JPH0735611A - Infrared camera - Google Patents

Infrared camera

Info

Publication number
JPH0735611A
JPH0735611A JP5202076A JP20207693A JPH0735611A JP H0735611 A JPH0735611 A JP H0735611A JP 5202076 A JP5202076 A JP 5202076A JP 20207693 A JP20207693 A JP 20207693A JP H0735611 A JPH0735611 A JP H0735611A
Authority
JP
Japan
Prior art keywords
infrared
area
face
detector
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5202076A
Other languages
Japanese (ja)
Other versions
JP2780604B2 (en
Inventor
Sho Yasuda
升 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5202076A priority Critical patent/JP2780604B2/en
Publication of JPH0735611A publication Critical patent/JPH0735611A/en
Application granted granted Critical
Publication of JP2780604B2 publication Critical patent/JP2780604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To achieve an increase in the number of pixels in a photodetecting area with the facilitating of the production, cooling and shielding of an infrared detector by a method wherein an incident end of an infrared waveguide is arranged in linearly and an emission end thereof in an area to perform a photoelectric conversion of an emission light from the area-shaped emission end with an area infrared detector. CONSTITUTION:In an infrared imaging optical system 1, radiation infrared rays from an object are focused to form an image on a linear incident end face 2a of an infrared fiber bundle 2. Incident infrared rays are transmitted through fibers of the infrared fiber bundle 2 with the number thereof corresponding to the number of pixels to be emitted at an area-shaped emission end face 2b. The light emitted forms an image on an infrared detector 4 through an infrared relay optical system 3. The detector 4 is an area sensor in which pixels are arranged in an area and comprises an infrared detector, having a transfer CCD element. Thus, the area of the detector 4 will not grow so much even when the number of pixels of the linear incident end face 2a increases. This facilitates the cooling with a smaller Dewer 5 and the use of a cold shield 6 thereby enabling corresponding to the increase in the number of pixels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外線撮像装置に係り、
特にリニア状の受光領域を有する赤外線撮像装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared imaging device,
In particular, the present invention relates to an infrared imaging device having a linear light receiving area.

【0002】[0002]

【従来の技術】赤外線撮像装置は種々の分野で利用され
ている。例えば衛星に搭載して地球表面の温度分布を表
す画像を取り込み、その画像信号を地球局へ送信してデ
ィスプレイに表示させる観測システムにも用いられてい
る。
2. Description of the Related Art Infrared imaging devices are used in various fields. For example, it is also used in an observation system mounted on a satellite to capture an image showing the temperature distribution on the surface of the earth, transmitting the image signal to an earth station and displaying it on a display.

【0003】この赤外線撮像装置の赤外線検知器として
は、エリア状に配列された量子型赤外線検知素子が用い
られている。量子型赤外線検知素子は、例えばInSb
(3〜5μm光)やHgCdTe(8〜12μm光)な
どの特殊な化合物半導体を用いて製造され、転送CCD
と組み合わせて形成されるものもある。
As an infrared detector of this infrared image pickup device, quantum infrared detector elements arranged in an area are used. The quantum infrared detecting element is, for example, InSb.
(3 to 5 μm light) and HgCdTe (8 to 12 μm light) manufactured using a special compound semiconductor, transfer CCD
Some are formed in combination with.

【0004】また、赤外線検出器は77K(絶対温度)
程度の極低温で使用する必要があるために、通常、液体
窒素等の冷媒を用いて冷却を行っている。
The infrared detector is 77K (absolute temperature)
Since it is necessary to use it at a very low temperature, it is usually cooled by using a refrigerant such as liquid nitrogen.

【0005】更に、被写体からの赤外線だけを取り込み
余分な背景光を排除するために、赤外線検知器の直前に
シールドを設けることも必要である(特開昭60−87
19号公報)。
Further, it is also necessary to provide a shield immediately before the infrared detector in order to take in only infrared rays from the subject and eliminate extraneous background light (JP-A-60-87).
19 publication).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、赤外線
検知素子がリニア状に1000個以上配列された大規模
リニアアレイ構造の光電変換部になると、製造あるいは
実際に使用するに当たって、次のような困難が生じる。
However, when a photoelectric conversion part having a large-scale linear array structure in which 1000 or more infrared detecting elements are linearly arranged is provided, the following difficulties are encountered in manufacturing or actually using the photoelectric conversion part. Occurs.

【0007】赤外線検知素子は、上述したように、Hg
CdTeなどの特殊な化合物半導体を材料としているた
めに、大口径で均一な結晶を形成することは困難であ
り、欠陥のない結晶を得ようとすれば歩留りが極端に低
下してしまう。
As described above, the infrared detecting element has an Hg
Since a special compound semiconductor such as CdTe is used as a material, it is difficult to form a large-diameter, uniform crystal, and if a crystal having no defect is to be obtained, the yield will be extremely reduced.

【0008】この問題点を解決するために、小規模リニ
アアレイの光電変換チップを複数設け、それらをリニア
状に並べたマルチチップ構成が考えられる。しかしなが
ら、複数の小規模チップを平坦に且つ隙間なく並べるこ
とは技術的に非常に困難であり、歩留まりの低下、ひい
てはコストの向上を招く。
In order to solve this problem, a multi-chip structure in which a plurality of small-scale linear array photoelectric conversion chips are provided and arranged linearly can be considered. However, it is technically very difficult to arrange a plurality of small chips flatly and without gaps, which leads to a reduction in yield and an increase in cost.

【0009】大規模リニアアレイ構造の光電変換部を実
際に動作させる上で更に問題となるのは、冷却対策であ
る。例えば、大規模なリニアアレー構造として、400
0〜10000個の赤外線検知素子を直線上に並べる
と、そのデバイスの長手方向のサイズは、約100〜5
00mmとなる。
A further problem in actually operating the photoelectric conversion unit having a large-scale linear array structure is a cooling measure. For example, as a large-scale linear array structure, 400
When 0 to 10000 infrared detecting elements are arranged on a straight line, the size of the device in the longitudinal direction is about 100 to 5
It becomes 00 mm.

【0010】このようなサイズの光電変換部を冷却する
ためには、大型の冷却デュワーが必要になり、冷却効率
の低下、コストの増大を招来する。また有効な冷却シー
ルドの実現も困難になる。
In order to cool the photoelectric conversion part of such a size, a large cooling dewar is required, which causes a decrease in cooling efficiency and an increase in cost. Also, it is difficult to realize an effective cooling shield.

【0011】そこで、本発明の目的は、リニア状受光領
域の画素数が増大しても容易に実用化できる赤外線撮像
装置を提供することにある。
Therefore, an object of the present invention is to provide an infrared image pickup device which can be easily put into practical use even if the number of pixels in the linear light receiving region increases.

【0012】[0012]

【課題を解決するための手段】本発明による赤外線撮像
装置は、被写体からの赤外線を結像させる第1の結像光
学系と、入射端面及び出射端面を有する複数の赤外線導
波路からなり、前記入射端面がリニア状に配列され、前
記出射端面がエリア状に配列され、且つ前記リニア状入
射端面が前記第1の結像光学系の結像面に配置された赤
外線導波手段と、前記出射端面から出射した赤外線を結
像させる第2の結像光学系と、前記第2結像光学系の結
像面に配置され、複数の光電変換素子がエリア状に配列
された赤外線検知器と、からなることを特徴とする。
An infrared imaging device according to the present invention comprises a first imaging optical system for imaging infrared rays from a subject and a plurality of infrared waveguides having an incident end face and an outgoing end face. Infrared waveguide means in which the incident end faces are linearly arranged, the exit end faces are arranged in an area, and the linear incident end face is arranged on the image forming surface of the first image forming optical system; A second image forming optical system for forming an image of infrared rays emitted from the end face; and an infrared detector arranged on the image forming surface of the second image forming optical system and having a plurality of photoelectric conversion elements arranged in an area pattern, It is characterized by consisting of.

【0013】[0013]

【作用】複数の赤外線導波路の入射側の端をリニア状
(1次元)に配列し、出射側の端をエリア状(2次元)
に配列する。このエリア状出射端面からの出射光をエリ
ア赤外線検知器で光電変換する。
[Function] The ends of the plurality of infrared waveguides on the incident side are arranged linearly (one-dimensional), and the ends on the emission side are area-shaped (two-dimensional).
To array. Light emitted from the area-shaped emission end face is photoelectrically converted by an area infrared detector.

【0014】[0014]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明による赤外線撮像装置の一
実施例を示す全体的構成図である。
FIG. 1 is a general block diagram showing an embodiment of an infrared imaging device according to the present invention.

【0016】同図において、赤外線結像光学系1は、赤
外線レンズなどで構成され、被写体の各部から放射され
る赤外線を集光し、赤外線ファイバ束2の入射端面2a
上に結像する。
In the figure, an infrared image forming optical system 1 is composed of an infrared lens and the like, collects infrared rays emitted from various parts of a subject, and makes an incident end face 2a of an infrared fiber bundle 2.
Image on top.

【0017】赤外線ファイバ束2は、画素数に応じた本
数(例えば4000〜10000本)の赤外線ファイバ
からなる。赤外線ファイバー束2の入射端面2aでは、
各赤外線ファイバの端面が直線状に配列されリニア状受
光面を形成している。この入射端面2aは、赤外線結像
光学系1の結像位置(焦点位置)に配置される。リニア
状の入射端面2aから入射した赤外線は、赤外線ファイ
バ束2の各ファイバを透過して、エリア状の出射端面2
bから出射する。入射端面2a及び出射端面2bの配列
については後述する。
The infrared fiber bundle 2 is composed of infrared fibers of a number (for example, 4000 to 10000) according to the number of pixels. At the incident end surface 2a of the infrared fiber bundle 2,
The end faces of each infrared fiber are linearly arranged to form a linear light receiving surface. The incident end face 2a is arranged at the image forming position (focus position) of the infrared image forming optical system 1. Infrared rays incident from the linear incident end surface 2a pass through each fiber of the infrared fiber bundle 2 to form the area-shaped outgoing end surface 2
Emit from b. The arrangement of the entrance end face 2a and the exit end face 2b will be described later.

【0018】赤外線リレー光学系3も結像光学系であ
り、赤外線ファイバー束2の出射端面2bから出射した
赤外線を入射して、赤外線検知器4上に結像させる。
The infrared relay optical system 3 is also an imaging optical system, and the infrared rays emitted from the emission end face 2b of the infrared fiber bundle 2 are made incident to form an image on the infrared detector 4.

【0019】赤外線検知器4は画素がエリア状に配列
(例えば100×100)されたエリアセンサである。
各画素はHgCdTe等を光電変換部の材料とする赤外
線検知素子からなり、更に転送CCD素子(後述する)
を有している。赤外線リレー光学系3から出射された赤
外線は赤外線検知器4上に結像し、光量に応じた電気信
号に変換される。
The infrared detector 4 is an area sensor in which pixels are arranged in an area shape (for example, 100 × 100).
Each pixel is composed of an infrared detection element using HgCdTe or the like as a material for the photoelectric conversion unit, and further a transfer CCD element (described later)
have. The infrared light emitted from the infrared relay optical system 3 forms an image on the infrared detector 4 and is converted into an electric signal according to the amount of light.

【0020】また、赤外線検知器4は、円筒形の冷却デ
ュワー5内に設置されて所定の冷却が行われる。更に、
赤外線検知器4の上には、赤外線リレー光学系3から入
射する赤外線以外の背景光の入射を防ぐために、コール
ドシールド6が設けられている。なお、冷却デュワー5
は液体窒素を用いて冷却される。
Further, the infrared detector 4 is installed in a cylindrical cooling dewar 5 to perform a predetermined cooling. Furthermore,
A cold shield 6 is provided on the infrared detector 4 in order to prevent the incidence of background light other than infrared light incident from the infrared relay optical system 3. In addition, cooling dewar 5
Is cooled with liquid nitrogen.

【0021】次に、図2に、赤外線ファイバ束2の入射
端面2aおよび出射端面2bの配列例を示す。
Next, FIG. 2 shows an arrangement example of the incident end face 2a and the emitting end face 2b of the infrared fiber bundle 2.

【0022】図2(a)は赤外線ファイバ束2の入射端
面2aを例示する。ここでは10000本の赤外線ファ
イバの各端面がリニア状に配列されている。なお、図面
では、符号2a−1〜2a−10000が各赤外線ファ
イバに対応する番号である。
FIG. 2A illustrates the incident end surface 2a of the infrared fiber bundle 2. Here, the end faces of 10,000 infrared fibers are linearly arranged. In the drawings, reference numerals 2a-1 to 2a-10000 are numbers corresponding to the infrared fibers.

【0023】このように構成された赤外線ファイバ束2
の入射端面2aへ入射した赤外線は、各赤外線ファイバ
を透過して、赤外線ファイバ束2の出射端面2bから出
射される。
Infrared fiber bundle 2 constructed in this way
The infrared rays that have entered the incident end surface 2a of (1) pass through each infrared fiber and are emitted from the emitting end surface 2b of the infrared fiber bundle 2.

【0024】図2(b)は赤外線ファイバ束2の出射端
面2bを例示する。上記の例に合わせれば、10000
本の赤外線ファイバの出射端面が正方形状に配列されて
いる。すなわち、入射端面2aにおいて2a−1〜2a
−100で示される赤外線ファイバが出射端面2bの第
1列目(符号2b−1〜2b−100)として配置さ
れ、2a−101〜2a−200で示される赤外線ファ
イバが2列目(2b−101〜2b−200)として配
置されている。以下同様である。こうして、全体で10
0×100の正方形配列となっている。勿論、このよう
な正方形配列に限定されるものではなく、ファイバの本
数及び赤外線検知器の画素配列に従って適宜決定すれば
良い。
FIG. 2B illustrates the emission end face 2b of the infrared fiber bundle 2. In line with the above example, 10000
The emission end faces of the two infrared fibers are arranged in a square shape. That is, 2a-1 to 2a at the incident end face 2a.
The infrared fiber indicated by -100 is arranged as the first row (reference numerals 2b-1 to 2b-100) of the emitting end face 2b, and the infrared fiber indicated by 2a-101 to 2a-200 is the second row (2b-101). 2b-200). The same applies hereinafter. Thus, 10 in total
It has a square array of 0 × 100. Of course, it is not limited to such a square array, and it may be appropriately determined according to the number of fibers and the pixel array of the infrared detector.

【0025】図3は、赤外線検知器4の構成例である。FIG. 3 is a structural example of the infrared detector 4.

【0026】同図において、赤外線検知器4は、上記例
に合わせれば、10000個の赤外線検知素子と100
個の転送CCD素子からなる。各赤外線検知素子の配列
は、赤外線ファイバ束2の出射端面2bにおける赤外線
ファイバの配列と同じであり、ここでは100×100
で構成されている。即ち、赤外線検知素子4−1〜4−
100が第1列目に配置され、以下同様に100個ごと
に1列を構成し、4−9901〜4−10000が第1
00列目に配置される。
In the figure, the infrared detector 4 is composed of 10000 infrared detector elements and 100 infrared detector elements according to the above example.
It consists of individual transfer CCD elements. The array of the infrared detecting elements is the same as the array of the infrared fibers on the emission end face 2b of the infrared fiber bundle 2, and here, 100 × 100.
It is composed of. That is, the infrared detecting elements 4-1 to 4-
100 are arranged in the first row, and likewise, one row is formed every 100 pieces, and 4-9901 to 4-10000 are the first rows.
It is arranged in the 00th column.

【0027】こうして、赤外線ファイバの出射端面2b
の各ファイバから出射した赤外線は、赤外線リレー光学
系3を中継して、対応する赤外線検知素子4−1〜4−
10000にそれぞれ入射し、電気信号に変換される。
Thus, the emitting end face 2b of the infrared fiber is
The infrared rays emitted from the respective fibers are relayed through the infrared relay optical system 3, and the corresponding infrared detecting elements 4-1 to 4-
Each is incident on 10000 and converted into an electric signal.

【0028】転送CCD素子は赤外線検知素子の各列ご
とに設けられる。すなわち、赤外線検知素子4−1〜4
−100に対して1本の転送CCD4−1aを設け、以
下同様に、赤外線検知素子4−9901〜4−1000
0に対して転送CCD4−100aを設ける。
A transfer CCD element is provided for each row of infrared detection elements. That is, the infrared detecting elements 4-1 to 4
One transfer CCD 4-1a is provided for -100, and similarly, the infrared detecting elements 4-9901 to 4-1000 are provided below.
0 is provided with a transfer CCD 4-100a.

【0029】CCD4−1aは、赤外線検知素子4−1
〜4−100が光電変換した各電気信号を並列に読み込
み、所定のタイミングで直列に出力する。このように、
CCD4−1a〜CCD4−100aが各列の光電変換
信号を読み込んで、所定のタイミングで順番に出力する
ようにすれば、赤外線ファイバ束2の入射端面2a−1
に入射した赤外線に対応した電気信号を先頭に、以下入
射端面2a−2〜2a−10000に入射した赤外線を
順番に出力することができる。即ち、この例では100
00画素のラインセンサによって光電変換された信号と
同じ画像信号を得ることができる。
The CCD 4-1a is an infrared detecting element 4-1.
4 to 100 read in parallel the respective electric signals photoelectrically converted and output in series at a predetermined timing. in this way,
If the CCD 4-1a to CCD 4-100a read the photoelectric conversion signals of the respective columns and sequentially output the photoelectric conversion signals at a predetermined timing, the incident end surface 2a-1 of the infrared fiber bundle 2 will be described.
It is possible to sequentially output the infrared rays incident on the incident end faces 2a-2 to 2a-10000, starting from the electric signal corresponding to the infrared rays incident on. That is, in this example, 100
The same image signal as the signal photoelectrically converted by the 00 pixel line sensor can be obtained.

【0030】このように赤外線検知器4としては赤外線
検知素子が2次元的に配列されたものが利用できる。2
次元赤外線検知器は、かなり大規模なものが製品化され
ており、また、小型化されている。たとえば、赤外線検
知素子の配列が、128×128(約16000素子)
〜256×256(約65000素子)である赤外線検
知器のデバイスサイズは、10〜20mmの略正方形で
実現されている。
As described above, as the infrared detector 4, a device in which infrared detecting elements are two-dimensionally arranged can be used. Two
The dimensional infrared detector has been commercialized on a considerably large scale and has been downsized. For example, the array of infrared detection elements is 128 x 128 (about 16000 elements).
The device size of the infrared detector, which is ˜256 × 256 (about 65,000 elements), is realized in a substantially square shape of 10 to 20 mm.

【0031】したがって、リニアアレイの画素数が増大
しても、赤外線検知器4を冷却するための冷却デュワー
5は小型のものを用いることができる。冷却デュワー5
は小型であるほど冷却効率が良く、コスト削減にも大き
く寄与できる。また、小さい領域に対しては有効なコー
ルドシールドを行えるので、背景光のゆらぎが原因とな
る雑音が少なくなり、赤外線検知器4の感度が向上す
る。
Therefore, even if the number of pixels in the linear array increases, a small cooling dewar 5 for cooling the infrared detector 4 can be used. Cooling dewar 5
The smaller the size, the better the cooling efficiency, which can greatly contribute to cost reduction. Further, since effective cold shielding can be performed on a small area, noise caused by fluctuation of background light is reduced, and the sensitivity of the infrared detector 4 is improved.

【0032】赤外線ファイバ束を構成するファイバの本
数は、本実施例に限定されるものではない。また、赤外
線ファイバ束の出射端面における配列も正方形状に限定
されるものではなく、たとえば近似した長方形状に配列
させてもよい。
The number of fibers forming the infrared fiber bundle is not limited to this embodiment. Further, the arrangement of the infrared fiber bundle on the emitting end face is not limited to the square shape, but may be arranged in an approximate rectangular shape, for example.

【0033】さらに、赤外線ファイバ束を構成するファ
イバの本数と赤外線検知器上の赤外線検知素子数とを等
しくする必要はない。すなわち、赤外線検知素子数を上
記ファイバの本数よりも多く構成してもよい。このよう
な構成とすると、赤外線検知器に欠陥検知素子が含まれ
ている場合に、赤外線ファイバ束の出射端面における配
置を変更することによって、正常な赤外線検知素子のみ
で赤外線検知を行わせることができる。
Further, it is not necessary to make the number of fibers forming the infrared fiber bundle equal to the number of infrared detecting elements on the infrared detector. That is, the number of infrared detecting elements may be larger than the number of fibers. With such a configuration, when the infrared detector includes a defect detection element, the infrared detection can be performed only by the normal infrared detection element by changing the arrangement on the emitting end face of the infrared fiber bundle. it can.

【0034】また、赤外線ファイバ束の出射端面を、そ
れぞれ任意の本数の赤外線ファイバからなる複数のグル
ープに分割し、その各々を複数の赤外線検知器で検知さ
せるようにしてもよい。
The emitting end face of the infrared fiber bundle may be divided into a plurality of groups each consisting of an arbitrary number of infrared fibers, and each of them may be detected by a plurality of infrared detectors.

【0035】さらに、本発明において、赤外線検知の感
度を高めるために時間遅延動作(TDI)を行うことも
可能である。
Further, in the present invention, it is possible to perform a time delay operation (TDI) in order to increase the sensitivity of infrared detection.

【0036】[0036]

【発明の効果】以上説明したように、本発明による赤外
線撮像装置は、複数の赤外線導波路の入射側の端をリニ
ア状に、出射側の端をエリア状にそれぞれ配列し、エリ
ア状出射端面からの出射光をエリア赤外線検知器で光電
変換する。
As described above, in the infrared imaging device according to the present invention, the incident side ends of a plurality of infrared waveguides are arranged linearly and the emitting side ends are arranged in an area shape, respectively. The light emitted from is photoelectrically converted by an area infrared detector.

【0037】これにより、製造が容易なエリア赤外線検
知器を用いてリニア状の受光領域を実現できる。リニア
状受光領域の画素数が増加してもエリア赤外線検知器の
サイズには大きな変更が生じないために、装置構成及び
その変更が容易となる。更にエリア赤外線検知器の冷却
も容易となり、コスト的にも有利となる。また、赤外線
検知器がエリア状であるから、背景光のゆらぎを原因と
する雑音を低下させるコールドシールドが有効にはたら
き、赤外線検知感度が向上する。
Thus, a linear light receiving area can be realized by using an area infrared detector which is easy to manufacture. Even if the number of pixels in the linear light-receiving area increases, the size of the area infrared detector does not change significantly, so that the device configuration and its change become easy. Further, the area infrared detector can be easily cooled, which is advantageous in cost. Further, since the infrared detector has an area shape, a cold shield that reduces noise caused by fluctuations in background light works effectively, and infrared detection sensitivity is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による赤外線撮像装置の一実施例を示す
全体構成図である。
FIG. 1 is an overall configuration diagram showing an embodiment of an infrared imaging device according to the present invention.

【図2】本実施例における赤外線ファイバ束の入射端面
(a)及び出射端面(b)のファイバ配列を説明する模
式図である。
FIG. 2 is a schematic diagram illustrating a fiber arrangement of an incident end face (a) and an emitting end face (b) of an infrared fiber bundle in the present embodiment.

【図3】図1に示す赤外線撮像装置の赤外線検知器の画
素配列を示す構成図である。
FIG. 3 is a configuration diagram showing a pixel array of an infrared detector of the infrared imaging device shown in FIG.

【符号の説明】[Explanation of symbols]

1 赤外線結像光学系 2 赤外線ファイバ束 2a 赤外線ファイバ束の入射端面 2b 赤外線ファイバ束の出射端面 3 赤外線リレー光学系 4 赤外線検知器 DESCRIPTION OF SYMBOLS 1 Infrared imaging optical system 2 Infrared fiber bundle 2a Incident end face of infrared fiber bundle 2b Outgoing end face of infrared fiber bundle 3 Infrared relay optical system 4 Infrared detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被写体からの赤外線を結像させる第1の
結像光学系と、 入射端面及び出射端面を有する複数の赤外線導波路から
なり、前記入射端面がリニア状に配列され、前記出射端
面がエリア状に配列され、且つ前記リニア状入射端面が
前記第1の結像光学系の結像面に配置された赤外線導波
手段と、 前記出射端面から出射した赤外線を結像させる第2の結
像光学系と、 前記第2結像光学系の結像面に配置され、複数の光電変
換素子がエリア状に配列された赤外線検知器と、 からなることを特徴とする赤外線撮像装置。
1. A first imaging optical system for forming an image of infrared rays from a subject, and a plurality of infrared waveguides having an incident end face and an outgoing end face, wherein the incident end faces are linearly arranged, and the outgoing end face is arranged. Are arranged in an area, and the linear incident end face is arranged on the image forming surface of the first image forming optical system, and an infrared wave guide means for forming an image of infrared rays emitted from the emitting end face. An infrared imaging device comprising: an image forming optical system; and an infrared detector arranged on the image forming surface of the second image forming optical system and having a plurality of photoelectric conversion elements arranged in an area.
【請求項2】 前記赤外線導波手段は、複数の赤外線フ
ァイバの束であることを特徴とする請求項1記載の赤外
線撮像装置。
2. The infrared imaging device according to claim 1, wherein the infrared wave guide means is a bundle of a plurality of infrared fibers.
【請求項3】 前記赤外線導波手段の各赤外線導波路の
出射端面は、前記赤外線検知器の各光電変換素子に対応
することを特徴とする請求項1記載の赤外線撮像装置。
3. The infrared imaging apparatus according to claim 1, wherein the emitting end face of each infrared waveguide of the infrared waveguide corresponds to each photoelectric conversion element of the infrared detector.
JP5202076A 1993-07-23 1993-07-23 Infrared imaging device Expired - Lifetime JP2780604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202076A JP2780604B2 (en) 1993-07-23 1993-07-23 Infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202076A JP2780604B2 (en) 1993-07-23 1993-07-23 Infrared imaging device

Publications (2)

Publication Number Publication Date
JPH0735611A true JPH0735611A (en) 1995-02-07
JP2780604B2 JP2780604B2 (en) 1998-07-30

Family

ID=16451560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202076A Expired - Lifetime JP2780604B2 (en) 1993-07-23 1993-07-23 Infrared imaging device

Country Status (1)

Country Link
JP (1) JP2780604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2472516A (en) * 2009-08-07 2011-02-09 Thermoteknix Systems Ltd Tapering light guide with reflector, suitable for thermal imaging attachment
JP2013250183A (en) * 2012-06-01 2013-12-12 Jfe Steel Corp Temperature measurement system and temperature measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113729A (en) * 1981-12-26 1983-07-06 Toshiba Corp One-dimensional detector
JPS6059549A (en) * 1983-09-09 1985-04-05 Toyota Motor Corp Method for detecting defective disc of dad player for car
JPH02187632A (en) * 1989-01-17 1990-07-23 Mitsubishi Electric Corp Infrared optical device
JPH02220631A (en) * 1989-02-22 1990-09-03 Nippon Avionics Co Ltd Thermography apparatus of endoscope
JPH02275326A (en) * 1989-04-17 1990-11-09 Kuraray Co Ltd Spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113729A (en) * 1981-12-26 1983-07-06 Toshiba Corp One-dimensional detector
JPS6059549A (en) * 1983-09-09 1985-04-05 Toyota Motor Corp Method for detecting defective disc of dad player for car
JPH02187632A (en) * 1989-01-17 1990-07-23 Mitsubishi Electric Corp Infrared optical device
JPH02220631A (en) * 1989-02-22 1990-09-03 Nippon Avionics Co Ltd Thermography apparatus of endoscope
JPH02275326A (en) * 1989-04-17 1990-11-09 Kuraray Co Ltd Spectrometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2472516A (en) * 2009-08-07 2011-02-09 Thermoteknix Systems Ltd Tapering light guide with reflector, suitable for thermal imaging attachment
US8390807B2 (en) 2009-08-07 2013-03-05 Thermoteknix Systems Limited, A Corporation Of The United Kingdom Light guiding device
GB2472516B (en) * 2009-08-07 2015-03-04 Thermoteknix Systems Ltd Light guiding device
US9122058B2 (en) 2009-08-07 2015-09-01 Thermoteknix Systems Limited Light guiding device
JP2013250183A (en) * 2012-06-01 2013-12-12 Jfe Steel Corp Temperature measurement system and temperature measurement method

Also Published As

Publication number Publication date
JP2780604B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
US6268883B1 (en) High speed infrared imaging system and method
US3806729A (en) Charge coupled device ir imager
US5512750A (en) A-dual band IR sensor having two monolithically integrated staring detector arrays for simultaneous, coincident image readout
US7491937B2 (en) Two-wavelength image sensor picking up both visible and infrared images
US7652250B2 (en) Noise reduction method for imaging devices
CN103975580A (en) Image pickup device, electronic apparatus, optically stimulated luminescence detection scanner, and image pickup method
US4596930A (en) Arrangement for multispectal imaging of objects, preferably targets
JP2006343229A (en) Image sensor
Zandian et al. Performance of science grade HgCdTe H4RG-15 image sensors
Baker et al. Photovoltaic CdHgTe-silicon hybrid focal planes
US4053773A (en) Mosaic infrared sensor
JPH03209769A (en) Infrared radiation image sensor
US5589876A (en) Infrared imaging device readily removing optical system contributory component
JPH0735611A (en) Infrared camera
Sakimoto et al. An optical and near-infrared multipurpose instrument HONIR
US4737642A (en) Arrangement for multispectral imaging of objects, preferably targets
Bai et al. Manufacturability and performance of 2.3-µm HgCdTe H2RG sensor chip assemblies for Euclid
Itoh et al. Kiso observatory near-infrared camera with a large format array
Davis et al. Resolution issues in InSb focal plane array system design
JPS61226677A (en) Two-dimensional radioactive ray detector
US20130313408A1 (en) Spatially resolved spectral-imaging device
RU2765883C1 (en) Thermal imager on a chip of a monolithic photodetector with optical output (thermal imaging dynamic video mirror)
RU2766053C1 (en) Thermal imager based on a hybrid photodetector with an optical output (thermal imaging dynamic signal spectrum converter)
JPS60115806A (en) Attitude detecting sensor consisting of optical fiber and two-dimensional solid-state image pickup element
Harrison et al. Large area focal plane comprising charge-coupled devices and fiber optics

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980414