 14. It In addition, the diffraction line from the standard sample 22 is the absorption measurement table 2
The through hole 21 of the absorption measuring table 20 without touching 0
You can pass through.

【0028】次に、図1(B)において、使用済みのフ
ィルター(被検試料の付着したフィルター)を取り付け
た試料ホルダー24bを吸収測定台20に取り付ける。
そして、図1(A)と同様の測定を行う。この場合、標
準試料22からの回折線は、フィルターと、これに付着
した被検試料とを通過してから、X線検出器14で検出
される。このときの検出強度をTbとする。
Next, in FIG. 1B, the sample holder 24b to which the used filter (filter to which the sample to be tested is attached) is attached is attached to the absorption measuring table 20.
Then, the same measurement as that in FIG. In this case, the diffraction line from the standard sample 22 is detected by the X-ray detector 14 after passing through the filter and the test sample attached to the filter. The detection intensity at this time is Tb.

【0029】上述のTaとTbを基にして次の式(2)
で被検試料(すなわちフィルターを除いた付着物のみ)
のμtを計算する。
Based on the above Ta and Tb, the following equation (2)
Sample to be tested (that is, only deposits excluding filter)
Of μt is calculated.

【0030】[0030]

【数6】μt=−ln(Tb/Ta) …(2) ここで、ln:自然対数関数[Mathematical formula-see original document] .mu.t = -ln (Tb / Ta) (2) where ln: natural logarithmic function

【0031】以上のようにして求めたρtとμtとを基
にして、被検試料の(μ/ρ)をμt/ρtで計算する
ことができる。
Based on ρt and μt thus obtained, (μ / ρ) of the test sample can be calculated by μt / ρt.

【0032】次に、被検成分のみからなる純粋試料の回
折線強度IJPを次のようにして測定する。図1(C)に
示すように、まず純粋試料26の粉末を試料ホルダーに
詰めて、これを試料台12に取り付けて、そのときの回
折線強度IJPを測定する。この場合、吸収測定台20に
は何も取り付けず、回折線をそのまま通過させる。
Next, the diffraction line intensity I JP of a pure sample containing only the test component is measured as follows. As shown in FIG. 1C, first, the powder of the pure sample 26 is packed in a sample holder, which is attached to the sample table 12, and the diffraction line intensity I JP at that time is measured. In this case, nothing is attached to the absorption measurement table 20 and the diffraction line is allowed to pass through.

【0033】次に、上述の回折線強度IJPを測定したと
きとできるだけ同じ条件で、被検試料中の被検成分から
の回折線強度IJを次のようにして測定する。図1
(D)に示すように、使用済みのフィルター(被検試料
の付着したフィルター)を取り付けた試料ホルダー24
bを試料台12に取り付けて、そのときの回折線強度I
Jを測定する。吸収測定台20には、図1(C)と同様
に、何も取り付けない。
Next, the diffraction line intensity I J from the test component in the test sample is measured as follows under the same conditions as possible when the diffraction line intensity I JP is measured. Figure 1
As shown in (D), a sample holder 24 to which a used filter (filter to which a test sample is attached) is attached.
b is attached to the sample table 12, and the diffraction line intensity I at that time
Measure J. Nothing is attached to the absorption measurement table 20 as in the case of FIG.

【0034】回折線強度IJPとIJを測定するには、被
検成分に応じて回折線角度2θJを調節する。例えば、
被検成分がFe34のときは2θJ=35.4°とす
る。そして、この回折線角度の近傍で角度走査をして、
回折ピークを計測し、その積分強度を求めて回折線強度
とする。
To measure the diffraction line intensities I JP and I J , the diffraction line angle 2θ J is adjusted according to the component to be tested. For example,
When the component to be detected is Fe 3 O 4 , it is set to 2θ J = 35.4 °. Then, angle scan near the angle of this diffraction line,
The diffraction peak is measured, and the integrated intensity is calculated and used as the diffraction line intensity.

【0035】以上のようにして、ρt、μt、(μ/
ρ)、IJP、IJが求まったら、これらと、上述の表1
に示す(μ/ρ)JPとθJとを用いて、上述の式(1)
によって定量値AJを算出する。被検試料の厚さが十分
厚い場合は、上述の式(3)を用いて定量値を算出する
こともできる。
As described above, ρt, μt, (μ /
ρ), I JP , and I J are obtained, and these are shown in Table 1 above.
(Μ / ρ) JP and θ J shown in Equation (1) above are used.
The quantitative value A J is calculated by When the thickness of the test sample is sufficiently thick, the quantitative value can be calculated using the above formula (3).

【0036】このようにして、4種類の被検成分のすべ
ての定量値を求めることができる。なお、被検試料のρ
tの決定、被検試料のμtの決定、(μ/ρ)の算出
は、4種類の被検成分の定量値を求める場合に共通なの
で、1回だけ実施すればよい。したがって、回折線強度
JPとIJとについてだけ、4種類の被検成分のそれぞ
れについて測定を行うことになる。
In this way, all quantitative values of the four types of test components can be obtained. In addition, ρ of the test sample
The determination of t, the determination of μt of the test sample, and the calculation of (μ / ρ) are common when determining the quantitative values of the four types of test components, and therefore need only be performed once. Therefore, only the diffraction line intensities I JP and I J are measured for each of the four types of test components.

【0037】以上の実施例では、被検成分が異なるごと
に、それに対応した純粋試料を用いて回折線強度IJP
測定していたが、定量測定ごとに毎回複数の純粋試料の
回折線強度を測定するのは繁雑である。これを解決する
ために、それぞれの純粋試料を用いる代わりに、特定の
1種類の標準試料を用いる方法があり、以下、この方法
を説明する。標準試料としては、図1(A)及び(B)
でモノクロメータとして使用した多結晶Si板からなる
標準試料22を流用することができる。すなわち、この
標準試料を試料台に取り付けて、Si(111)の回折
線強度ISを検出する。それから、被検成分のみからな
る純粋試料からの回折線強度IJPと、Si(111)か
らの回折線強度ISとの比率すなわち補正係数CPSをあ
らかじめ1度だけ測定しておき、この補正係数CPSを用
いて、純粋試料の回折線強度IJPをIJP=CPS×IS
計算する。これにより、定量測定ごとに純粋試料の回折
線強度を測定する手間が省ける。この場合、定量測定ご
との各種の条件変動は、標準試料の回折線強度ISに反
映させることができる。このようにして、4種類の被検
成分のそれぞれに対応した純粋試料について回折線強度
を測定する代わりに、標準試料の回折線強度を1回だけ
測定するようにして、測定を簡便にすることができる。
In the above examples, the diffraction line intensities I JP were measured using the pure samples corresponding to the different test components, but the diffraction line intensities of a plurality of pure samples were measured each time the quantitative measurement was performed. It is complicated to measure. In order to solve this, there is a method of using one specific standard sample instead of using each pure sample, and this method will be described below. As a standard sample, FIGS. 1 (A) and 1 (B)
The standard sample 22 made of a polycrystalline Si plate used as the monochromator can be used. That is, this standard sample is attached to the sample table, and the diffraction line intensity I S of Si (111) is detected. Then, the ratio of the diffraction line intensity I JP from the pure sample consisting of only the test component and the diffraction line intensity I S from Si (111), that is, the correction coefficient C PS is measured in advance only once, and this correction is performed. Using the coefficient C PS , the diffraction line intensity I JP of the pure sample is calculated as I JP = C PS × I S. This saves the labor of measuring the diffraction line intensity of the pure sample for each quantitative measurement. In this case, changes in various conditions for each quantitative measurement can be reflected in the diffraction line intensity I S of the standard sample. Thus, instead of measuring the diffraction line intensities of the pure samples corresponding to each of the four types of test components, the diffraction line intensities of the standard sample are measured only once, and the measurement is simplified. You can

【0038】次に、この実施例で使用した試料ホルダー
を説明する。図2は試料ホルダーの断面図である。この
試料ホルダーは、円形のホルダー本体28と円形のカバ
ー30とからなる。ホルダー本体28には、X線を完全
に通過させるだけの十分に広い円形の開口32がある。
カバー30にも十分に広い円形の開口34が形成されて
いる。また、カバー30の外周に等間隔に4個の弾性的
な爪36が形成されている。使用済みまたは未使用のフ
ィルター38は、カバー30とホルダー本体28の間に
挟まれて、試料ホルダーに装着される。試料ホルダーに
フィルター38を装着するときには、弾性的な爪36を
外側に開くようにする。ホルダー本体28は磁石になっ
ており、試料台に設けた回転台40に吸着できる。この
円形の回転台40には、十分に広い円形の開口41と円
形凹部42とが形成され、ホルダー本体28は、この円
形凹部42に入り込んで位置決めされる。
Next, the sample holder used in this embodiment will be described. FIG. 2 is a sectional view of the sample holder. The sample holder comprises a circular holder body 28 and a circular cover 30. The holder body 28 has a circular opening 32 that is wide enough to allow the complete passage of X-rays.
A sufficiently wide circular opening 34 is also formed in the cover 30. Further, four elastic claws 36 are formed on the outer periphery of the cover 30 at equal intervals. The used or unused filter 38 is sandwiched between the cover 30 and the holder body 28 and mounted on the sample holder. When the filter 38 is attached to the sample holder, the elastic claw 36 is opened outward. The holder body 28 is a magnet and can be attracted to the rotary table 40 provided on the sample table. A sufficiently wide circular opening 41 and a circular concave portion 42 are formed in the circular rotary table 40, and the holder main body 28 enters the circular concave portion 42 and is positioned.

【0039】図3(A)は、フィルター38の運動を示
す正面図である。フィルター38は上述のように試料ホ
ルダーに装着され、この試料ホルダーが、試料台の回転
台に取り付けられる。したがって、フィルター38は、
試料台に取り付けられたときには、その中央を中心にし
て回転する。フィルター38上のX線照射形状43は、
この実施例では細長いライン状であるが、フィルター3
8が回転することにより、円形領域44の全体にX線照
射領域が広がる。これにより、被検試料からの回折線強
度の局所的バラツキは、この回転運動により平均化され
る。
FIG. 3A is a front view showing the movement of the filter 38. The filter 38 is attached to the sample holder as described above, and the sample holder is attached to the rotary table of the sample table. Therefore, the filter 38 is
When attached to the sample table, it rotates around its center. The X-ray irradiation shape 43 on the filter 38 is
In this embodiment, the filter 3 has an elongated line shape.
The rotation of 8 spreads the X-ray irradiation region over the entire circular region 44. As a result, the local variations in the intensity of the diffracted rays from the test sample are averaged by this rotational movement.

【0040】図1の吸収測定台20においても、図2に
示すのと同様の回転台が設けられており、この回転台に
試料ホルダーを吸着できるようになっている。したがっ
て、被検試料のμtの決定のための吸収測定において
も、フィルターを回転させることができる。
The absorption measuring table 20 of FIG. 1 is also provided with a rotary table similar to that shown in FIG. 2, and the sample holder can be adsorbed to this rotary table. Therefore, the filter can be rotated also in the absorption measurement for determining the μt of the test sample.

【0041】図3(B)は、フィルターを回転運動させ
る代わりに並進往復運動させる例である。この場合は、
フィルター38は左右に並進往復運動をすることがで
き、ライン状のX線照射形状43に対して、矩形領域4
6の全体にX線照射領域が広がる。フィルター38に並
進往復運動をさせるには、試料台及び吸収測定台に並進
往復運動機構を設けておけばよい。
FIG. 3B shows an example in which the filter is moved in translation and reciprocation instead of being rotated. in this case,
The filter 38 is capable of translational reciprocating motions to the left and right, and has a rectangular area 4 with respect to the linear X-ray irradiation shape 43.
The X-ray irradiation area spreads over the entire area 6. In order to make the filter 38 reciprocate in translation, a translation reciprocating mechanism may be provided on the sample stage and the absorption measuring stage.

【0042】この発明は上述の実施例に限定されず、次
のような変更が可能である。 (1)フィルターを回転運動または並進往復運動をさせ
るために、上述の実施例では、試料台及び吸収測定台
に、それぞれ、回転運動機構または並進往復運動機構を
設けているが、これとは逆に、試料ホルダーの側にこれ
らの運動機構を設けて、試料台及び吸収測定台には運動
機構を設けない構成とすることもできる。
The present invention is not limited to the above embodiment, but the following modifications are possible. (1) In order to make the filter rotate or reciprocate reciprocally, in the above-mentioned embodiment, the sample stage and the absorption measuring stage are provided with the revolving mechanism or the reciprocating reciprocating mechanism, respectively. In addition, it is also possible to provide these movement mechanisms on the side of the sample holder and to omit the movement mechanisms on the sample table and the absorption measurement table.

【0043】(2)上述の実施例では原子炉の排水フィ
ルターの付着物を例にとって定量分析方法を説明してい
るが、この発明は任意の試料の定量分析が可能である。
例えば、板状の試料であっても、粉末状の試料であって
もよく、試料ホルダーをそれに合わせて用意すれば定量
分析が可能である。
(2) In the above-mentioned embodiment, the quantitative analysis method is explained by taking the deposit on the drainage filter of the nuclear reactor as an example, but the present invention can quantitatively analyze any sample.
For example, a plate-shaped sample or a powder-shaped sample may be used, and quantitative analysis is possible if a sample holder is prepared accordingly.

【0044】(3)4種類の被検成分に対応したそれぞ
れの純粋試料を用いる代わりに、1種類の標準試料を用
いる実施例を述べているが、この場合、その標準試料と
してモノクロメータとしても使用可能な多結晶Si板を
用いている。しかし、回折線強度を得るための標準試料
は、これ以外の物質であっても構わない。例えば、特定
の被検成分に対応した純粋試料を標準試料として用いて
もよい。この場合は、例えば、その被検成分については
上述の式(3)を用いて定量値を計算し、その他の被検
成分については上述の式(4)を用いて(すなわち補正
係数を用いて)定量値を計算すればよい。
(3) An embodiment is described in which one standard sample is used instead of using each pure sample corresponding to four kinds of test components. In this case, a monochromator may be used as the standard sample. A usable polycrystalline Si plate is used. However, the standard sample for obtaining the diffraction line intensity may be another substance. For example, a pure sample corresponding to a specific test component may be used as a standard sample. In this case, for example, the quantitative value is calculated using the above-mentioned formula (3) for the test component, and the above-mentioned formula (4) is used for the other test components (that is, using the correction coefficient). ) The quantitative value should be calculated.

【0045】[0045]

【発明の効果】この発明は、同一のX線分析装置を用い
て、吸収測定によるμtの測定と、回折測定による回折
線強度の測定とを実施できるようにしたので、効率的な
定量分析が可能となる。
According to the present invention, the same X-ray analyzer can be used to perform the measurement of μt by the absorption measurement and the measurement of the diffraction line intensity by the diffraction measurement, so that an efficient quantitative analysis can be performed. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例における吸収測定から回折
線強度測定に至る手順を示す平面図である。
FIG. 1 is a plan view showing a procedure from absorption measurement to diffraction line intensity measurement in one embodiment of the present invention.

【図2】試料ホルダーの断面図である。FIG. 2 is a sectional view of a sample holder.

【図3】被検試料の運動を示す正面図である。FIG. 3 is a front view showing the movement of the test sample.

【符号の説明】[Explanation of symbols]

10…X線源 12…試料台 14…X線検出器 16…発散スリット 18…受光スリット 20…吸収測定台 22…標準試料 24a…未使用フィルターを取り付けた試料ホルダー 24b…使用済みフィルターを取り付けた試料ホルダー 26…純粋試料 10 ... X-ray source 12 ... Sample stand 14 ... X-ray detector 16 ... Divergence slit 18 ... Receiving slit 20 ... Absorption measuring stand 22 ... Standard sample 24a ... Sample holder with unused filter 24b ... Used filter attached Sample holder 26 ... Pure sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の成分からなる被検試料の定量分析
を行うX線定量分析方法において、次の各段階を有する
方法。 (イ)被検試料のρt(ただし、ρは被検試料の平均密
度、tは被検試料のX線透過方向の厚さ)を測定する段
階。 (ロ)X線源からのX線をゴニオメータの中心に配置し
たモノクロメータで反射させて単色化し、その反射X線
が被検試料を透過しないときの強度Taを測定する段
階。 (ハ)X線源からのX線を前記モノクロメータで反射さ
せて単色化し、被検試料をその面内で動かしながら、前
記単色化したX線が被検試料を透過した後の強度Tbを
測定する段階。 (ニ)TaとTbから被検試料のμt(ただし、μは被
検試料の平均の線吸収係数、tは被検試料のX線透過方
向の厚さ)を求める段階。 (ホ)ゴニオメータの中心に被検成分のみからなる純粋
試料を配置して、X線源からのX線を純粋試料に照射
し、そこからの回折X線の強度IJPを測定する段階。 (ヘ)ゴニオメータの中心に被検試料を配置して、被検
試料をその面内で動かしながら、X線源からのX線を被
検試料に照射し、そこからの回折X線の強度IJを測定
する段階。 (ト)被検成分の質量吸収係数(μ/ρ)JPと、これま
でに求めたρt、μt、IJP、IJとに基づいて、被検
試料中の被検成分の重量割合AJを求める段階。
1. An X-ray quantitative analysis method for quantitatively analyzing a test sample composed of a plurality of components, which comprises the following steps. (A) A step of measuring ρt of the test sample (where ρ is the average density of the test sample and t is the thickness of the test sample in the X-ray transmission direction). (B) A step of measuring the intensity Ta when the X-ray from the X-ray source is reflected by a monochromator arranged at the center of the goniometer to make it monochromatic, and the reflected X-ray does not pass through the sample to be tested. (C) The intensity Tb after the monochromatic X-rays have passed through the test sample while the X-ray from the X-ray source is reflected by the monochromator to be monochromatic, and the test sample is moved within the plane. Measuring stage. (D) A step of obtaining μt of the test sample from Ta and Tb (where μ is the average linear absorption coefficient of the test sample, and t is the thickness of the test sample in the X-ray transmission direction). (E) A step of arranging a pure sample consisting only of the test component at the center of the goniometer, irradiating the pure sample with X-rays from the X-ray source, and measuring the intensity I JP of the diffracted X-rays therefrom. (F) The test sample is placed in the center of the goniometer, the test sample is irradiated with X-rays from the X-ray source while the test sample is moved within the plane, and the intensity I of diffracted X-rays from the sample is irradiated. Measuring J. (G) Based on the mass absorption coefficient (μ / ρ) JP of the test component and the ρt, μt, I JP , and I J obtained thus far, the weight ratio A J of the test component in the test sample The stage of seeking.
【請求項2】 前記純粋試料の代わりに、被検試料の成
分とは異なる標準試料を用いて、標準試料からの回折X
線の強度ISを測定し、被検成分の質量吸収係数(μ/
ρ)JPと、これまでに求めたρt、μt、IS、IJと、
被検成分と標準試料とが異なることに起因する補正係数
とに基づいて、被検試料中の被検成分の重量割合AJ
求める段階。
2. Diffraction X from a standard sample using, instead of the pure sample, a standard sample different from the components of the sample to be tested.
The intensity I S of the line is measured and the mass absorption coefficient (μ /
ρ) JP and ρt, μt, I S , and I J obtained so far,
A step of obtaining the weight ratio A J of the test component in the test sample based on the correction coefficient due to the difference between the test component and the standard sample.
【請求項3】 複数の成分からなる被検試料の定量分析
を行うX線定量分析装置において、次の構成を有する装
置。 (イ)X線源と試料台とX線検出器との相対位置関係を
変化させて試料台に配置した試料からの回折X線の強度
を測定できるようにしたX線回折測定系。 (ロ)試料台に着脱可能なモノクロメータ。 (ハ)試料台とX線検出器との間に配置された吸収測定
台。 (ニ)試料台と吸収測定台のいずれにも着脱可能な試料
ホルダー。 (ホ)試料ホルダーを試料台と吸収測定台のいずれに装
着した場合でも、試料ホルダーに取り付けた被検試料を
その面内で動かすことができる試料運動機構。
3. An X-ray quantitative analysis apparatus for quantitatively analyzing a test sample composed of a plurality of components, which has the following configuration. (A) An X-ray diffraction measurement system capable of measuring the intensity of diffracted X-rays from a sample placed on the sample stage by changing the relative positional relationship among the X-ray source, the sample stage and the X-ray detector. (B) A monochromator that can be attached to and detached from the sample table. (C) An absorption measuring table arranged between the sample table and the X-ray detector. (D) A sample holder that can be attached to and detached from both the sample table and the absorption measurement table. (E) A sample movement mechanism that can move the test sample attached to the sample holder within the plane of the sample holder, whether it is attached to the sample table or the absorption measurement table.
JP19775593A 1993-07-16 1993-07-16 X-ray quantitative analysis method and apparatus Expired - Fee Related JP3367999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19775593A JP3367999B2 (en) 1993-07-16 1993-07-16 X-ray quantitative analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19775593A JP3367999B2 (en) 1993-07-16 1993-07-16 X-ray quantitative analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH0735705A true JPH0735705A (en) 1995-02-07
JP3367999B2 JP3367999B2 (en) 2003-01-20

Family

ID=16379812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19775593A Expired - Fee Related JP3367999B2 (en) 1993-07-16 1993-07-16 X-ray quantitative analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3367999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148499A (en) * 2014-02-06 2015-08-20 日本電子株式会社 Particle analysis device and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150333A (en) * 1982-12-02 1984-08-28 ユ−エスエス・エンジニア−ズ・アンド・コンサルタンツ,インコ−ポレイテイド Method of determining iron, pyrite or ash in coal
JPS6110749A (en) * 1984-06-25 1986-01-18 Kawasaki Steel Corp Apparatus for measuring surface and internal characteristics of running plate material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150333A (en) * 1982-12-02 1984-08-28 ユ−エスエス・エンジニア−ズ・アンド・コンサルタンツ,インコ−ポレイテイド Method of determining iron, pyrite or ash in coal
JPS6110749A (en) * 1984-06-25 1986-01-18 Kawasaki Steel Corp Apparatus for measuring surface and internal characteristics of running plate material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148499A (en) * 2014-02-06 2015-08-20 日本電子株式会社 Particle analysis device and program

Also Published As

Publication number Publication date
JP3367999B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
EP2564186B1 (en) Method and apparatus for using an area x-ray detector as a point detector in an x-ray diffractometer
JP3928656B2 (en) Energy dispersive X-ray diffraction / spectrometer
JPH05240808A (en) Method for determining fluorescent x rays
Coote et al. A rapid method of obsidian characterisation by inelastic scattering of protons
WO2004011919A1 (en) Quantitative phase analysis of textured polycrystalline materials
Claes et al. Comparison of Grazing Emission XRF with Total Reflection XRF and Other X‐Ray Emission Techniques
JP3367999B2 (en) X-ray quantitative analysis method and apparatus
Claes et al. Progress in laboratory grazing emission x‐ray fluorescence spectrometry
JPH0228819B2 (en) METSUKIEKIBUNSEKISOCHI
JPH0224545A (en) Method for fluorescence x-ray analysis
JP3593412B2 (en) X-ray analyzer and attachment for X-ray fluorescence analysis
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
EP1521947A2 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
SU868503A1 (en) X-ray spectrometer
JP2921597B2 (en) Total reflection spectrum measurement device
CN220188400U (en) X-ray diffraction and X-ray fluorescence spectrum synchronous combination system and device
RU2137114C1 (en) Method of small-angle introscopy and device for its realization ( versions )
JP3949850B2 (en) X-ray fluorescence analyzer
SU881591A1 (en) X-ray structural analysis method
DE4236291A1 (en) Texture and stress analysis and crystal orientation determn. method - involves exposing specimen to x-rays and measuring radiation from specimen with energy resolution detector at various output angles
JPH02107952A (en) X-ray diffraction measurement for powder
RU2065599C1 (en) Portable x-ray spectrum sensor and method for its implementation
JP2554104Y2 (en) X-ray fluorescence analyzer
DE10250997A1 (en) Mobile X-ray test unit for thick and complicated structures resolves fluorescence, first and higher order diffraction to give surface and depth chemical composition profiles
SU1117506A1 (en) Method of quantitative analysis of surface layers of solids

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees