JPS58113729A - One-dimensional detector - Google Patents

One-dimensional detector

Info

Publication number
JPS58113729A
JPS58113729A JP56214919A JP21491981A JPS58113729A JP S58113729 A JPS58113729 A JP S58113729A JP 56214919 A JP56214919 A JP 56214919A JP 21491981 A JP21491981 A JP 21491981A JP S58113729 A JPS58113729 A JP S58113729A
Authority
JP
Japan
Prior art keywords
dimensional
face
image sensor
array side
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56214919A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kameda
芳彦 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56214919A priority Critical patent/JPS58113729A/en
Publication of JPS58113729A publication Critical patent/JPS58113729A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To easily realize a detector of hundred thousands of picture elements, by junctioning a two-dimensional array side end face of an optical fiber flux for executing the one-dimensional and two dimensional mutual conversion, to a photodetecting part of a two-dimensional charge coupling element image sensor, and using a one-dimensional array side end face of this fiber flux as a one- dimensional photodetecting surface. CONSTITUTION:An optical fiber 11 is used for converting a one-dimensional picture element to a two-dimensional picture element, the end face of the two- dimensional array side is junctioned to a photodetecting part 12 of an image sensor 10, and the end face of the one-dimensional array side forms a photodetecting surface 13. According to such a constitution, if that which is put to practical use at present as a two-dimensional CCD image sensor 10, for instance, that of 400X400 elements or so is used, a one-dimensional detector whose number of elements is one hundred sixty thousand can be realized.

Description

【発明の詳細な説明】 発明の技術分野 本発明はたとえば海洋1m測衛鳳や地球資#I探食衛星
(二搭載される可視近赤外放射針等(;用いられる一次
元検出器に関する0 発明の妖術的背景とその間細点 可視近赤外放射針の定食方式≦二は、大別して第IWJ
i二不す確械走食万式と第2因(:示す電子走査方式の
ニガ式が知られている・l[!IVCおいて、jは機械
的6二回転駆動される定食鏡、2は光学系、3は近赤外
検出用の一次元検出器。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to, for example, a 1-meter oceanographic surveying satellite, a global satellite #I exploration satellite (visible and near-infrared radiation needles mounted on two The magical background of the invention and the set meal method of the fine point visible near infrared radiation needle ≦2 are broadly classified into No. IWJ
The Niga type of electronic scanning system is known as the i2-infinite mechanical scanning system and the second factor (:).l[!In IVC, j is a set mirror that is mechanically driven 62 times, and 2 3 is an optical system, and 3 is a one-dimensional detector for near-infrared detection.

4は地球表面の観測または探査饋域である・秦2図にお
いて、5は電荷結合素子CCDを用いたラインセンナよ
りなる一次元検出器、6は光学系、Lは地球表面王道=
おける観測または探査−城の輻(走査幅)である・第2
図の電子走査方式では、衛星の進行方向r c直角な方
向を走査するものであり、衛星の進行C:伴って新しい
ラインを走査すること幅=よって二次元イメージを得る
ことができる・この場合、ラインセンサのCCD素子数
を真、最小地上分解能をdとすると。
4 is the observation or exploration area of the earth's surface. In the Hata 2 diagram, 5 is a one-dimensional detector consisting of a line sensor using a charge-coupled device CCD, 6 is an optical system, and L is the earth's surface road =
Observation or exploration at - Castle convergence (scanning width) - Second
In the electronic scanning method shown in the figure, scanning is performed in a direction perpendicular to the satellite's traveling direction r c, and the satellite's traveling direction C: Accompanied by scanning a new line Width = Therefore, a two-dimensional image can be obtained - In this case , the number of CCD elements of the line sensor is true, and the minimum ground resolution is d.

1個のラインセンナを用いた場合には次式が成り立つ・ 1、 m B d たとえは最小地上分解能dm30m、ccD索子数n冨
2048とすると、走査幅りは約61.4−となる。t
ころで衛星のミツシコン要求からは走査幅りが広いほど
運用上有利であり、また最小地上分解能dは小さいほど
精度の高い情暢が得られる。このような要求からライン
七ンψのCCDCD素子数人きいほど前ましいが、テバ
イスの製作上多くの困難がある。なお少ない素子数のラ
インセンナを用いて走査幅を増す方法として、第3因C
ニホす如くラインセンナ9゜9を千鳥配置にする方法が
考えられるが、各ラインセンf9.9のCCDの視線方
向を個別に副!1する必要があり、また各ラインセンナ
9゜9それぞれ6二別々の周辺回路を必要とする欠点か
ある・ @萌の目的 従来のラインc e t+センサでは実現困婦であった
大容量−1g(たとえば致方から数十万画素)を有する
ことが=’I能な一次元検出11!を提供するものであ
る・ 発明のms すなわち本発明は、二へ元CCDイメージセンナの受光
部に対して、−次元・二次元配列側!lIv?′Tなう
オプチカルファイバ束の二次元配列側端rkUを接合し
たものであり、上記オプチカルファイバ束の一次元配列
側端由が大容量−素の一次元受光面となる・ 発明の実施例 以下内面を参照して本発明の一実施例を詳細に説明する
・第4因において、ioは二次元CCDイメージセンナ
、11はオプチカルファイバ束である・このオプチカル
ファイバー11は。
When one line sensor is used, the following formula holds true: 1, m B d For example, if the minimum ground resolution dm is 30 m and the number n of CCD cables is 2048, the scanning width will be approximately 61.4-. t
However, from the satellite's Mitsushicon requirements, the wider the scanning width, the more advantageous it is for operation, and the smaller the minimum ground resolution d, the more accurate the accuracy can be obtained. Due to these requirements, it is desirable to have several CCDCD devices with seven lines ψ, but there are many difficulties in manufacturing the device. Furthermore, as a method of increasing the scanning width using a line sensor with a small number of elements, the third factor C
It is conceivable to arrange the line sensors 9°9 in a staggered arrangement, as in Japan, but it would be better to set the viewing direction of the CCD of each line sensor f9.9 separately! It also has the disadvantage of requiring 62 separate peripheral circuits for each line sensor 9°9.@Moe's purpose Large capacity -1g, which was difficult to achieve with conventional line cet+ sensors. One-dimensional detection (for example, hundreds of thousands of pixels) is possible! ms of the invention In other words, the present invention provides a -dimensional/two-dimensional array side! lIv? The two-dimensionally arrayed side ends rkU of the optical fiber bundle 'T' are joined, and the one-dimensionally arrayed side end of the optical fiber bundle becomes a large-capacity element one-dimensional light-receiving surface. An embodiment of the present invention will be described in detail with reference to the inner surface.In the fourth factor, io is a two-dimensional CCD image sensor, and 11 is an optical fiber bundle.This optical fiber 11 is.

−次元画素を二次元画素に変換するためのものであり、
二次元配列側の端面は前記イメージセンナ10の受光部
11に接合さ゛れており、−次元配列側の端面は受光面
IMとなっている・ここで説明の便宜上、ils図にX
、Y方向とも3画素のCCDよりなる二次元CCDイメ
ージセンナを用いて9嵩曇の一次元検出器を実現する原
理囚を示す・ここで14はオプチカルファイバ束、il
は二次元側端(1,tiは一次元側地面である・ 上記構成によれは、二次元CODイメージセンナ10と
して現在実用化されているたとえば400X400素子
程度のものを用いれば、1g子数が16万の一次元検出
器を実現できる・これは、ラインCCDセンチの素子数
としては現在2048票子のものが実用レベルのものと
しては最大であることC:鑑みれば、非常な大容量  
−である・ なお弗4因に示す二次元CCDイメージセンfillと
しては、特定の方式4:@定するものではなく、良く知
られているフレームトランスファ方式、インターライン
方式、テヤージインジエクV−!Iン方式勢いずれ感=
も適用可能である・まだオプチカルファイバ束11の一
次元から二次元への変換配列≦;関しても、特定の配列
C:限定するものではなく、二次元CCUイメージセン
fluの信号処理上最も有利な配列を選択することがで
きる− 発明の効果 上述したよ55二本発明C二よれば、従来のCCDライ
ンセンナでは冥埃困雌であった敵方から数十万−集の一
次元検出11な容iζ:・蝿供でき、このような−次元
検出器をたとえばリモートセンシング用の可視近赤外放
射釘等1:4用することによ啼゛て、′、高分解能、広
い走査幅を持った装置を構成できる。
It is for converting -dimensional pixels into two-dimensional pixels,
The end surface on the two-dimensional array side is joined to the light receiving section 11 of the image sensor 10, and the end surface on the -dimensional array side is the light receiving surface IM.
, shows the principle of realizing a one-dimensional detector with nine clouds using a two-dimensional CCD image sensor consisting of a three-pixel CCD in both the Y direction.Here, 14 is an optical fiber bundle, il
is the two-dimensional side edge (1, ti is the one-dimensional side ground). According to the above configuration, if a 400×400 element, which is currently in practical use as a two-dimensional COD image sensor 10, is used, the number of particles per gram is A one-dimensional detector of 160,000 can be realized. This means that the number of elements in a line CCD centimeter is currently 2,048, which is the largest at a practical level. C: Considering this, it has a very large capacity.
- It should be noted that the two-dimensional CCD image sensor fill shown in the 4th factor is not limited to a specific method 4, but the well-known frame transfer method, interline method, and thermal image sensor V- ! I feel like the in-method is at a loss =
Also applicable is the one-dimensional to two-dimensional conversion array of the optical fiber bundle 11≦; in this regard, the specific array C: is not limited to the most advantageous for signal processing of the two-dimensional CCU image sensor flu. Effects of the Invention As mentioned above, according to the present invention C2, one-dimensional detection of hundreds of thousands of samples from the enemy, which was difficult with the conventional CCD line sensor. By using such a -dimensional detector such as a visible near-infrared emitting nail for remote sensing at a ratio of 1:4, it is possible to obtain high resolution and wide scanning width. You can configure your own devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は機械走査方式の放射針のj[理を示す図、第2
図は電子走査方式の放射針の原理を示すIIV、 13
3図はCCDラインセンナ(二より一次元画素数を増す
ための従来の方法を説明するためのIk、114図は本
発明(:係る一次元検出器の一実施例を示す構成説明I
N、*5el!aは第4図のオプチカルファイバ束の省
略な構成例を示す肉である・ 10・・・二次元CCUイメージセンサ、Il−・・オ
プチカルファイバ束、II−・・受光部、JJ−・・−
次元受光面・ 出−人代理人 弁理士 鈴江武 彦 第11I1 1 嬉31!1 11114+@ 1 j fIs5511
The first factor is the mechanical scanning radiation needle j [Figure showing the principle, second
Figure IIV shows the principle of an electronic scanning radiation needle, 13
3 is a CCD line sensor (Ik for explaining the conventional method for increasing the number of one-dimensional pixels from two), and FIG.
N, *5el! 10. Two-dimensional CCU image sensor, Il-. Optical fiber bundle, II-. Light receiving section, JJ--.
Dimensional light-receiving surface / Patent attorney Takehiko Suzue No. 11I1 1 Joy 31! 1 11114+@ 1 j fIs5511

Claims (1)

【特許請求の範囲】[Claims] 二次元電荷結合菓子イメージセンナの受光部C二対して
、−次元・二次元相互変換を行なうオプチカルファイバ
束の二次元配列側端面を接合させ、このファイバ末の一
次元配列側端面を一次元検出器としたことを特徴とする
一次元検出器・
The end face on the two-dimensional array side of the optical fiber bundle that performs -dimensional and two-dimensional conversion is joined to the light receiving part C2 of the two-dimensional charge-coupled confectionery image sensor, and the end face on the one-dimensional array side of this fiber end is detected in one dimension. One-dimensional detector/
JP56214919A 1981-12-26 1981-12-26 One-dimensional detector Pending JPS58113729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56214919A JPS58113729A (en) 1981-12-26 1981-12-26 One-dimensional detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56214919A JPS58113729A (en) 1981-12-26 1981-12-26 One-dimensional detector

Publications (1)

Publication Number Publication Date
JPS58113729A true JPS58113729A (en) 1983-07-06

Family

ID=16663745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56214919A Pending JPS58113729A (en) 1981-12-26 1981-12-26 One-dimensional detector

Country Status (1)

Country Link
JP (1) JPS58113729A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735611A (en) * 1993-07-23 1995-02-07 Nec Corp Infrared camera
EP0694771A1 (en) * 1994-06-29 1996-01-31 BFI ENTSORGUNGSTECHNOLOGIE GmbH An optical monitoring apparatus
JP2004518948A (en) * 2000-08-10 2004-06-24 レイセオン・カンパニー Multicolor Stirling sensor system
EP1931133A1 (en) * 2006-12-07 2008-06-11 Sick Ag Method and device for optical acquisition of a structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735611A (en) * 1993-07-23 1995-02-07 Nec Corp Infrared camera
EP0694771A1 (en) * 1994-06-29 1996-01-31 BFI ENTSORGUNGSTECHNOLOGIE GmbH An optical monitoring apparatus
US5668367A (en) * 1994-06-29 1997-09-16 Bfi Entsorgungstechnologie Gmbh Optical space monitoring apparatus comprising light guiding fibers transmitting light through the space to be monitored
USRE36094E (en) * 1994-06-29 1999-02-16 Bfi Entsorgungstechnologie Gmbh Optical space monitoring apparatus comprising light guiding fibers transmitting light through the space to be monitored
JP2004518948A (en) * 2000-08-10 2004-06-24 レイセオン・カンパニー Multicolor Stirling sensor system
EP1931133A1 (en) * 2006-12-07 2008-06-11 Sick Ag Method and device for optical acquisition of a structure

Similar Documents

Publication Publication Date Title
WO2016199594A1 (en) Solid-state imaging device and electronic device
US5416324A (en) Optical imaging device with integrated polarizer
US20140198183A1 (en) Sensing pixel and image sensor including same
US7491937B2 (en) Two-wavelength image sensor picking up both visible and infrared images
CN105991978B (en) The method of imaging sensor and generation depth data with depth detection pixel
JP2018064086A5 (en)
JP2003007994A (en) Solid-state image pickup element, stereoscopic camera apparatus, and range finder
US20100044822A1 (en) Luminous radiation colour photosensitive structure
US5119181A (en) Color array for use in fabricating full width arrays
JP2008268112A (en) Sensor
KR100783335B1 (en) Measuring method of incident light and sensor having spectroscopic mechanism employing it
US4596930A (en) Arrangement for multispectal imaging of objects, preferably targets
CN106899790A (en) Camera head and camera
KR20110121531A (en) Solid-state imaging element and imaging device
JPS58113729A (en) One-dimensional detector
US9509930B2 (en) Device comprising a set of electromagnetic radiation sensitive detectors and arrangement of a set of such devices
EP0250456A1 (en) Method and apparatus for scanning thermal images.
JP3949360B2 (en) Color image sensor
JP2011205085A (en) Imaging device
JPH0222973A (en) Solid-state image pickup device
JP3640515B2 (en) Distance detector
JP6245942B2 (en) Image sensor
JPS63193678A (en) Solid-state area image pickup device
JPH0572470A (en) Phase difference detection type focus detection device
EP0066020B1 (en) Infrared energy detector system utilizing a charge transfer device sensor