JP2013250183A - Temperature measurement system and temperature measurement method - Google Patents

Temperature measurement system and temperature measurement method Download PDF

Info

Publication number
JP2013250183A
JP2013250183A JP2012125821A JP2012125821A JP2013250183A JP 2013250183 A JP2013250183 A JP 2013250183A JP 2012125821 A JP2012125821 A JP 2012125821A JP 2012125821 A JP2012125821 A JP 2012125821A JP 2013250183 A JP2013250183 A JP 2013250183A
Authority
JP
Japan
Prior art keywords
measurement
temperature
range
temperature measurement
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012125821A
Other languages
Japanese (ja)
Inventor
英紀 ▲高▼田
Hideki Takada
Hideyuki Yuzawa
秀行 湯澤
Sotaro Nakazawa
壮太郎 中澤
Kenji Tonegawa
健二 利根川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Chino Corp
Original Assignee
JFE Steel Corp
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Chino Corp filed Critical JFE Steel Corp
Priority to JP2012125821A priority Critical patent/JP2013250183A/en
Publication of JP2013250183A publication Critical patent/JP2013250183A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To measure a temperature range that an object to be measured possibly has by one scanning type radiation thermometer.SOLUTION: A temperature measurement system 8a is constituted by connecting a host computer 9a and a scanning type radiation thermometer 1a. After last-time temperature measurement processing and before next-time temperature measurement processing, a measurement range determination processing part 91a of the host computer 9a determines a measurement range of the scanning type radiation thermometer 1a in the next-time temperature processing as a next-time applied measurement range according to a type of an object (steel material) to be measured in the next temperature measurement processing, and notifies the scanning type radiation thermometer 1a of the determined next-time applied measurement range. A thermometer measurement part 3a of the scanning type radiation thermometer 1a performs the next-time temperature measurement processing based upon the measurement range of the scanning type radiation thermometer 1a as the next-time applied measurement range, and measures the temperature of the object to be measured.

Description

本発明は、走査型放射温度計を用いて測定対象物の温度を測定する温度測定システムおよび温度測定方法に関する。   The present invention relates to a temperature measurement system and a temperature measurement method for measuring the temperature of a measurement object using a scanning radiation thermometer.

従来から、測定対象物の温度プロフィールを非接触で測定する走査型放射温度計が知られている。この走査型放射温度計は、視野範囲内の熱放射エネルギー(以下、適宜「赤外光」ともいう。)を温度に変換するものであり、所定の走査方向に走査しながら温度を測定することで、測定対象物の温度プロフィールを取得している。   Conventionally, a scanning radiation thermometer that measures a temperature profile of an object to be measured in a non-contact manner is known. This scanning radiation thermometer converts thermal radiation energy within the field of view (hereinafter also referred to as “infrared light” as appropriate) into temperature, and measures temperature while scanning in a predetermined scanning direction. The temperature profile of the measurement object is acquired.

ところで、この走査型放射温度計のような放射温度計が測定可能な温度範囲(測定レンジ)は、要求される温度分解能に応じて一定の範囲に限られている。このため、測定対象物とする対象物の取り得る温度範囲(以下、「対象温度範囲」という。)が測定レンジよりも広い場合、1台の走査型放射温度計では、対象温度範囲の全域を測定できないという問題があった。   By the way, the temperature range (measurement range) that can be measured by a radiation thermometer such as this scanning radiation thermometer is limited to a certain range according to the required temperature resolution. For this reason, when the temperature range (hereinafter referred to as “target temperature range”) that can be taken by the target object as the measurement target is wider than the measurement range, one scanning radiation thermometer covers the entire target temperature range. There was a problem that it could not be measured.

この種の問題を解決するための技術として、検出器の出力を測温範囲(測定レンジ)に応じたレベルに可変する可変手段をスイッチで切換選択することで、低温から高温までの測定を実現したものが知られている(特許文献1を参照)。   As a technology to solve this type of problem, measurement can be performed from low to high temperatures by selecting and switching the variable means that changes the detector output to a level corresponding to the temperature measurement range (measurement range). Is known (see Patent Document 1).

特公平6−65973号公報Japanese Patent Publication No. 6-65973

しかしながら、特許文献1では、切換選択される個々の測温範囲(測定レンジ)自体は固定であるため、測定しようとする温度範囲の全域がいずれの測定レンジにも含まれない場合は適正な温度測定ができず、測定対象物の温度範囲に柔軟に対応できないという問題があった。   However, in Patent Document 1, since the individual temperature measurement ranges (measurement ranges) to be switched and selected are fixed, if the entire temperature range to be measured is not included in any measurement range, an appropriate temperature is set. There was a problem that measurement could not be performed and the temperature range of the measurement object could not be flexibly handled.

また、特許文献1では、測定対象物の温度が切換選択される測温範囲(測定レンジ)のうちのどの範囲にあるのかを検出器からの出力信号に基づいて判定し、判定した測温範囲に従ってスイッチを切り換えている。このため、温度を測定するたびに出力信号から測定レンジを判定してスイッチを切換選択しなければならず、この間は待ち時間となって温度測定が中断される。したがって、上記のように走査方向に走査しながら温度を測定する走査型放射温度計によって温度を測定する場合、測定される温度をリアルタイムで監視する使用態様では、リアルタイム性が損なわれる事態が生じ得る。   Moreover, in patent document 1, it is determined based on the output signal from a detector in which temperature range (measurement range) the temperature of the measurement object is switched and selected, and the determined temperature measurement range The switch is switched according to. For this reason, every time the temperature is measured, the measurement range must be determined from the output signal and the switch must be switched and selected. During this time, the temperature measurement is interrupted due to a waiting time. Therefore, when the temperature is measured by the scanning radiation thermometer that measures the temperature while scanning in the scanning direction as described above, in the usage mode in which the measured temperature is monitored in real time, the real-time property may be impaired. .

本発明は、上記に鑑みてなされたものであって、測定対象物とする対象物の取り得る温度範囲を1台の走査型放射温度計によって測定することができる温度測定システムおよび温度測定方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a temperature measurement system and a temperature measurement method capable of measuring a temperature range that can be taken by an object to be measured by a single scanning radiation thermometer. The purpose is to provide.

上記した課題を解決し、目的を達成するため、本発明に係る温度測定システムは、測定レンジ決定装置と走査型放射温度計とが接続されて構成された温度測定システムであって、前記走査型放射温度計は、対象物の種類および処理順序を定めた処理計画情報に従って前記対象物を順次測定対象物とし、間欠的に温度測定処理を行って前記測定対象物の温度プロフィールを非接触で測定するものであり、前記測定レンジ決定装置は、前回の温度測定処理の後であって次回の温度測定処理の前に、該次回の温度測定処理で測定対象物とする前記対象物の種類に基づいて前記次回の温度測定処理時における前記走査型放射温度計の測定レンジを次回適用測定レンジとして決定し、該決定した次回適用測定レンジを前記走査型放射温度計に通知する決定手段を備え、前記走査型放射温度計は、前記走査型放射温度計の測定レンジを前記次回適用測定レンジとして前記次回の温度測定処理を行い、前記測定対象物の温度を測定する温度測定処理手段を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a temperature measurement system according to the present invention is a temperature measurement system configured by connecting a measurement range determination device and a scanning radiation thermometer, and the scanning type A radiation thermometer measures the temperature profile of the measurement object in a non-contact manner by intermittently performing a temperature measurement process according to the processing plan information that determines the type and processing order of the object, and performing the temperature measurement process intermittently. The measurement range determination device is based on the type of the object to be measured in the next temperature measurement process after the previous temperature measurement process and before the next temperature measurement process. And determining the measurement range of the scanning radiation thermometer at the time of the next temperature measurement processing as the next applied measurement range, and notifying the determined next applied measurement range to the scanning radiation thermometer. And the scanning radiation thermometer performs the next temperature measurement process using the measurement range of the scanning radiation thermometer as the next applied measurement range, and measures the temperature of the measurement object. It is characterized by providing.

また、本発明にかかる温度測定方法は、走査型放射温度計を用いて測定対象物の温度を測定する温度測定方法であって、前記走査型放射温度計は、対象物の種類および処理順序を定めた処理計画情報に従って前記対象物を順次測定対象物とし、間欠的に温度測定処理を行って前記測定対象物の温度プロフィールを非接触で測定するものであり、前回の温度測定処理の後であって次回の温度測定処理の前に、該次回の温度測定処理で測定対象物とする前記対象物の種類に基づいて前記次回の温度測定処理時における前記走査型放射温度計の測定レンジを次回適用測定レンジとして決定する決定工程と、前記走査型放射温度計の測定レンジを前記次回適用測定レンジとして前記次回の温度測定処理を行い、前記測定対象物の温度を測定する測定工程と、を含むことを特徴とする。   The temperature measurement method according to the present invention is a temperature measurement method for measuring the temperature of an object to be measured using a scanning radiation thermometer, wherein the scanning radiation thermometer determines the type of object and the processing order. The object is sequentially measured according to the processing plan information that is determined, and the temperature profile of the object to be measured is measured in a non-contact manner by intermittently performing a temperature measurement process, after the previous temperature measurement process. Before the next temperature measurement process, the measurement range of the scanning radiation thermometer at the next temperature measurement process is set next time based on the type of the object to be measured in the next temperature measurement process. A determination step of determining as an applied measurement range, and a measurement process for measuring the temperature of the measurement object by performing the next temperature measurement process using the measurement range of the scanning radiation thermometer as the next applied measurement range Characterized in that it comprises a and.

本発明によれば、次回の温度測定処理で測定対象物とする対象物の種類に基づいて事前に走査型放射温度計の測定レンジを決定することができるので、測定対象物とする対象物の取り得る温度範囲を1台の走査型放射温度計によって測定することができる。   According to the present invention, the measurement range of the scanning radiation thermometer can be determined in advance on the basis of the type of the object to be measured in the next temperature measurement process. The possible temperature range can be measured with a single scanning radiation thermometer.

図1は、走査型放射温度計の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a scanning radiation thermometer. 図2は、温度計測定部の構成例を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration example of a thermometer measurement unit. 図3は、走査型放射温度計を連続焼鈍ラインに設置した状態を示す模式図である。FIG. 3 is a schematic view showing a state in which the scanning radiation thermometer is installed in the continuous annealing line. 図4は、図3の設置状態を受光部側から見た模式図である。FIG. 4 is a schematic view of the installation state of FIG. 3 viewed from the light receiving unit side. 図5は、測定対象物である鉄鋼材を上面側から見た模式図である。FIG. 5 is a schematic view of a steel material, which is an object to be measured, viewed from the upper surface side. 図6は、受光部の構成例を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration example of the light receiving unit. 図7は、図6に示すA−A矢視断面の模式図である。FIG. 7 is a schematic diagram of a cross section taken along the line AA shown in FIG. 図8は、検出部の構成例を示す模式図である。FIG. 8 is a schematic diagram illustrating a configuration example of the detection unit. 図9は、固体撮像素子の画素群の一例を示す模式図である。FIG. 9 is a schematic diagram illustrating an example of a pixel group of the solid-state imaging device. 図10は、溶接部の温度プロフィール測定を説明する説明図である。FIG. 10 is an explanatory diagram for explaining the temperature profile measurement of the weld. 図11は、温度プロフィールの測定結果の一例を示す模式図である。FIG. 11 is a schematic diagram illustrating an example of a temperature profile measurement result. 図12は、連続焼鈍ラインが処理対象とする鉄鋼材の板厚と溶接温度との関係を示す図である。FIG. 12 is a diagram showing the relationship between the thickness of the steel material to be processed by the continuous annealing line and the welding temperature. 図13は、実施の形態1における温度測定システムの構成例を示すブロック図である。FIG. 13 is a block diagram illustrating a configuration example of the temperature measurement system according to the first embodiment. 図14は、溶接処理および温度測定処理の実行タイミングを示すタイミングチャートである。FIG. 14 is a timing chart showing the execution timing of the welding process and the temperature measurement process. 図15は、実施の形態2における温度測定システムの構成例を示すブロック図である。FIG. 15 is a block diagram illustrating a configuration example of the temperature measurement system according to the second embodiment. 図16は、温度測定システムの処理手順を示すフローチャートである。FIG. 16 is a flowchart illustrating a processing procedure of the temperature measurement system. 図17は、測定レンジ区分処理を説明する図である。FIG. 17 is a diagram for explaining the measurement range division processing. 図18は、温度計設定テーブルのデータ構成例を示す図である。FIG. 18 is a diagram illustrating a data configuration example of a thermometer setting table.

以下、図面を参照して、本発明の温度測定システムおよび温度測定方法を実施するための形態について説明する。なお、この実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for implementing a temperature measurement system and a temperature measurement method of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.

先ず、本実施の形態で用いる走査型放射温度計の基本構成について図1および図2を参照して説明する。図1は、走査型放射温度計1の構成例を示すブロック図である。また、図2は、走査型放射温度計1を構成する温度計測定部2の構成例を示す模式図である。   First, the basic configuration of the scanning radiation thermometer used in this embodiment will be described with reference to FIGS. FIG. 1 is a block diagram illustrating a configuration example of the scanning radiation thermometer 1. FIG. 2 is a schematic diagram showing a configuration example of a thermometer measurement unit 2 constituting the scanning radiation thermometer 1.

図1に示す走査型放射温度計1は、物体の熱放射エネルギー(赤外光)を捉えて温度測定を行うものであり、主な機能部として、温度計測定部2と、温度計処理部3と、温度計表示部4とを備える。なお、走査型放射温度計1は、この他にも、タッチパネルやボタンスイッチ等、温度測定に必要な操作等を入力するための入力装置等を適宜備えている。   A scanning radiation thermometer 1 shown in FIG. 1 captures thermal radiant energy (infrared light) of an object and performs temperature measurement. As main functional units, a thermometer measurement unit 2 and a thermometer processing unit. 3 and a thermometer display unit 4. In addition, the scanning radiation thermometer 1 appropriately includes an input device for inputting operations necessary for temperature measurement, such as a touch panel and a button switch.

温度計測定部2は、図2に示すように、測定対象物から放射される赤外光を受光する受光部5と、この受光部5が受光した赤外光を伝送する伝送部6と、この伝送部6が伝送した赤外光の強度を検出する検出部7とを備える。   As shown in FIG. 2, the thermometer measurement unit 2 includes a light receiving unit 5 that receives infrared light emitted from a measurement object, a transmission unit 6 that transmits infrared light received by the light receiving unit 5, And a detection unit 7 that detects the intensity of infrared light transmitted by the transmission unit 6.

受光部5は、可能な限り細径に形成された筒状の光学系であり、光学系の光軸を中心とする所定範囲の視野A1を有する。この受光部5は、視野A1内に捉えた測定対象物から赤外光を受光するとともに、伝送部6へ赤外光を集光する。   The light receiving unit 5 is a cylindrical optical system formed as thin as possible and has a predetermined range of visual field A1 centering on the optical axis of the optical system. The light receiving unit 5 receives infrared light from the measurement object captured in the visual field A1 and condenses the infrared light on the transmission unit 6.

伝送部6は、測定対象物からの赤外光を伝送するためのものである。具体的には、伝送部6は、可撓性を有する細長筒体の内部に光ファイバ束を収容しており、光ファイバ束の先端面が受光部5の内部に接続され、光ファイバ束の後端面が検出部7と接続されている。この伝送部6は、受光部5の遊動等に合わせて自由に曲がり、内部の光ファイバ束によって受光部5から検出部7へ赤外光を伝送する。   The transmission unit 6 is for transmitting infrared light from the measurement object. Specifically, the transmission unit 6 accommodates an optical fiber bundle inside a flexible elongated cylindrical body, and the distal end surface of the optical fiber bundle is connected to the inside of the light receiving unit 5, and the optical fiber bundle The rear end face is connected to the detection unit 7. The transmission unit 6 bends freely in accordance with the movement of the light receiving unit 5 or the like, and transmits infrared light from the light receiving unit 5 to the detection unit 7 through an internal optical fiber bundle.

検出部7は、測定対象物からの赤外光の強度を検出するためのものであり、光学系71と、検出素子である固体撮像素子72とを備える。光学系71は、赤外光を集光または結像可能な複数のレンズを備える。固体撮像素子72は、リニアアレイ型の例えばSi半導体やInGaAs化合物半導体等のCCDセンサやCMOSセンサ等で実現され、赤外線領域に感度を有する画素群を備える。この検出部7において、光学系71は、伝送部6によって伝送された赤外光を集光および結像し、固体撮像素子72に受光させる。固体撮像素子72は、光学系71を介して画素群に赤外光を受け、この画素群内の画素毎に、受光した赤外光の強度を検出する。そして、固体撮像素子72は、検出した赤外光の強度、すなわち熱放射エネルギー量を電圧値に変換し、得られた電圧値の電気信号を画素毎に出力する。   The detection unit 7 is for detecting the intensity of infrared light from the measurement object, and includes an optical system 71 and a solid-state image sensor 72 as a detection element. The optical system 71 includes a plurality of lenses that can collect or image infrared light. The solid-state image sensor 72 is realized by a linear array type CCD sensor such as a Si semiconductor or an InGaAs compound semiconductor, a CMOS sensor, and the like, and includes a pixel group having sensitivity in an infrared region. In the detection unit 7, the optical system 71 condenses and images the infrared light transmitted by the transmission unit 6 and causes the solid-state image sensor 72 to receive the light. The solid-state imaging device 72 receives infrared light from the pixel group via the optical system 71 and detects the intensity of the received infrared light for each pixel in the pixel group. The solid-state imaging device 72 converts the detected intensity of infrared light, that is, the amount of thermal radiation energy, into a voltage value, and outputs an electric signal having the obtained voltage value for each pixel.

温度計処理部3は、走査型放射温度計1の動作に必要な各種データを保持するメモリを内蔵したマイクロコンピュータ等で構成される。メモリには、走査型放射温度計1を動作させ、この走査型放射温度計1が備える温度測定機能を実現するためのプログラムや、このプログラムの実行中に使用されるデータ等が予め記憶され、あるいは処理の都度一時的に記憶される。例えば、固体撮像素子72が出力する電気信号の電圧値と温度との対応付けを設定した変換テーブルの他、走査型放射温度計1の動作環境を設定するのに必要な各種パラメータの値や、温度測定時に作成される温度プロフィール等が記憶される。そして、温度計処理部3は、メモリに保持されるプログラムやデータ等に基づいて走査型放射温度計1を構成する各部への指示やデータの転送等を行い、走査型放射温度計1の動作を統括的に制御して温度測定処理を行う。   The thermometer processing unit 3 is constituted by a microcomputer having a built-in memory for holding various data necessary for the operation of the scanning radiation thermometer 1. The memory stores in advance a program for operating the scanning radiation thermometer 1 and realizing a temperature measurement function provided in the scanning radiation thermometer 1, data used during the execution of the program, and the like. Alternatively, it is temporarily stored for each processing. For example, in addition to the conversion table in which the correspondence between the voltage value of the electrical signal output from the solid-state imaging device 72 and the temperature is set, various parameter values necessary for setting the operating environment of the scanning radiation thermometer 1 A temperature profile or the like created during temperature measurement is stored. Then, the thermometer processing unit 3 performs instructions, data transfer, and the like to each unit constituting the scanning radiation thermometer 1 based on programs and data held in the memory, and the operation of the scanning radiation thermometer 1 The temperature measurement process is performed under the overall control.

この温度計処理部3は、検出部7によって検出された赤外光の強度を測定対象物の温度に変換する温度変換処理部31を備える。この温度変換処理部31は、固体撮像素子72から入力される各画素の電圧値を温度に変換する。変換後の画素毎の温度は、後述する視野A1内に捉えた測定対象物の各温度測定点における表面温度に相当する。このように温度変換処理部31が画素毎に変換した各温度は、温度プロフィールとして温度計表示部4に随時表示されるようになっている。   The thermometer processing unit 3 includes a temperature conversion processing unit 31 that converts the intensity of infrared light detected by the detection unit 7 into the temperature of the measurement object. The temperature conversion processing unit 31 converts the voltage value of each pixel input from the solid-state image sensor 72 into a temperature. The temperature for each pixel after conversion corresponds to the surface temperature at each temperature measurement point of the measurement object captured in the visual field A1 described later. Thus, each temperature converted by the temperature conversion processing unit 31 for each pixel is displayed as needed on the thermometer display unit 4 as a temperature profile.

温度計表示部4は、LCDやELディスプレイ等の表示装置によって実現されるものであり、温度計処理部3の制御のもと、例えば測定対象物の温度プロフィール等を画面表示する。   The thermometer display unit 4 is realized by a display device such as an LCD or an EL display, and displays, for example, a temperature profile of a measurement object on the screen under the control of the thermometer processing unit 3.

このような走査型放射温度計1は、測定対象物の温度に応じた検出素子を採用したものを適宜選択して使用する。すなわち、走査型放射温度計1が捉える熱放射エネルギーは、温度が高いほど強く、波長帯域は短波長側へシフトする。したがって、高温測定時には、短波長側の検出素子や光学材料を採用したものを使用し、低温測定時は、長波長側の検出素子や光学材料を採用したものを使用する。   Such a scanning radiation thermometer 1 is used by appropriately selecting one that employs a detection element corresponding to the temperature of the object to be measured. That is, the thermal radiation energy captured by the scanning radiation thermometer 1 is stronger as the temperature is higher, and the wavelength band is shifted to the short wavelength side. Accordingly, a detector employing a short wavelength side detection element or optical material is used for high temperature measurement, and a long wavelength side detection element or optical material is used for low temperature measurement.

ここで、連続焼鈍ラインによって連続的に溶接される鉄鋼材を対象物とし、この鉄鋼材を順次測定対象物として温度測定を行う場合を例示して連続焼鈍ライン内における走査型放射温度計1の設置およびこの走査型放射温度計1の温度測定領域について詳細に説明する。図3は、走査型放射温度計1を連続焼鈍ラインに設置した状態を示す模式図である。図4は、図3の設置状態を受光部5側から見た模式図である。図5は、測定対象物である鉄鋼材を上面側から見た模式図である。なお、図4では、後述する溶接部16上の温度測定領域を説明し易くするために、溶接機10の装置本体11および支持部12の図示を省略している。   Here, the case where the steel material continuously welded by the continuous annealing line is used as an object, and the case where the temperature measurement is performed using this steel material as an object to be measured sequentially, the scanning radiation thermometer 1 in the continuous annealing line is illustrated. The installation and the temperature measurement region of the scanning radiation thermometer 1 will be described in detail. FIG. 3 is a schematic diagram showing a state in which the scanning radiation thermometer 1 is installed in the continuous annealing line. FIG. 4 is a schematic view of the installation state of FIG. 3 viewed from the light receiving unit 5 side. FIG. 5 is a schematic view of a steel material, which is an object to be measured, viewed from the upper surface side. In FIG. 4, illustration of the apparatus main body 11 and the support part 12 of the welding machine 10 is omitted in order to facilitate explanation of a temperature measurement region on the weld part 16 to be described later.

連続焼鈍ラインは、不図示の搬送装置によって所定の方向に順次搬送される鉄鋼材の先行材14と後行材15とを溶接機10によって溶接することで通板し、その後焼鈍炉内を通過させて焼鈍するものである。図3では、この連続焼鈍ライン内の溶接機10周辺の様子を模式的に図示しており、溶接機10は、先行材14の尾端と後行材15の先端とを溶接・通板する。   The continuous annealing line passes through the steel plate by welding the preceding material 14 and the following material 15 of the steel material, which are sequentially conveyed in a predetermined direction by a conveying device (not shown), and then passes through the annealing furnace. To be annealed. FIG. 3 schematically shows the surroundings of the welding machine 10 in the continuous annealing line. The welding machine 10 welds and passes the tail end of the preceding material 14 and the tip of the following material 15. .

ところで、この溶接機10によって行われる鉄鋼材の溶接が不十分だと、後段の処理中に溶接部16が破断する事態が生じ得る。溶接部16が破断してしまうと操業を中断しなければならず、操業効率の低下を招く。このような溶接部16の破断を回避するため、操業中は溶接の良否が監視されており、溶接不良を確認した場合には再溶接を行う等の処置が行われている。溶接不良の判定には、溶接部16の温度を測定して熱不足を監視する方法がある。本例において連続焼鈍ライン内に設置される走査型放射温度計1は、この監視のためのものであり、走査型放射温度計1の連続焼鈍ライン内への設置は、溶接機10に受光部5を取り付けることによって達成される。   By the way, when the welding of the steel material performed by this welding machine 10 is insufficient, the situation where the welding part 16 fractures | ruptures during the process of a back | latter stage may arise. If the welded portion 16 breaks, the operation must be interrupted, resulting in a decrease in operation efficiency. In order to avoid such breakage of the welded portion 16, the quality of the welding is monitored during operation, and measures such as re-welding are performed when a welding failure is confirmed. There is a method for monitoring the lack of heat by measuring the temperature of the welded portion 16 to determine the welding failure. In this example, the scanning radiation thermometer 1 installed in the continuous annealing line is for this monitoring. The installation of the scanning radiation thermometer 1 in the continuous annealing line is performed by the welding machine 10 with a light receiving unit. Achieved by mounting 5.

溶接機10は、駆動系等を内蔵した装置本体11と、支持部12と、一対の電極輪131,133とを備える。支持部12は、視野A1内に先行材14と後行材15との溶接部16を捉える態様で受光部5を支持する。受光部5は、このように支持部12に支持された態様で溶接機10に取り付けられ、溶接機10とともに溶接方向A2(先行材14および後行材15の幅方向)に沿って移動しながら、溶接部16およびその周辺部分から放射される赤外光を受光する。なお、支持部12は、溶接部16に対する受光部5の相対距離および相対角度等を調節できるような構造であることが望ましい。   The welding machine 10 includes an apparatus main body 11 incorporating a drive system and the like, a support portion 12, and a pair of electrode wheels 131 and 133. The support part 12 supports the light receiving part 5 in such a manner that the welded part 16 between the preceding material 14 and the following material 15 is captured in the visual field A1. The light receiving unit 5 is attached to the welding machine 10 in such a manner that the light receiving unit 5 is supported by the support unit 12 in this manner, and moves along the welding direction A2 (the width direction of the preceding material 14 and the following material 15) together with the welding machine 10. Infrared light emitted from the welded portion 16 and its peripheral portion is received. Note that the support portion 12 preferably has a structure that can adjust the relative distance and relative angle of the light receiving portion 5 with respect to the welded portion 16.

電極輪131,133は、図3,4に示すように、先行材14と後行材15とを上下方向から挟み込むように押圧しつつ電力を印加するとともに、装置本体11の駆動によって先行材14および後行材15を横切るように移動する。このようにして、電極輪131,133は、溶接方向A2に沿って先行材14の尾端と後行材15の先端とを溶接し、先行材14と後行材15とを通板する。   As shown in FIGS. 3 and 4, the electrode wheels 131 and 133 apply electric power while pressing the leading material 14 and the trailing material 15 so as to be sandwiched from above and below, and drive the apparatus main body 11 to drive the leading material 14. And it moves so that the following material 15 may be crossed. In this way, the electrode wheels 131 and 133 weld the tail end of the preceding material 14 and the tip of the following material 15 along the welding direction A <b> 2, and pass the leading material 14 and the following material 15.

ここで、先行材14と後行材15の溶接部16に対し、図5に示すように、X軸およびY軸による直交2軸座標系を定義する。Y軸は、溶接方向A2に平行な軸であり、溶接部16と一致する。溶接方向A2は、先行材14および後行材15の幅方向とほぼ一致する。X軸は、溶接方向A2に対して垂直な軸であり、先行材14および後行材15の長手方向(先行材14および後行材15の搬送方向)に平行な軸である。また、X軸とY軸との交点、すなわちこの直交座標系の原点は、溶接機10による先行材14と後行材15との溶接始点(溶接部16の始点)とする。   Here, as shown in FIG. 5, an orthogonal biaxial coordinate system based on the X axis and the Y axis is defined for the welded portion 16 of the preceding material 14 and the succeeding material 15. The Y axis is an axis parallel to the welding direction A2 and coincides with the welded portion 16. The welding direction A2 substantially coincides with the width direction of the preceding material 14 and the following material 15. The X axis is an axis perpendicular to the welding direction A2, and is an axis parallel to the longitudinal direction of the preceding material 14 and the succeeding material 15 (the conveying direction of the preceding material 14 and the following material 15). Further, the intersection of the X axis and the Y axis, that is, the origin of this orthogonal coordinate system, is the welding start point (starting point of the welded portion 16) of the preceding material 14 and the succeeding material 15 by the welding machine 10.

このように定義したX軸およびY軸の直交座標系において、受光部5の視野A1は、図3〜5に示すように、溶接部16と一対の電極輪131,133との接点(すなわち現時点での溶接部16)から所定の距離L1(例えば70mm程度)だけ離れた位置に温度測定領域Pを捉えるように設定される。この場合、受光部5の光軸C等を基準にして、温度測定領域Pの位置を設定すればよい。   In the orthogonal coordinate system of the X axis and the Y axis defined as described above, the field of view A1 of the light receiving unit 5 is a contact point between the welded part 16 and the pair of electrode wheels 131 and 133 (that is, the current time) The temperature measurement region P is set at a position separated from the welded portion 16) by a predetermined distance L1 (for example, about 70 mm). In this case, the position of the temperature measurement region P may be set based on the optical axis C of the light receiving unit 5 or the like.

温度測定領域Pは、受光部5の視野A1の範囲によって規定される領域であり、受光部5の光軸Cと溶接部16との交点を中心としてX軸の正方向および負方向に点在する複数の温度測定点からなる。これら複数の温度測定点は、X軸方向に沿って1列に配列され、受光部5の移動に伴いY軸の正方向に揃って変位する。すなわち、温度測定領域Pの変位方向は、図5に示すように、溶接部16の全範囲について温度プロフィールを測定する際の走査方向であり、その走査幅は、先行材14および後行材15の幅W1(例えば600〜1100mm程度)に設定される。一方、温度測定領域Pの長手方向は、複数の温度測定点が連なる方向であり、固体撮像素子72の画素配列方向に対応する。   The temperature measurement region P is a region defined by the range of the visual field A1 of the light receiving unit 5 and is scattered in the positive and negative directions of the X axis around the intersection of the optical axis C of the light receiving unit 5 and the welded portion 16. It consists of a plurality of temperature measurement points. The plurality of temperature measurement points are arranged in a line along the X-axis direction, and are displaced along the positive direction of the Y-axis as the light receiving unit 5 moves. That is, as shown in FIG. 5, the displacement direction of the temperature measurement region P is the scanning direction when measuring the temperature profile for the entire range of the welded portion 16, and the scanning width thereof is the leading material 14 and the trailing material 15. Width W1 (for example, about 600 to 1100 mm). On the other hand, the longitudinal direction of the temperature measurement region P is a direction in which a plurality of temperature measurement points are connected, and corresponds to the pixel arrangement direction of the solid-state image sensor 72.

続いて、図6〜図9を参照し、受光部5、伝送部6および検出部7について詳述する。先ず、受光部5および伝送部6について説明する。図6は、受光部5の構成例を示す模式図である。図7は、図6に示すA−A矢視断面の模式図であり、伝送部6の横断面を模式的に示している。   Subsequently, the light receiving unit 5, the transmission unit 6, and the detection unit 7 will be described in detail with reference to FIGS. First, the light receiving unit 5 and the transmission unit 6 will be described. FIG. 6 is a schematic diagram illustrating a configuration example of the light receiving unit 5. FIG. 7 is a schematic diagram of a cross section taken along the line AA shown in FIG. 6, and schematically shows a cross section of the transmission unit 6.

図6に示すように、受光部5は、比較的小型(例えば、直径20mm程度、長さ110mm程度)な中空の筒状筐体51と、複数の集光レンズ53,55とを備える。筒状筐体51は、高熱の鉄鋼材の近傍に設置されても耐え得る耐熱性材料からなり、その内部に複数の集光レンズ53,55を収容する。また、筒状筐体51の後端には、伝送部6の先端部61が挿通固定される。例えば、伝送部6は、その先端部61の先端面から筒状筐体51の先端面までの長さL2が所定の長さ(例えば、94.3mm程度)となるように筒状筐体51に取り付けられる。筒状筐体51は、この長さL2の領域内に、複数の集光レンズ53,55を収容する。   As shown in FIG. 6, the light receiving section 5 includes a hollow cylindrical casing 51 that is relatively small (for example, about 20 mm in diameter and about 110 mm in length), and a plurality of condensing lenses 53 and 55. The cylindrical housing 51 is made of a heat-resistant material that can withstand even when installed in the vicinity of a high-temperature steel material, and accommodates a plurality of condenser lenses 53 and 55 therein. Further, the front end 61 of the transmission unit 6 is inserted and fixed at the rear end of the cylindrical casing 51. For example, the transmission unit 6 has a cylindrical casing 51 such that a length L2 from the distal end surface of the distal end portion 61 to the distal end surface of the cylindrical casing 51 is a predetermined length (for example, about 94.3 mm). Attached to. The cylindrical housing 51 accommodates a plurality of condensing lenses 53 and 55 in the region of this length L2.

集光レンズ53,55は、その光軸Cが伝送部6の中心軸と一致するように、筒状筐体51の内部に配置される。また、集光レンズ53,55の視野A1は、筒状筐体51の先端面から距離L3の位置において視野長L4の視野範囲を有する。例えば、視野A1は、距離L3が150mm程度の場合、47mm程度の視野長L4の視野範囲を有する。この視野長L4は、図5に示した温度測定領域PのX軸方向の長さに相当する。このような集光レンズ53,55は、筒状筐体51の先端面に形成された開口を通して、測定対象物(本実施の形態では先行材14および後行材15)からの赤外光を温度測定領域P内の温度測定点毎に分けて集光する。なお、収容する集光レンズの数は2つに限定されるものではなく、必要に応じた数の集光レンズを適宜配置してよい。   The condensing lenses 53 and 55 are arranged inside the cylindrical housing 51 so that the optical axis C thereof coincides with the central axis of the transmission unit 6. The visual field A1 of the condensing lenses 53 and 55 has a visual field range of a visual field length L4 at a position of a distance L3 from the distal end surface of the cylindrical housing 51. For example, the visual field A1 has a visual field range of a visual field length L4 of about 47 mm when the distance L3 is about 150 mm. The visual field length L4 corresponds to the length in the X-axis direction of the temperature measurement region P shown in FIG. Such condensing lenses 53 and 55 pass infrared light from the measurement object (the preceding material 14 and the succeeding material 15 in the present embodiment) through an opening formed in the distal end surface of the cylindrical housing 51. Light is collected separately for each temperature measurement point in the temperature measurement region P. In addition, the number of the condensing lenses accommodated is not limited to two, You may arrange | position the number of condensing lenses as needed suitably.

一方、伝送部6は、可撓性を有する細長な光学部材であり、図7に示すように、複数の光ファイバ62の光ファイバ群63を束ねた光ファイバ束64と、光ファイバ束64を被覆する可撓性の細長筐体65とを備える。   On the other hand, the transmission unit 6 is an elongated optical member having flexibility. As shown in FIG. 7, an optical fiber bundle 64 in which optical fiber groups 63 of a plurality of optical fibers 62 are bundled, and an optical fiber bundle 64 are combined. And a flexible elongated casing 65 for covering.

光ファイバ62は、赤外光を伝搬可能な小径の光伝送媒体であり、光ファイバ束64は、溶接部16の温度プロフィールを測定するために必要な多数の光ファイバ62を束ねたものである。そして、光ファイバ群63は、所定数(図7では12本)の光ファイバ62を所定の態様(図7では千鳥状)に配列したものである。   The optical fiber 62 is a small-diameter optical transmission medium capable of propagating infrared light, and the optical fiber bundle 64 is a bundle of many optical fibers 62 necessary for measuring the temperature profile of the welded portion 16. . The optical fiber group 63 includes a predetermined number (12 in FIG. 7) of optical fibers 62 arranged in a predetermined manner (staggered in FIG. 7).

ここで、図7に示すように、伝送部6の横断面に図5に示したX軸およびY軸の直交2軸座標系を照らし合わせると、光ファイバ群63は、Y軸方向(溶接方向A2)に沿って複数の光ファイバ62を配列した単位群である。また、光ファイバ束64は、X軸方向(温度測定領域Pに含まれる複数の温度測定点の配列方向)に沿って複数の光ファイバ群63を束ねたものである。光ファイバ束64内における複数の光ファイバ群63の配列方向は、受光部5の集光レンズ構成を簡易にするため、溶接方向A2に対して垂直であることが望ましい。   Here, as shown in FIG. 7, when the transverse biaxial coordinate system of the X axis and the Y axis shown in FIG. 5 is collated with the cross section of the transmission unit 6, the optical fiber group 63 is in the Y axis direction (welding direction). It is a unit group in which a plurality of optical fibers 62 are arranged along A2). The optical fiber bundle 64 is a bundle of a plurality of optical fiber groups 63 along the X-axis direction (the arrangement direction of a plurality of temperature measurement points included in the temperature measurement region P). The arrangement direction of the plurality of optical fiber groups 63 in the optical fiber bundle 64 is preferably perpendicular to the welding direction A2 in order to simplify the condensing lens configuration of the light receiving unit 5.

このような光ファイバ束64内に含まれる複数の光ファイバ群63の各々は、測定対象物における温度測定領域P内に含まれる複数の温度測定点の各々と一対一に対応しており、受光部5の集光レンズ53,55によって集光された赤外光を温度測定領域P内の温度測定点毎に伝送する。換言すると、光ファイバ束64のうち、X軸上の1つの座標に対応する光ファイバ群63は、温度測定領域P内の複数の温度測定点のうちの同じ座標位置の温度測定点から放射された赤外光を伝送する。   Each of the plurality of optical fiber groups 63 included in the optical fiber bundle 64 has a one-to-one correspondence with each of the plurality of temperature measurement points included in the temperature measurement region P of the measurement object. The infrared light condensed by the condenser lenses 53 and 55 of the unit 5 is transmitted for each temperature measurement point in the temperature measurement region P. In other words, the optical fiber group 63 corresponding to one coordinate on the X axis in the optical fiber bundle 64 is radiated from the temperature measurement point at the same coordinate position among the plurality of temperature measurement points in the temperature measurement region P. Transmit infrared light.

続いて、検出部7について説明する。図8は、検出部7の構成例を示す模式図である。図9は、検出部7に設けられる固体撮像素子72の画素群の一例を示す模式図である。   Next, the detection unit 7 will be described. FIG. 8 is a schematic diagram illustrating a configuration example of the detection unit 7. FIG. 9 is a schematic diagram illustrating an example of a pixel group of the solid-state imaging device 72 provided in the detection unit 7.

検出部7を構成する光学系71は、図8に示すように、中空の筒状筐体内に複数のレンズ73〜75を有する。また、光学系71の前端には、伝送部6の後端部66が挿通固定される。レンズ73〜75は、例えば非球面レンズであり、受光部5の光軸Cと光軸が一致する態様で、後端部66と固体撮像素子72との間に配置される。このようなレンズ73〜75は、伝送部6によって伝送された赤外光を後端部66から受光し、受光した赤外光を光ファイバ群63毎に集光して固体撮像素子72に結像する。なお、レンズの数は3つに限定されるものではなく、必要に応じた数のレンズを適宜配置してよい。また、図8では図示していないが、伝送部6の先端部61は、上記したように受光部5の後端部に挿入固定されている。   As shown in FIG. 8, the optical system 71 constituting the detection unit 7 includes a plurality of lenses 73 to 75 in a hollow cylindrical housing. A rear end portion 66 of the transmission unit 6 is inserted and fixed at the front end of the optical system 71. The lenses 73 to 75 are, for example, aspherical lenses, and are disposed between the rear end portion 66 and the solid-state imaging device 72 in such a manner that the optical axis C of the light receiving unit 5 and the optical axis coincide with each other. Such lenses 73 to 75 receive the infrared light transmitted by the transmission unit 6 from the rear end portion 66, collect the received infrared light for each optical fiber group 63, and connect it to the solid-state imaging device 72. Image. Note that the number of lenses is not limited to three, and the number of lenses may be appropriately arranged as necessary. Although not shown in FIG. 8, the front end 61 of the transmission unit 6 is inserted and fixed to the rear end of the light receiving unit 5 as described above.

固体撮像素子72は、受光面として画素群721を有し、光学系71によって集光または結像された赤外光を画素群721によって受光できる態様に配置される。例えば、固体撮像素子72は、受光部5の光軸Cと画素群721の中心軸とが一致するように筐体内部に配置される。   The solid-state image sensor 72 has a pixel group 721 as a light receiving surface, and is arranged in a mode in which infrared light condensed or imaged by the optical system 71 can be received by the pixel group 721. For example, the solid-state imaging device 72 is arranged inside the housing so that the optical axis C of the light receiving unit 5 and the central axis of the pixel group 721 coincide.

画素群721は、赤外領域に感度を有し、伝送部6を構成する複数の光ファイバ群63の各々と一対一に対応して配列された複数の画素からなる。すなわち、画素群721の各画素は、光学系71を介して複数の光ファイバ群63の各々と一対一に接続される。   The pixel group 721 has a sensitivity in the infrared region, and includes a plurality of pixels arranged in one-to-one correspondence with each of the plurality of optical fiber groups 63 constituting the transmission unit 6. That is, each pixel of the pixel group 721 is connected to each of the plurality of optical fiber groups 63 via the optical system 71 on a one-to-one basis.

ここで、図9に示すように、画素群721に図5に示したX軸およびY軸の直交2軸座標系を照らし合わせると、画素群721内の各画素は、Y軸方向に対応して配列された一群の光ファイバ62(すなわち光ファイバ群63)から各々一括して赤外光を受光可能な形状(例えば長方形)に形成される。また、画素群721において、このような各画素が、X軸方向、すなわち温度測定領域Pに含まれる複数の温度測定点の配列方向に対応して複数配列されている。このような画素群721内の各画素は、測定対象物の温度測定領域P内に含まれる複数の温度測定点の各々と一対一に対応しており、光ファイバ群63によって温度測定点毎に伝送された赤外光を各々受光する。   Here, as shown in FIG. 9, when the pixel group 721 is collated with the orthogonal biaxial coordinate system of the X axis and the Y axis shown in FIG. 5, each pixel in the pixel group 721 corresponds to the Y axis direction. Are formed into a shape (for example, a rectangle) capable of receiving infrared light collectively from a group of optical fibers 62 (that is, optical fiber group 63) arranged in a row. In the pixel group 721, a plurality of such pixels are arranged corresponding to the X-axis direction, that is, the arrangement direction of a plurality of temperature measurement points included in the temperature measurement region P. Each pixel in such a pixel group 721 has a one-to-one correspondence with each of a plurality of temperature measurement points included in the temperature measurement region P of the measurement object. Each transmitted infrared light is received.

例えば、画素群721のうち、画素番号=1の画素は、図7に示した光ファイバ束64のうちの上から1列目の光ファイバ群63によって伝送された赤外光を一括に受光する。同様に、画素番号=2の画素は、上から二列目の光ファイバ群63によって伝送された赤外光を一括に受光し、画素番号=3の画素は、上から三列目の光ファイバ群63によって伝送された赤外光を一括に受光する。そして、最後の画素番号=N(例えば256番)の画素は、光ファイバ束64のうちの下から1列目の光ファイバ群63によって伝送された赤外光を一括に受光する。   For example, in the pixel group 721, the pixel having the pixel number = 1 collectively receives infrared light transmitted by the optical fiber group 63 in the first column from the top of the optical fiber bundle 64 shown in FIG. . Similarly, the pixel of pixel number = 2 collectively receives infrared light transmitted by the optical fiber group 63 in the second row from the top, and the pixel of pixel number = 3 is the optical fiber in the third row from the top. The infrared light transmitted by the group 63 is received collectively. The pixel with the last pixel number = N (for example, number 256) collectively receives infrared light transmitted by the optical fiber group 63 in the first column from the bottom of the optical fiber bundle 64.

このような画素群721を有する固体撮像素子72は、画素群721の各画素によって光ファイバ群63毎に赤外光を受光し、受光した赤外光の強度を画素毎に電圧値に変換する。このようにして、固体撮像素子72は、図5に示した温度測定領域P内における温度測定点毎の赤外光の強度を検出する。   The solid-state imaging device 72 having such a pixel group 721 receives infrared light for each optical fiber group 63 by each pixel of the pixel group 721, and converts the intensity of the received infrared light into a voltage value for each pixel. . In this way, the solid-state imaging device 72 detects the intensity of infrared light at each temperature measurement point in the temperature measurement region P shown in FIG.

なお、画素サイズや光ファイバ本数、光ファイバ配列、画素数、画素配列等は一例であって、適宜所望の設定としてよい。すなわち、固体撮像素子72の各画素に接続する光ファイバ62の本数は上記した12本に限定されるものではなく、固体撮像素子72の画素サイズ等に応じて適宜設定してよい。また、固体撮像素子72の1画素に対応した光ファイバ62の配列は千鳥状の配列に限らず、直線的に1列に配列してもよいし、複数列に配列してもよいし、千鳥状に複数列配列してもよい。また、固体撮像素子72の画素数は256画素に限定されるものではなく、測定対象物の温度プロフィールを測定するのに必要な画素数のものを適宜選択してよい。   Note that the pixel size, the number of optical fibers, the optical fiber array, the number of pixels, the pixel array, and the like are examples, and may be set as desired as appropriate. That is, the number of optical fibers 62 connected to each pixel of the solid-state image sensor 72 is not limited to the above-described twelve, and may be appropriately set according to the pixel size of the solid-state image sensor 72 and the like. Further, the arrangement of the optical fibers 62 corresponding to one pixel of the solid-state image sensor 72 is not limited to the staggered arrangement, and may be linearly arranged in one line, a plurality of lines, or a staggered pattern. A plurality of rows may be arranged. Further, the number of pixels of the solid-state imaging device 72 is not limited to 256 pixels, and the number of pixels necessary for measuring the temperature profile of the measurement object may be appropriately selected.

続いて、この走査型放射温度計1によって測定される温度プロフィールについて説明する。図10は、先行材14および後行材15である鉄鋼材の溶接部16の温度プロフィール測定を説明する説明図である。図11は、温度プロフィールの測定結果の一例を示す模式図である。なお、図11において、横軸は溶接幅方向位置である。この溶接幅方向位置は、温度測定領域Pにおける溶接部16からの変位距離を表し、溶接幅方向位置=0は、温度測定領域Pの中心位置、すなわち溶接部16上の位置に相当する。一方、縦軸は溶接温度であり、温度測定領域P内の温度測定点毎に得られた温度(溶接部16の温度)に相当する。   Subsequently, a temperature profile measured by the scanning radiation thermometer 1 will be described. FIG. 10 is an explanatory view for explaining the temperature profile measurement of the welded portion 16 of the steel material which is the preceding material 14 and the succeeding material 15. FIG. 11 is a schematic diagram illustrating an example of a temperature profile measurement result. In FIG. 11, the horizontal axis is the position in the welding width direction. The weld width direction position represents a displacement distance from the welded portion 16 in the temperature measurement region P, and the weld width direction position = 0 corresponds to the center position of the temperature measurement region P, that is, the position on the welded portion 16. On the other hand, the vertical axis represents the welding temperature, which corresponds to the temperature obtained at each temperature measurement point in the temperature measurement region P (the temperature of the welded portion 16).

ここでの温度測定では、走査型放射温度計1の受光部5、伝送部6および検出部7を次のように設定した。すなわち、受光部5(図6参照)において、筒状筐体51は直径を20mm、筒長を110mm程度とし、この筒状筐体51における長さL2は、94.3mmとした。また、溶接機10の支持部12に受光部5を取り付けた際の電極輪131,133の接点と温度測定領域Pとの距離L1は、70mmとした。受光部5の先端面から温度測定領域P(具体的には溶接部16)までの距離L3は150mmとし、受光部5の視野A1による視野長L4は47mmに設定した。これにより、X軸方向である温度測定領域Pの長手方向の長さは、溶接部16を中心に47mmになる。   In the temperature measurement here, the light receiving unit 5, the transmission unit 6 and the detection unit 7 of the scanning radiation thermometer 1 were set as follows. That is, in the light receiving unit 5 (see FIG. 6), the cylindrical casing 51 has a diameter of about 20 mm and a cylindrical length of about 110 mm, and the length L2 of the cylindrical casing 51 is 94.3 mm. The distance L1 between the contact points of the electrode wheels 131 and 133 and the temperature measurement region P when the light receiving unit 5 is attached to the support unit 12 of the welding machine 10 is 70 mm. The distance L3 from the front end surface of the light receiving unit 5 to the temperature measurement region P (specifically, the welded portion 16) was set to 150 mm, and the visual field length L4 of the light receiving unit 5 from the visual field A1 was set to 47 mm. As a result, the length in the longitudinal direction of the temperature measurement region P in the X-axis direction is 47 mm with the weld 16 as the center.

また、伝送部6(図4参照)において、1つの光ファイバ群63内に含まれる光ファイバ62の本数は12本とし、これら12本の光ファイバ62は、先行材14と後行材15との溶接方向A2に千鳥状に配列した。光ファイバ束64は、このような光ファイバ群63を256セット(すなわち、光ファイバ62を3072本)束ねたものとした。そして、これら256セットの光ファイバ群63は、先行材14と後行材15との溶接方向A2に対して垂直方向に配列した。   Further, in the transmission unit 6 (see FIG. 4), the number of the optical fibers 62 included in one optical fiber group 63 is twelve, and these twelve optical fibers 62 include the leading material 14, the trailing material 15, and the like. Were arranged in a staggered manner in the welding direction A2. The optical fiber bundle 64 is a bundle of 256 sets of such optical fiber groups 63 (that is, 3072 optical fibers 62). These 256 sets of optical fiber groups 63 were arranged in a direction perpendicular to the welding direction A <b> 2 between the preceding material 14 and the following material 15.

一方、検出部7(図8参照)において、固体撮像素子72には、256画素のInGaAsCCD素子を採用した。詳細には、固体撮像素子72の画素群721は、縦方向(図9に示すX軸方向)の長さを12.9mmとし、横方向(図9に示すY軸方向)の長さを500μmとした。また、画素群721内の1画素のサイズは、50μm×500μmとした。画素群721は、1画素当たり、1セットの光ファイバ群63内の12本の光ファイバ62によって伝送された赤外光を一括して受光する。また、この画素群721を構成する256個の画素は、X軸方向に沿って1列に配列した。なお、本設定での受光部5、伝送部6および検出部7を用いた場合、温度測定領域Pにおける測定分解能は0.18mmとなる。   On the other hand, in the detection unit 7 (see FIG. 8), a 256-pixel InGaAs CCD element is used as the solid-state imaging element 72. Specifically, the pixel group 721 of the solid-state image sensor 72 has a length in the vertical direction (X-axis direction shown in FIG. 9) of 12.9 mm and a length in the horizontal direction (Y-axis direction shown in FIG. 9) of 500 μm. It was. The size of one pixel in the pixel group 721 is 50 μm × 500 μm. The pixel group 721 collectively receives infrared light transmitted by the 12 optical fibers 62 in one set of optical fiber groups 63 per pixel. In addition, the 256 pixels constituting the pixel group 721 were arranged in one column along the X-axis direction. When the light receiving unit 5, the transmission unit 6, and the detection unit 7 are used in this setting, the measurement resolution in the temperature measurement region P is 0.18 mm.

また、走査型放射温度計1の動作環境を定めるパラメータの1つである固体撮像素子72のチャージ時間を次のように設定した。チャージ時間は、熱放射エネルギー(赤外光)の受光時間に相当し、短いほど受光する熱放射エネルギー量が低下する。このため、チャージ時間は、一般に、測定レンジの下限温度に対応する熱放射エネルギー量が受光可能で、固体撮像素子72の出力値(電圧値)が0.1[V]程度となるように設定される。例えば、測定レンジの下限温度が500[℃]の場合の熱放射エネルギー量は1.055×105程度であり、チャージ時間は、この熱放射エネルギー量を受光可能で、出力値が0.1[V]となる値として求める。ここでは、チャージ時間は、44[μsec]に設定した。出力値を0.1[V]程度にする理由は、固体撮像素子72は、暗電流という入射光が無い状態でも微小な出力が発生するため、温度測定のためには、この暗電流以上となる出力値が必要となるからである。また、固体撮像素子72からの出力値の上限については、測定レンジの上限温度を測定したときの出力値が3.2[V]となるように設定した。 In addition, the charge time of the solid-state imaging device 72, which is one of the parameters that determine the operating environment of the scanning radiation thermometer 1, was set as follows. The charging time corresponds to the time for receiving thermal radiation energy (infrared light), and the shorter the charging time, the lower the amount of thermal radiation energy received. For this reason, the charging time is generally set so that the amount of heat radiation energy corresponding to the lower limit temperature of the measurement range can be received, and the output value (voltage value) of the solid-state imaging device 72 is about 0.1 [V]. Is done. For example, when the lower limit temperature of the measurement range is 500 [° C.], the heat radiation energy amount is about 1.055 × 10 5 , and the charge time can receive this heat radiation energy amount, and the output value is 0.1. The value is obtained as [V]. Here, the charge time was set to 44 [μsec]. The reason why the output value is set to about 0.1 [V] is that the solid-state image sensor 72 generates a minute output even in the absence of incident light called dark current. This is because an output value of Further, the upper limit of the output value from the solid-state imaging device 72 was set so that the output value when the upper limit temperature of the measurement range was measured was 3.2 [V].

以上のように設定した走査型放射温度計1による温度測定に際し、連続焼鈍ラインでは、先行材14および後行材15を溶接機10の位置まで搬送し、溶接機10によって先行材14の尾端と後行材15の先端とを溶接した。なお、この溶接処理は、1回当たり3〜4秒間で完了した。そして、この溶接処理と同時に走査型放射温度計1が温度測定処理を行い、Y軸方向に変位する温度測定領域P毎に所定の間隔で溶接部16の温度プロフィールを測定した。   When the temperature is measured by the scanning radiation thermometer 1 set as described above, in the continuous annealing line, the leading material 14 and the trailing material 15 are conveyed to the position of the welding machine 10, and the tail end of the leading material 14 by the welding machine 10. And the tip of the following material 15 were welded. In addition, this welding process was completed in 3 to 4 seconds per time. Simultaneously with this welding process, the scanning radiation thermometer 1 performed a temperature measurement process, and the temperature profile of the welded portion 16 was measured at a predetermined interval for each temperature measurement region P displaced in the Y-axis direction.

これによって、図10,11に示すような温度プロフィールの測定結果が得られた。すなわち、図10中に破線で示すように、溶接部16の溶接方向A2(Y軸方向)の各位置において、温度測定領域P毎に山形の温度プロフィールが測定された。これら各位置における山形の破線の各々は、溶接部16を中心とする温度測定領域P内の各温度測定点の温度測定結果を示すものであり、その山形の高さ方向は、測定温度の上昇方向に対応する。   Thereby, the measurement result of the temperature profile as shown in FIGS. 10 and 11 was obtained. That is, as indicated by a broken line in FIG. 10, a mountain-shaped temperature profile was measured for each temperature measurement region P at each position in the welding direction A <b> 2 (Y-axis direction) of the welded portion 16. Each of the broken lines in the chevron at each position indicates the temperature measurement result at each temperature measurement point in the temperature measurement region P with the welded portion 16 as the center. The height direction of the chevron indicates an increase in the measured temperature. Corresponds to the direction.

以上説明した構成の走査型放射温度計1によれば、連続焼鈍ライン等の製造ラインのように各種機器が密集した場所であっても、測定対象物から放射された赤外光を温度測定領域P内の温度測定点毎に十分に集光し、集光した赤外光を複数の温度測定点の各々と一対一に対応する複数の光ファイバ群63によって伝送して、伝送した赤外光を画素毎に一括して受光することができる。また、固体撮像素子72の画素群721内の画素毎に温度測定点と一対一に対応する光ファイバ群63を光学的に接続しているので、画素毎に受光する赤外光の光量を増大できる。   According to the scanning radiation thermometer 1 having the above-described configuration, the infrared light emitted from the measurement object is measured in the temperature measurement region even in a place where various devices are concentrated like a production line such as a continuous annealing line. The collected infrared light is sufficiently condensed at each temperature measurement point in P, and the collected infrared light is transmitted by a plurality of optical fiber groups 63 corresponding one-to-one with each of the plurality of temperature measurement points. Can be received collectively for each pixel. In addition, since the optical fiber group 63 corresponding to the temperature measurement point has a one-to-one correspondence with each pixel in the pixel group 721 of the solid-state image sensor 72, the amount of infrared light received by each pixel is increased. it can.

そして、溶接機10による先行材14と後行材15の溶接処理と同時に、その溶接方向A2に沿って所定の間隔で図10に示すような測定温度ピークを有する山形の温度プロフィールを温度測定領域P毎に測定できる。この走査型放射温度計1による温度プロフィールの測定結果は、例えば図11に示すような溶接方向位置対溶接温度のグラフにして温度計表示部4に適宜表示され、オペレータに提示される。オペレータは、この温度計表示部4に表示されたグラフを視認することで、溶接部16およびその周辺部分の温度プロフィールを溶接作業と同時に容易に知ることができる。   And simultaneously with the welding process of the preceding material 14 and the succeeding material 15 by the welding machine 10, the temperature profile of the mountain shape which has a measured temperature peak as shown in FIG. It can be measured every P. The measurement result of the temperature profile by the scanning radiation thermometer 1 is appropriately displayed on the thermometer display unit 4 as a graph of the welding direction position vs. welding temperature as shown in FIG. 11, for example, and presented to the operator. By visually recognizing the graph displayed on the thermometer display unit 4, the operator can easily know the temperature profile of the welded portion 16 and its peripheral portion simultaneously with the welding operation.

特に、連続焼鈍ラインの溶接機10に受光部5を取り付けることによって、測定視野が遮られないように鉄鋼材の溶接部16の間近に走査型放射温度計1を設置できる。この結果、溶接処理と同時に、連続焼鈍ラインにおいて監視が必要な溶接部16の溶接温度を各自に測定し、溶接部16の温度プロフィールとして提示することができるので、オペレータは、溶接不良を適正且つ確実に確認できる。以下、上記構成の走査型放射温度計1に本発明を適用した2つの実施の形態について説明する。   In particular, by attaching the light receiving part 5 to the welding machine 10 in the continuous annealing line, the scanning radiation thermometer 1 can be installed in the vicinity of the welded part 16 of the steel material so that the measurement visual field is not obstructed. As a result, simultaneously with the welding process, the welding temperature of the welded portion 16 that needs to be monitored in the continuous annealing line can be individually measured and presented as a temperature profile of the welded portion 16, so that the operator can appropriately determine the welding failure and It can be confirmed with certainty. Hereinafter, two embodiments in which the present invention is applied to the scanning radiation thermometer 1 configured as described above will be described.

(実施の形態1)
実際の連続焼鈍ラインでは、板厚の異なる様々な鉄鋼材を処理対象とする。図12は、連続焼鈍ラインが処理対象とする鉄鋼材の板厚と溶接温度との関係を示す図である。図12に示すように、鉄鋼材の溶接温度はその板厚によって異なり、板厚が厚いほど入熱量が大きくなるため溶接温度は上昇する。例えば、図12に示す0.1[mm]〜0.4[mm]の板厚の鉄鋼材を処理対象とする場合、溶接部16の溶接不良を判定するために監視が必要である全ての鉄鋼材の溶接温度を含む温度範囲、すなわち、処理対象とする全ての鉄鋼材の取り得る温度範囲(対象温度範囲)は、400[℃]〜1050[℃]程度となる。
(Embodiment 1)
In an actual continuous annealing line, various steel materials having different thicknesses are treated. FIG. 12 is a diagram showing the relationship between the thickness of the steel material to be processed by the continuous annealing line and the welding temperature. As shown in FIG. 12, the welding temperature of the steel material varies depending on the plate thickness, and the heat input increases as the plate thickness increases, so that the welding temperature increases. For example, when a steel material having a thickness of 0.1 [mm] to 0.4 [mm] shown in FIG. 12 is a processing target, all of the monitoring needs to be performed to determine the welding failure of the welded portion 16. The temperature range including the welding temperature of the steel material, that is, the temperature range (target temperature range) that can be taken by all the steel materials to be processed is about 400 [° C.] to 1050 [° C.].

ところで、上記したように、走査型放射温度計1のような熱放射エネルギー(赤外光)を捉える放射温度計は、そのパラメータの1つである測定可能な温度幅(測定レンジ)を固定した状態で使用するのが一般的である。この測定レンジは、検出素子の分解能であるダイナミックレンジによって定まる。一般的な検出素子に適用されるダイナミックレンジDの値は3000〜5000の範囲で許容され、測定レンジは、検出素子の分解能に応じた温度幅となる。   By the way, as described above, a radiation thermometer that captures thermal radiation energy (infrared light) like the scanning radiation thermometer 1 has a measurable temperature range (measurement range) fixed as one of its parameters. It is common to use in a state. This measurement range is determined by the dynamic range which is the resolution of the detection element. The value of the dynamic range D applied to a general detection element is allowed in the range of 3000 to 5000, and the measurement range has a temperature width corresponding to the resolution of the detection element.

このダイナミックレンジは、識別可能な信号の最小値と最大値との比率によって表され、放射温度計の場合、測定可能な下限温度の分解能が識別可能な信号の最小値に相当する。具体的には、ダイナミックレンジDの算出式は、上限温度の放射輝度Emaxと測定可能な下限温度の分解能EΔとを用いた次式(1)によって表される。したがって、高い温度分解能が要求される場合には測定レンジは比較的狭いものとなるが、温度分解能を低く(測定可能な下限温度の分解能EΔの値を大きく)すれば測定レンジを広げることができ、広範囲の温度測定が可能となる。
D=Emax/EΔ ・・・(1)
This dynamic range is represented by the ratio between the minimum value and the maximum value of the identifiable signal. In the case of a radiation thermometer, the resolution of the lower limit temperature that can be measured corresponds to the minimum value of the identifiable signal. Specifically, the calculation formula of the dynamic range D is expressed by the following formula (1) using the radiance E max at the upper limit temperature and the resolution EΔ of the lower limit temperature that can be measured. Therefore, when high temperature resolution is required, the measurement range is relatively narrow. However, if the temperature resolution is low (the lower limit temperature resolution EΔ can be measured), the measurement range can be expanded. A wide range of temperature measurements is possible.
D = E max / EΔ (1)

そこで、測定レンジを400[℃]〜1050[℃]とし、温度分解能を2[℃]として、リニアアレイ型のInGaAsCCD素子のダイナミックレンジDについて検証した。具体的には、上記式(1)に従い、ブランクの放射則によって定まる放射輝度を用いて検出素子のダイナミックレンジDを求めた。この場合の上限温度の放射輝度Emaxは、1050[℃]での放射輝度である。また、測定可能な下限温度の分解能は、400[℃]における放射輝度と402[℃]における放射輝度との差分に相当する。求めたダイナミックレンジDの値は、21000程度であり、許容値から大きく外れている。 Therefore, the dynamic range D of the linear array type InGaAs CCD element was verified by setting the measurement range to 400 [° C.] to 1050 [° C.] and the temperature resolution to 2 [° C.]. Specifically, the dynamic range D of the detection element was obtained using the radiance determined by the blank radiation law according to the above equation (1). The radiance E max at the upper limit temperature in this case is the radiance at 1050 [° C.]. The measurable lower limit temperature resolution corresponds to the difference between the radiance at 400 [° C.] and the radiance at 402 [° C.]. The value of the obtained dynamic range D is about 21000, which is greatly deviated from the allowable value.

また、同様の要領で、温度分解能を10[℃]とした場合のダイナミックレンジDについても検証したところ、このダイナミックレンジDの値を許容値としつつ、測定レンジを400[℃]〜1050[℃]に拡大できた。ただし、温度分解能が下がるため、温度の測定精度も低下する。   Further, in the same manner, the dynamic range D when the temperature resolution is set to 10 [° C.] was also verified, and the measurement range was set to 400 [° C.] to 1050 [° C. while setting the value of the dynamic range D as an allowable value. ]. However, since the temperature resolution is lowered, the temperature measurement accuracy is also lowered.

以上の検証結果の通り、400[℃]〜1050[℃]の全域で精度よく温度測定を行うためには、対象温度範囲を全体として含むように各々の測定レンジを設定した複数台の走査型放射温度計を用意し、これら複数の走査型放射温度計を連続焼鈍ライン内に設置する必要がある。しかしながら、連続焼鈍ライン内は機器が密集しており、溶接機10の周辺に複数台の走査型放射温度計の設置場所を確保するのは難しい。   As described above, in order to accurately measure the temperature in the entire range of 400 [° C.] to 1050 [° C.], a plurality of scanning types in which each measurement range is set to include the target temperature range as a whole. It is necessary to prepare a radiation thermometer and install these scanning radiation thermometers in the continuous annealing line. However, the equipment is densely packed in the continuous annealing line, and it is difficult to secure an installation place for a plurality of scanning radiation thermometers around the welding machine 10.

一方で、連続焼鈍ラインが処理対象とする鉄鋼材の中には、その溶接温度の監視に高い精度が要求されるものと、比較的低い精度での温度測定で問題ないものとが存在する。そこで、実施の形態1では、2つの検出素子(固体撮像素子)、具体的には、溶接温度の監視に高い精度が要求される種類の鉄鋼材の溶接温度を含むように狭範囲の測定レンジ(狭範囲測定レンジ)が設定された高分解能測定用のものと、対象温度範囲の全域を含む広範囲の測定レンジ(広範囲測定レンジ)が設定された低分解能測定用のものとを具備した構成とすることで、1台の走査型放射温度計での溶接温度の監視を実現する。   On the other hand, some steel materials to be processed by the continuous annealing line include those that require high accuracy for monitoring the welding temperature and those that do not have any problems in temperature measurement with relatively low accuracy. Therefore, in the first embodiment, two detection elements (solid-state imaging elements), specifically, a narrow measurement range so as to include the welding temperature of a steel material of a type that requires high accuracy for monitoring the welding temperature. A configuration that includes a high-resolution measurement set with a (narrow range measurement range) and a low-resolution measurement set with a wide range of measurement (including a wide measurement range) including the entire target temperature range By doing so, it is possible to monitor the welding temperature with a single scanning radiation thermometer.

図13は、実施の形態1における温度測定システム8aの構成例を示すブロック図である。なお、図13において、図1と同様の構成には、同一の符号を付している。図13に示すように、実施の形態1の温度測定システム8aは、走査型放射温度計1aと、測定レンジ決定装置としての上位計算機9aとを備え、走査型放射温度計1aの温度計処理部3aと上位計算機9aとがデータ送受可能に接続されて構成されている。   FIG. 13 is a block diagram illustrating a configuration example of the temperature measurement system 8a according to the first embodiment. In FIG. 13, the same components as those in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 13, the temperature measurement system 8a of the first embodiment includes a scanning radiation thermometer 1a and a host computer 9a as a measurement range determining device, and a thermometer processing unit of the scanning radiation thermometer 1a. 3a and the host computer 9a are connected so that data can be transmitted and received.

走査型放射温度計1aは、温度計測定部2aと、温度測定処理手段としての温度計処理部3aと、温度計表示部4とを備える。この走査型放射温度計1aは、図1〜図11を参照して説明した走査型放射温度計1の構成の一部を変更することで実現される。具体的には、図13に示すように、実施の形態1の温度計測定部2aの構成は、図8等に示したレンズ75の後段にビームスプリッター76aを設置するとともに、このビームスプリッター76aの後段において、図2等に示した固体撮像素子72に換えて2つの固体撮像素子77a,78aを設置することで実現できる。   The scanning radiation thermometer 1a includes a thermometer measurement unit 2a, a thermometer processing unit 3a as temperature measurement processing means, and a thermometer display unit 4. This scanning radiation thermometer 1a is realized by changing a part of the configuration of the scanning radiation thermometer 1 described with reference to FIGS. Specifically, as shown in FIG. 13, the configuration of the thermometer measurement unit 2a according to the first embodiment is that a beam splitter 76a is installed at the rear stage of the lens 75 shown in FIG. This can be realized by installing two solid-state image sensors 77a and 78a in the subsequent stage instead of the solid-state image sensor 72 shown in FIG.

ビームスプリッター76aは、レンズ75を経た赤外光の半分の光量を透過させて一方の固体撮像素子77aに受光させ、残りの光量を反射させて他方の固体撮像素子78aに受光させる。これら2つの固体撮像素子77a,78aのうち、一方の固体撮像素子77aが温度分解能を例えば10[℃]とした低分解能測定用検出素子である。そして、他方の固体撮像素子78aが温度分解能を例えば2[℃]とした高分解能測定用検出素子である。   The beam splitter 76a transmits half the amount of infrared light that has passed through the lens 75 to be received by one solid-state image sensor 77a, and reflects the remaining light amount to be received by the other solid-state image sensor 78a. Of these two solid-state image sensors 77a and 78a, one solid-state image sensor 77a is a low-resolution measurement detection element with a temperature resolution of 10 [° C.], for example. The other solid-state imaging element 78a is a high-resolution measurement detecting element having a temperature resolution of, for example, 2 [° C.].

また、実施の形態1において、温度計処理部3aは、温度変換処理部31と、固体撮像素子77aからの出力と固体撮像素子78aからの出力とを切り替える切替手段としての切替スイッチ32aと、上位計算機9aの指示のもと切替スイッチ32aの切替処理を行う切替処理手段としての切替処理部33aとを含む。そして、切替処理部33aは、上位計算機9aから通知される次回適用測定レンジに従って切替スイッチ32aを制御し、固体撮像素子77a,78aの出力を切り替える切替処理を行う。   Further, in the first embodiment, the thermometer processing unit 3a includes a temperature conversion processing unit 31, a changeover switch 32a serving as a switching unit that switches between an output from the solid-state imaging element 77a and an output from the solid-state imaging element 78a, and a host. And a switching processing unit 33a as switching processing means for performing switching processing of the selector switch 32a under the instruction of the computer 9a. Then, the switching processing unit 33a controls the switching switch 32a according to the next applied measurement range notified from the host computer 9a, and performs switching processing for switching the outputs of the solid-state imaging devices 77a and 78a.

上位計算機9aは、CPU等の演算装置、主記憶装置、ハードディスクや各種記憶媒体等の補助記憶装置、通信装置、表示装置や印刷装置等の出力装置、入力装置、各部を接続し、あるいは外部入力を接続するインターフェース装置等を備えた公知のハードウェア構成で実現でき、例えばワークステーションやパソコン等の汎用コンピュータを利用することができる。   The host computer 9a is connected to an arithmetic device such as a CPU, a main storage device, an auxiliary storage device such as a hard disk and various storage media, a communication device, an output device such as a display device and a printing device, an input device, each unit, or an external input For example, a general-purpose computer such as a workstation or a personal computer can be used.

この上位計算機9aは、溶接機10に順次搬送される鉄鋼材の種類や板厚、処理順序(溶接処理の開始時間)等を定めた処理計画情報としての操業計画データや、測定対象物とする鉄鋼材の種類毎に低分解能測定の許否を設定した種類情報としての鉄鋼材種類データ等、決定に必要なデータを保持している。鉄鋼材種類データは、操業計画データに含まれる全ての鉄鋼材の種類と対応付けて、低分解能測定を許可するか否かのフラグ情報を設定したデータテーブルである。   The host computer 9a is used as operation plan data as processing plan information that defines the type, thickness, processing order (starting time of welding processing), and the like of a steel material that is sequentially conveyed to the welding machine 10 and a measurement object. Data necessary for determination, such as steel material type data as type information in which permission of low resolution measurement is set for each type of steel material, is held. The steel material type data is a data table in which flag information indicating whether or not low-resolution measurement is permitted is set in association with all types of steel materials included in the operation plan data.

また、上位計算機9aは、主な機能部として、決定手段としての測定レンジ決定処理部91aを備える。この測定レンジ決定処理部91aは、次回の溶接処理で溶接する鉄鋼材の種類に基づいて次回の溶接処理と並行して行う温度測定処理時に適用する走査型放射温度計1aの測定レンジ(次回適用測定レンジ)を広範囲測定レンジまたは狭範囲測定レンジとして決定し、温度計処理部3aに通知する。   The host computer 9a includes a measurement range determination processing unit 91a as a determination unit as a main functional unit. This measurement range determination processing unit 91a uses the measurement range of the scanning radiation thermometer 1a to be applied at the time of the temperature measurement process performed in parallel with the next welding process based on the type of steel material to be welded in the next welding process (next application). The measurement range) is determined as a wide range measurement range or a narrow range measurement range, and is notified to the thermometer processing unit 3a.

本実施の形態1の温度測定システム8aは、次の処理手順で温度計測定方法を実施する。すなわち、先ず、上位計算機9aの測定レンジ決定処理部91aが、前回の溶接処理の後であって次回の溶接処理を開始するまでの間に、次回適用測定レンジを決定する。   The temperature measurement system 8a according to the first embodiment implements the thermometer measurement method according to the following processing procedure. That is, first, the measurement range determination processing unit 91a of the host computer 9a determines the next applicable measurement range after the previous welding process and before starting the next welding process.

図14は、溶接処理および温度測定処理の処理タイミングを示すタイミングチャートである。図14に示すように、溶接機10での溶接処理と走査型放射温度計1aによる温度測定処理は同時に開始され(T33)、溶接処理の終了とともに温度測定処理も終了する(T35)。このように、溶接処理および温度測定処理は、所定の時間間隔を隔てて間欠的に実行される。測定レンジ決定処理部91aは、これら各処理の開始タイミングT33より前である例えば図14に例示するタイミングT31において、次回適用測定レンジを決定する。   FIG. 14 is a timing chart showing the processing timing of the welding process and the temperature measurement process. As shown in FIG. 14, the welding process in the welding machine 10 and the temperature measurement process by the scanning radiation thermometer 1a are started at the same time (T33), and the temperature measurement process is also ended at the end of the welding process (T35). As described above, the welding process and the temperature measurement process are executed intermittently at a predetermined time interval. The measurement range determination processing unit 91a determines the next applicable measurement range, for example, at a timing T31 illustrated in FIG. 14 before the start timing T33 of these processes.

具体的には、測定レンジ決定処理部91aは、先ず、操業計画データおよび鉄鋼材種類データを参照し、開始タイミングT33で開始される次回の溶接処理で溶接する鉄鋼材の種類に基づいて、この次回の溶接処理と並行して行われる温度測定処理を低分解能測定とするのか高分解能測定とするのかを判定する。そして、測定レンジ決定処理部91aは、次回溶接処理する鉄鋼材、すなわち、次回の温度測定処理での測定対象物の種類が低分解能測定を許可する種類の場合には低分解能測定と判定し、広範囲測定レンジを次回適用測定レンジとする。また、低分解能測定を許可しない種類の場合には高分解能測定と判定し、狭範囲測定レンジを次回適用測定レンジとする。その後、測定レンジ決定処理部91aは、決定した次回適用測定レンジを温度計処理部3aに通知する。   Specifically, the measurement range determination processing unit 91a first refers to the operation plan data and the steel material type data, and based on the type of steel material to be welded in the next welding process started at the start timing T33. It is determined whether the temperature measurement process performed in parallel with the next welding process is a low resolution measurement or a high resolution measurement. Then, the measurement range determination processing unit 91a determines the low resolution measurement when the steel material to be welded next time, that is, the type of the measurement object in the next temperature measurement process allows the low resolution measurement, The wide measurement range will be the next applicable measurement range. If the type does not allow low resolution measurement, it is determined as high resolution measurement, and the narrow range measurement range is set as the next applicable measurement range. Thereafter, the measurement range determination processing unit 91a notifies the determined next applied measurement range to the thermometer processing unit 3a.

これに応答して、温度計処理部3aは、先ず、切替処理部33aが切替スイッチ32aを制御し、上位計算機9aから通知された次回適用測定レンジが広範囲測定レンジの場合は切替スイッチ32aを固体撮像素子77aの出力側に切り替える一方、狭範囲測定レンジの場合は切替スイッチ32aを固体撮像素子78aの出力側に切り替える切替処理を行う。その後、温度計処理部3aは、次回の溶接処理の開始タイミングで温度測定処理を開始し、測定対象物の温度を測定して温度プロフィールを得る。   In response to this, in the thermometer processing unit 3a, first, the switching processing unit 33a controls the switching switch 32a, and when the next applied measuring range notified from the host computer 9a is the wide range measuring range, the switching switch 32a is solid. While switching to the output side of the image sensor 77a, in the case of a narrow range measurement range, a switching process for switching the switch 32a to the output side of the solid-state image sensor 78a is performed. Thereafter, the thermometer processing unit 3a starts the temperature measurement process at the start timing of the next welding process, and measures the temperature of the measurement object to obtain a temperature profile.

以上説明したように、実施の形態1では、次回の溶接処理で溶接する鉄鋼材の種類に応じて、対象温度範囲の全域を含む広範囲測定レンジが設定された低分解能測定用の固体撮像素子77aと、溶接温度の監視に高い精度が要求される種類の溶接温度を含む狭範囲測定レンジが設定された高分解能測定用の固体撮像素子78aとを切り替えて用いるようにした。これによれば、次回の温度測定処理を開始する前に事前に、低分解能測定用の固体撮像素子77aの出力と高分解能測定用の固体撮像素子78aの出力とを切り替えることができる。そして、低分解能測定用の固体撮像素子77aの出力を用いて対象温度範囲全域の温度測定を実現するとともに、溶接温度の監視に高い精度が要求される種類の鉄鋼材の溶接時には、高分解能測定用の固体撮像素子77aの出力を用いて高精度の温度測定を実現できる。したがって、1台の走査型放射温度計1aによって処理対象とする全ての鉄鋼材の溶接温度を適正に監視し、溶接不良を確実に判定することができる。   As described above, in the first embodiment, the low-resolution measurement solid-state imaging element 77a in which a wide measurement range including the entire target temperature range is set according to the type of steel material to be welded in the next welding process. And a solid-state imaging device 78a for high resolution measurement in which a narrow range measurement range including a welding temperature of a type that requires high accuracy for monitoring the welding temperature is used. According to this, before starting the next temperature measurement process, the output of the solid-state image sensor 77a for low resolution measurement and the output of the solid-state image sensor 78a for high resolution measurement can be switched in advance. Then, the temperature of the entire target temperature range is realized using the output of the solid-state imaging device 77a for low resolution measurement, and at the time of welding of a steel material of a type that requires high accuracy for monitoring the welding temperature, high resolution measurement is performed. High-precision temperature measurement can be realized using the output of the solid-state image sensor 77a. Therefore, the welding temperature of all the steel materials to be processed can be appropriately monitored by one scanning radiation thermometer 1a, and a welding failure can be reliably determined.

(実施の形態2)
図15は、実施の形態2における温度測定システム8bの構成例を示すブロック図である。なお、図15において、図1と同様の構成には、同一の符号を付している。図15に示すように、実施の形態2の温度測定システム8bは、走査型放射温度計1bと、上位計算機9bとを備え、走査型放射温度計1bの温度計処理部3bと上位計算機9bとがデータ送受可能に接続されて構成されている。
(Embodiment 2)
FIG. 15 is a block diagram illustrating a configuration example of the temperature measurement system 8b according to the second embodiment. In FIG. 15, the same components as those in FIG. As shown in FIG. 15, the temperature measurement system 8b according to the second embodiment includes a scanning radiation thermometer 1b and a host computer 9b, and includes a thermometer processing unit 3b and a host computer 9b of the scanning radiation thermometer 1b. Are connected so that data can be transmitted and received.

走査型放射温度計1bは、温度計測定部2と、温度計処理部3bと、温度計表示部4とを備える。この走査型放射温度計1bは、図1〜図11を参照して説明した走査型放射温度計1の構成の一部を変更することで実現される。具体的には、実施の形態2の走査型放射温度計1bでは、温度計処理部3bは、温度変換処理部31と、動作環境設定部35bとを備える。動作環境設定部35bは、上位計算機9bから通知される温度計設定データに従って走査型放射温度計1bの動作環境を設定する。   The scanning radiation thermometer 1 b includes a thermometer measurement unit 2, a thermometer processing unit 3 b, and a thermometer display unit 4. The scanning radiation thermometer 1b is realized by changing a part of the configuration of the scanning radiation thermometer 1 described with reference to FIGS. Specifically, in the scanning radiation thermometer 1b of the second embodiment, the thermometer processing unit 3b includes a temperature conversion processing unit 31 and an operating environment setting unit 35b. The operating environment setting unit 35b sets the operating environment of the scanning radiation thermometer 1b in accordance with the thermometer setting data notified from the host computer 9b.

上位計算機9bは、主な機能部として測定レンジ決定処理部91bを備え、上記した操業計画データ等を保持している。この測定レンジ決定処理部91bは、次回の溶接処理で溶接する鉄鋼材の板厚に基づいて、次回適用測定レンジとしての測定レンジの具体的な値を含む走査型放射温度計1bのパラメータを設定した温度計設定データを作成し、温度計処理部3bに通知する。   The host computer 9b includes a measurement range determination processing unit 91b as a main functional unit, and holds the operation plan data described above. The measurement range determination processing unit 91b sets the parameters of the scanning radiation thermometer 1b including the specific value of the measurement range as the next applied measurement range based on the thickness of the steel material to be welded in the next welding process. The prepared thermometer setting data is created and notified to the thermometer processing unit 3b.

図16は、温度測定システム8bの処理手順を示すフローチャートである。温度測定システム8bは、上位計算機9bおよび走査型放射温度計1bの温度計処理部3bが図16の処理手順に従って処理を行うことで、温度計測定方法を実施する。   FIG. 16 is a flowchart showing a processing procedure of the temperature measurement system 8b. The temperature measurement system 8b implements the thermometer measurement method by the host computer 9b and the thermometer processing unit 3b of the scanning radiation thermometer 1b performing processing according to the processing procedure of FIG.

上位計算機9bでは、図16に示すように、先ず、測定レンジ決定処理部91bが測定レンジ区分処理を行い、対象温度範囲を複数の測定レンジに区分して温度計設定テーブルを作成する(ステップs11)。図17は、ステップs11で行う測定レンジ区分処理を説明する図であり、連続焼鈍ラインが処理対象とする鉄鋼材の板厚と溶接温度との関係を示している。また、図18は、図17に示す板厚と溶接温度との関係から作成した温度計設定テーブルのデータ構成例を示す図である。   In the host computer 9b, as shown in FIG. 16, first, the measurement range determination processing unit 91b performs the measurement range division process, and divides the target temperature range into a plurality of measurement ranges to create a thermometer setting table (step s11). ). FIG. 17 is a diagram for explaining the measurement range division process performed in step s11, and shows the relationship between the thickness of the steel material to be processed by the continuous annealing line and the welding temperature. FIG. 18 is a diagram showing a data configuration example of a thermometer setting table created from the relationship between the plate thickness and the welding temperature shown in FIG.

測定レンジ区分処理では、測定レンジ決定処理部91bは、操業計画データを参照し、連続焼鈍ラインが処理対象とする全ての鉄鋼材の板厚と溶接温度との関係を解析する。そして、測定レンジ決定処理部91bは、対象温度範囲を複数の測定レンジに区分する。具体的には、測定レンジ決定処理部91bは、どの測定レンジにおいても高分解能測定が実現できるよう、温度分解能(上記式(1)の測定可能な下限温度の分解能EΔの値)を予め設定される所定の閾値以下とする条件下で対象温度範囲を区分する。   In the measurement range classification process, the measurement range determination processing unit 91b refers to the operation plan data and analyzes the relationship between the plate thicknesses and welding temperatures of all steel materials to be processed by the continuous annealing line. Then, the measurement range determination processing unit 91b divides the target temperature range into a plurality of measurement ranges. Specifically, the measurement range determination processing unit 91b is preset with a temperature resolution (the value of the resolution EΔ of the lower limit temperature that can be measured in the above equation (1)) so that high-resolution measurement can be realized in any measurement range. The target temperature range is divided under a condition that is equal to or less than a predetermined threshold.

例えば、対象温度範囲の下限値である400[℃]を下限温度とする測定レンジの上限温度を決定する場合に着目すると、上記式(1)を用い、温度分解能が前述の閾値以下であって、且つダイナミックレンジDの値が2000以内となるように下限温度400[℃]に対する上限温度を求める。例えば、図17の例では、上限温度が700[℃]である400[℃]〜700[℃]を測定レンジ1として区分している。なお、上限温度を700[℃]としたときのダイナミックレンジDの値は1680であり、2000以内の閾値条件を満たしている。また、このとき、下限温度である400[℃]を測定したときの固体撮像素子72の出力値が0.1[V]以上となるようにチャージ時間を決定する。例えば、チャージ時間は、120[μsec]とした。なお、例示した数値は、検出部7を構成する検出素子である固体撮像素子72としてInGaAsCCD素子を採用した場合の数値である。   For example, when determining the upper limit temperature of the measurement range having the lower limit temperature of 400 [° C.] that is the lower limit value of the target temperature range, the above equation (1) is used, and the temperature resolution is equal to or lower than the aforementioned threshold value. The upper limit temperature for the lower limit temperature 400 [° C.] is determined so that the value of the dynamic range D is within 2000. For example, in the example of FIG. 17, 400 [° C.] to 700 [° C.] whose upper limit temperature is 700 [° C.] is classified as the measurement range 1. The value of the dynamic range D when the upper limit temperature is 700 [° C.] is 1680, which satisfies the threshold condition within 2000. At this time, the charging time is determined so that the output value of the solid-state imaging device 72 when the lower limit temperature of 400 [° C.] is measured is 0.1 [V] or more. For example, the charging time is 120 [μsec]. The numerical values exemplified are those when an InGaAs CCD element is adopted as the solid-state imaging element 72 which is a detection element constituting the detection unit 7.

その後は、同様の要領で処理を繰り返し、対象温度範囲の全域を複数の測定レンジに区分するとともに、対応するチャージ時間を決定する。このとき、各測定レンジは、その温度範囲が互いに重複するように区分するのがよい。図17の例では、500[℃]〜900[℃]を測定レンジ2、600[℃]〜1050[℃]を測定レンジ3として対象温度範囲の全域を3つの測定レンジに区分している。   Thereafter, the process is repeated in the same manner, and the entire temperature range is divided into a plurality of measurement ranges, and the corresponding charge time is determined. At this time, the measurement ranges are preferably divided so that the temperature ranges overlap each other. In the example of FIG. 17, the entire temperature range is divided into three measurement ranges, with 500 [° C.] to 900 [° C.] as the measurement range 2 and 600 [° C.] to 1050 [° C.] as the measurement range 3.

そして、以上のようにして対象温度範囲の全域を複数の測定レンジに区分し、チャージ時間を決定したならば、温度設定テーブルを作成する。例えば、図18に示すように、各々の測定レンジ1〜3に属する溶接温度の板厚と、測定レンジと、チャージ時間と、ダイナミックレンジとを測定レンジ毎に対応付けたものを温度設定テーブルとする。   When the entire temperature range is divided into a plurality of measurement ranges and the charge time is determined as described above, a temperature setting table is created. For example, as shown in FIG. 18, the temperature setting table is obtained by associating the plate thickness of the welding temperature belonging to each of the measurement ranges 1 to 3, the measurement range, the charge time, and the dynamic range for each measurement range. To do.

温度設定テーブルを作成した後は、図16に示すように、温度計設定データの通知タイミングとなるまで待機状態となる(ステップs13:No)。通知タイミングは、前回の溶接処理の後であって次回の溶接処理を開始するまでの間の所定のタイミングとする。   After creating the temperature setting table, as shown in FIG. 16, the temperature setting table is in a standby state until the notification timing of thermometer setting data is reached (step s13: No). The notification timing is a predetermined timing after the previous welding process until the next welding process is started.

そして、上位計算機9bは、現在時刻が通知タイミングとなったならば(ステップs13:Yes)、操業計画データから次回溶接処理する鉄鋼材の板圧を取得し、取得した板厚が属する測定レンジを温度設定テーブルから選択して次回適用測定レンジとして決定する(ステップs15)。そして、温度設定テーブルに設定される次回適用測定レンジとした測定レンジ、チャージ時間、およびダイナミックレンジの各値を温度計設定データとし、温度計処理部3bに通知する(ステップs17)。例えば、次回溶接処理する鉄鋼材の板厚が0.15[mm]の場合であれば、図17,18に示す測定レンジ1の測定レンジ400[℃]〜700[℃]を次回適用測定レンジとして決定し、この次回適用測定レンジ400[℃]〜700[℃]、チャージ時間120[μsec]、およびダイナミックレンジの値1680の各値を含む温度計設定データを温度計処理部3bに通知する。   Then, when the current time comes to the notification timing (step s13: Yes), the host computer 9b acquires the plate pressure of the steel material to be welded next time from the operation plan data, and sets the measurement range to which the acquired plate thickness belongs. The temperature is selected from the temperature setting table and determined as the next applicable measurement range (step s15). Then, each value of the measurement range, the charge time, and the dynamic range set as the next applied measurement range set in the temperature setting table is set as thermometer setting data and notified to the thermometer processing unit 3b (step s17). For example, if the thickness of the steel material to be welded next time is 0.15 [mm], the measurement range 400 [° C.] to 700 [° C.] of the measurement range 1 shown in FIGS. Then, the thermometer processing unit 3b is notified of thermometer setting data including each of the next applicable measurement range 400 [° C.] to 700 [° C.], the charge time 120 [μsec], and the dynamic range value 1680. .

その後は、処理を終了しない間(ステップs19:No)はステップs13に戻って上記した処理を繰り返す。また、操業を終える等の所定のタイミングで処理を終了する(ステップs19:Yes)。   Thereafter, while the process is not finished (step s19: No), the process returns to step s13 and the above-described process is repeated. Moreover, a process is complete | finished at predetermined timings, such as finishing operation (step s19: Yes).

一方、温度計処理部3bでは、上位計算機9bから温度計設定データが通知されるまで待機状態となる(ステップs21:No)。そして、温度計設定データが通知された場合には(ステップs21:Yes)、動作環境設定部35bが、通知された温度計設定データに従って走査型放射温度計1bの動作環境を設定する(ステップs23)。具体的には、動作環境設定部35bは、温度計設定データに従って、走査型放射温度計1bの測定レンジを次回適用測定レンジに設定するとともにチャージ時間を設定し、走査型放射温度計1bの動作環境を次回溶接処理する鉄鋼材の溶接温度を監視するのに適した設定にする。   On the other hand, the thermometer processing unit 3b is in a standby state until the thermometer setting data is notified from the host computer 9b (step s21: No). When the thermometer setting data is notified (step s21: Yes), the operating environment setting unit 35b sets the operating environment of the scanning radiation thermometer 1b according to the notified thermometer setting data (step s23). ). Specifically, the operating environment setting unit 35b sets the measurement range of the scanning radiation thermometer 1b to the next applicable measurement range and sets the charge time according to the thermometer setting data, and operates the scanning radiation thermometer 1b. Set the environment to be suitable for monitoring the welding temperature of the steel material to be welded next time.

そして、温度計処理部3bは、次回の溶接処理の開始タイミングまで待機して温度測定処理を開始し、測定対象物の温度(温度プロフィール)を測定する(ステップs25→ステップs27)。その後は、処理を終了しない間(ステップs29:No)はステップs21に戻って上記した処理を繰り返す。また、操業を終える等の所定のタイミングで処理を終了する(ステップs29:Yes)。   Then, the thermometer processing unit 3b waits until the start timing of the next welding process, starts the temperature measurement process, and measures the temperature (temperature profile) of the measurement object (step s25 → step s27). Thereafter, while the process is not ended (step s29: No), the process returns to step s21 and the above-described process is repeated. Moreover, a process is complete | finished at predetermined timings, such as finishing operation (step s29: Yes).

以上説明したように、実施の形態2では、対象温度範囲、すなわち連続焼鈍ラインが処理対象とする全ての鉄鋼材の板厚の溶接温度を含む温度範囲の全域を、どの測定レンジにおいても高分解能測定が実現できるように複数の測定レンジに区分することとした。そして、次回の溶接処理の開始タイミングよりも前に、走査型放射温度計1bの測定レンジを次回の溶接処理で溶接する鉄鋼材の板厚に応じた測定レンジとして決定された次回適用測定レンジに設定するようにした。これによれば、次回の温度測定処理を開始する前に事前に、その都度走査型放射温度計1bの動作環境を次回溶接処理する鉄鋼材の溶接温度を監視するのに適した設定にすることができる。したがって、1台の走査型放射温度計1bによって、処理対象とする全ての鉄鋼材の溶接温度を適正に監視し、溶接不良を確実に判定することができる。   As described above, in the second embodiment, the target temperature range, that is, the entire temperature range including the welding temperatures of the plate thicknesses of all the steel materials to be processed by the continuous annealing line is high resolution in any measurement range. It was decided to divide into several measurement ranges so that measurement could be realized. And before the start timing of the next welding process, the measurement range of the scanning radiation thermometer 1b is set to the next applied measurement range determined as the measurement range according to the thickness of the steel material to be welded in the next welding process. I set it. According to this, before starting the next temperature measurement process, the operating environment of the scanning radiation thermometer 1b is set to a setting suitable for monitoring the welding temperature of the steel material to be welded next time each time in advance. Can do. Therefore, the welding temperature of all the steel materials to be processed can be properly monitored by one scanning radiation thermometer 1b, and a welding failure can be reliably determined.

なお、上記した実施の形態では、連続焼鈍ラインにおいて溶接される鉄鋼材の溶接部の温度を測定する場合を例示したが、これに限定されるものではなく、各種熱源体の温度を測定する場合に同様に適用できる。   In the above-described embodiment, the case of measuring the temperature of the welded portion of the steel material welded in the continuous annealing line is exemplified, but the present invention is not limited to this, and the temperature of various heat source bodies is measured. Applicable to as well.

1,1a,1b 走査型放射温度計
2,2a 温度計測定部
76a ビームスプリッター
77,77a,78a 固体撮像素子
3,3a,3b 温度計処理部
31 温度変換処理部
32a 切替スイッチ
33a 切替処理部
35b 動作環境設定部
4 温度計表示部
8a,8b 温度測定システム
9a,9b 上位計算機
91a,91b 測定レンジ決定処理部
1, 1a, 1b Scanning type radiation thermometer 2, 2a Thermometer measuring unit 76a Beam splitter 77, 77a, 78a Solid-state imaging device 3, 3a, 3b Thermometer processing unit 31 Temperature conversion processing unit 32a Changeover switch 33a Switching processing unit 35b Operating environment setting unit 4 Thermometer display unit 8a, 8b Temperature measurement system 9a, 9b Host computer 91a, 91b Measurement range determination processing unit

Claims (12)

測定レンジ決定装置と走査型放射温度計とが接続されて構成された温度測定システムであって、
前記走査型放射温度計は、対象物の種類および処理順序を定めた処理計画情報に従って前記対象物を順次測定対象物とし、間欠的に温度測定処理を行って前記測定対象物の温度プロフィールを非接触で測定するものであり、
前記測定レンジ決定装置は、前回の温度測定処理の後であって次回の温度測定処理の前に、該次回の温度測定処理で測定対象物とする前記対象物の種類に基づいて前記次回の温度測定処理時における前記走査型放射温度計の測定レンジを次回適用測定レンジとして決定し、該決定した次回適用測定レンジを前記走査型放射温度計に通知する決定手段を備え、
前記走査型放射温度計は、前記走査型放射温度計の測定レンジを前記次回適用測定レンジとして前記次回の温度測定処理を行い、前記測定対象物の温度を測定する温度測定処理手段を備えることを特徴とする温度測定システム。
A temperature measurement system configured by connecting a measurement range determination device and a scanning radiation thermometer,
The scanning radiation thermometer uses the object as a measurement object sequentially in accordance with the processing plan information that defines the type and processing order of the object, and intermittently performs a temperature measurement process to remove the temperature profile of the measurement object. Measured by contact,
The measurement range determination device is configured to determine the next temperature based on the type of the object to be measured in the next temperature measurement process after the previous temperature measurement process and before the next temperature measurement process. Determining a measurement range of the scanning radiation thermometer at the time of measurement processing as a next applied measurement range, and determining means for notifying the scanning radiation thermometer of the determined next applied measurement range;
The scanning radiation thermometer includes temperature measurement processing means for performing the next temperature measurement process using the measurement range of the scanning radiation thermometer as the next applied measurement range and measuring the temperature of the measurement object. Characteristic temperature measurement system.
前記走査型放射温度計は、検出素子として、広範囲の測定レンジが設定された高分解能測定用検出素子と、狭範囲の測定レンジが設定された低分解能測定用検出素子とを備え、
前記決定手段は、前記対象物の種類毎に低分解能測定の許否が設定された種類情報に基づいて、前記次回の温度測定処理で測定対象物とする前記対象物の種類が前記低分解能測定を許可する種類の場合は広範囲測定レンジ、許可しない種類の場合は狭範囲レンジを前記次回適用測定レンジとして決定し、
前記温度測定処理手段は、
前記高分解能測定用検出素子からの出力と、前記低分解能測定用検出素子からの出力とを切り替える切替手段と、
前記次回適用測定レンジが前記広範囲測定レンジの場合は前記切替手段を前記低分解能測定用検出素子の出力側に切り替える一方、前記次回適用測定レンジが前記狭範囲測定レンジの場合は前記切替手段を前記高分解能測定用検出素子の出力側に切り替える切替処理手段と、
を備えることを特徴とする請求項1に記載の温度測定システム。
The scanning radiation thermometer includes, as detection elements, a high-resolution measurement detection element in which a wide measurement range is set, and a low-resolution measurement detection element in which a narrow measurement range is set,
The determination means determines whether the type of the object to be measured in the next temperature measurement process is the low-resolution measurement based on the type information in which permission for low-resolution measurement is set for each type of the object. In the case of a type that is permitted, a wide range of measurement is determined, and in the case of a type that is not permitted, a narrow range is determined as the next applicable measurement range.
The temperature measurement processing means includes
Switching means for switching between the output from the detection element for high resolution measurement and the output from the detection element for low resolution measurement;
When the next applied measurement range is the wide range measurement range, the switching unit is switched to the output side of the low resolution measurement detection element, while when the next applied measurement range is the narrow range measurement range, the switching unit is Switching processing means for switching to the output side of the detection element for high resolution measurement,
The temperature measurement system according to claim 1, further comprising:
前記決定手段は、前記処理計画情報に含まれる全ての対象物の取り得る温度範囲を各々が所定の温度分解能を有する条件下で複数の測定レンジに区分し、該区分した測定レンジの中から、前記次回の温度測定処理で測定対象物とする前記対象物の種類に応じた測定レンジを前記次回適用測定レンジとして決定することを特徴とする請求項1に記載の温度測定システム。   The determination means divides a temperature range that can be taken by all objects included in the processing plan information into a plurality of measurement ranges under a condition that each has a predetermined temperature resolution, and from among the divided measurement ranges, The temperature measurement system according to claim 1, wherein a measurement range corresponding to a type of the object to be measured in the next temperature measurement process is determined as the next applied measurement range. 前記走査型放射温度計は、
筒状筐体の内部に集光レンズを収容し、前記測定対象物から放射された赤外光を受光するとともに、前記集光レンズによって前記測定対象物の温度測定点毎に分けて前記赤外光を集光する受光部と、
可撓性を有する細長筒体の内部に、前記測定対象物における複数の温度測定点の各々と一対一に対応する複数の光ファイバ群を束ねて収容し、前記複数の光ファイバ群によって前記温度測定点別に前記赤外光を伝送する伝送部と、
赤外光領域に感度を有する検出素子である固体撮像素子を有し、前記複数の光ファイバ群の各々と一対一に対応して前記固体撮像素子に配列された複数の画素に前記赤外光を受光して、前記温度測定点毎の前記赤外光の強度を検出する検出部と、
を備えることを特徴とする請求項1〜3のいずれか1つに記載の温度測定システム。
The scanning radiation thermometer is
A condensing lens is housed in a cylindrical housing, receives infrared light emitted from the measurement object, and is divided into temperature measurement points of the measurement object by the condensing lens. A light receiving unit that collects light;
A plurality of optical fiber groups corresponding one-to-one with each of the plurality of temperature measurement points in the measurement object are bundled and housed inside a flexible elongated cylindrical body, and the temperature is controlled by the plurality of optical fiber groups. A transmission unit for transmitting the infrared light for each measurement point;
A solid-state image sensor that is a detection element having sensitivity in an infrared light region, and the infrared light is applied to a plurality of pixels arranged in the solid-state image sensor in one-to-one correspondence with each of the plurality of optical fiber groups. And detecting the intensity of the infrared light for each temperature measurement point;
The temperature measurement system according to any one of claims 1 to 3, further comprising:
前記測定対象物は、溶接機によって溶接される鉄鋼材であり、
前記複数の光ファイバ群の配列方向は、前記鉄鋼材の溶接方向に対して垂直であることを特徴とする請求項4に記載の温度測定システム。
The measurement object is a steel material welded by a welding machine,
The temperature measurement system according to claim 4, wherein an arrangement direction of the plurality of optical fiber groups is perpendicular to a welding direction of the steel material.
前記受光部は、前記溶接機に取り付けられ、前記溶接機とともに前記鉄鋼材の溶接方向に沿って移動するとともに前記赤外光を受光することを特徴とする請求項5に記載の温度測定システム。   The temperature measuring system according to claim 5, wherein the light receiving unit is attached to the welding machine, moves along the welding direction of the steel material together with the welding machine, and receives the infrared light. 前記複数の光ファイバ群の各々に含まれる複数の光ファイバは、前記鉄鋼材の溶接方向に千鳥状に配列されることを特徴とする請求項5または6に記載の温度測定システム。   The temperature measurement system according to claim 5 or 6, wherein a plurality of optical fibers included in each of the plurality of optical fiber groups are arranged in a staggered manner in a welding direction of the steel material. 前記複数の光ファイバ群の各々に含まれる光ファイバの数は、前記固体撮像素子の画素サイズに応じて複数に設定されることを特徴とする請求項4〜7のいずれか1つに記載の温度測定システム。   8. The number of optical fibers included in each of the plurality of optical fiber groups is set to a plurality according to the pixel size of the solid-state imaging device. Temperature measurement system. 前記光ファイバの数は、前記固体撮像素子の1画素当たり12本であることを特徴とする請求項8に記載の温度測定システム。   The temperature measurement system according to claim 8, wherein the number of the optical fibers is 12 per pixel of the solid-state imaging device. 走査型放射温度計を用いて測定対象物の温度を測定する温度測定方法であって、
前記走査型放射温度計は、対象物の種類および処理順序を定めた処理計画情報に従って前記対象物を順次測定対象物とし、間欠的に温度測定処理を行って前記測定対象物の温度プロフィールを非接触で測定するものであり、
前回の温度測定処理の後であって次回の温度測定処理の前に、該次回の温度測定処理で測定対象物とする前記対象物の種類に基づいて前記次回の温度測定処理時における前記走査型放射温度計の測定レンジを次回適用測定レンジとして決定する決定工程と、
前記走査型放射温度計の測定レンジを前記次回適用測定レンジとして前記次回の温度測定処理を行い、前記測定対象物の温度を測定する測定工程と、
を含むことを特徴とする温度測定方法。
A temperature measurement method for measuring the temperature of an object to be measured using a scanning radiation thermometer,
The scanning radiation thermometer uses the object as a measurement object sequentially in accordance with the processing plan information that defines the type and processing order of the object, and intermittently performs a temperature measurement process to remove the temperature profile of the measurement object. Measured by contact,
After the previous temperature measurement process and before the next temperature measurement process, the scanning type in the next temperature measurement process based on the type of the object to be measured in the next temperature measurement process A determination step of determining the measurement range of the radiation thermometer as the next applicable measurement range;
A measurement step of performing the next temperature measurement process with the measurement range of the scanning radiation thermometer as the next applied measurement range, and measuring the temperature of the measurement object;
A temperature measuring method comprising:
前記走査型放射温度計は、検出素子として、広範囲の測定レンジが設定された高分解能測定用検出素子と、狭範囲の測定レンジが設定された低分解能測定用検出素子とを備え、
前記決定工程は、前記対象物の種類毎に低分解能測定の許否が設定された種類情報に基づいて、前記次回の温度測定処理で測定対象物とする前記対象物の種類が前記低分解能測定を許可する種類の場合は広範囲測定レンジ、許可しない種類の場合は狭範囲レンジを前記次回適用測定レンジとして決定し、
前記測定工程は、前記広範囲測定レンジが前記次回適用測定レンジとして決定された場合は前記低分解能測定用検出素子の出力を用いる一方、前記狭範囲測定レンジが前記次回適用測定レンジとして決定された場合は前記高分解能測定用検出素子の出力を用いて、前記測定対象物の温度を測定することを特徴とする請求項10に記載の温度測定方法。
The scanning radiation thermometer includes, as detection elements, a high-resolution measurement detection element in which a wide measurement range is set, and a low-resolution measurement detection element in which a narrow measurement range is set,
In the determination step, the type of the object to be measured in the next temperature measurement process is determined based on the type information in which permission or disapproval of the low resolution measurement is set for each type of the object. In the case of a type that is permitted, a wide range of measurement is determined, and in the case of a type that is not permitted, a narrow range is determined as the next applicable measurement range.
The measurement step uses the output of the detection element for low resolution measurement when the wide range measurement range is determined as the next applied measurement range, while the narrow range measurement range is determined as the next applied measurement range. The temperature measurement method according to claim 10, wherein the temperature of the measurement object is measured using the output of the detection element for high resolution measurement.
前記決定工程は、前記処理計画情報に含まれる全ての対象物の取り得る温度範囲を各々が所定の温度分解能を有する条件下で複数の測定レンジに区分し、該区分した測定レンジの中から、前記次回の温度測定処理で測定対象物とする前記対象物の種類に応じた測定レンジを前記次回適用測定レンジとして決定することを特徴とする請求項10に記載の温度測定方法。   The determination step divides a temperature range that can be taken by all the objects included in the processing plan information into a plurality of measurement ranges under a condition that each has a predetermined temperature resolution, and from among the divided measurement ranges, The temperature measurement method according to claim 10, wherein a measurement range corresponding to a type of the object to be measured in the next temperature measurement process is determined as the next applied measurement range.
JP2012125821A 2012-06-01 2012-06-01 Temperature measurement system and temperature measurement method Pending JP2013250183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012125821A JP2013250183A (en) 2012-06-01 2012-06-01 Temperature measurement system and temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125821A JP2013250183A (en) 2012-06-01 2012-06-01 Temperature measurement system and temperature measurement method

Publications (1)

Publication Number Publication Date
JP2013250183A true JP2013250183A (en) 2013-12-12

Family

ID=49849003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125821A Pending JP2013250183A (en) 2012-06-01 2012-06-01 Temperature measurement system and temperature measurement method

Country Status (1)

Country Link
JP (1) JP2013250183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457306A (en) * 2014-12-30 2015-03-25 合肥金星机电科技发展有限公司 Temperature monitor system for anode furnace
JP2018179932A (en) * 2017-04-21 2018-11-15 日本アビオニクス株式会社 Infrared-ray imaging device, infrared-ray imaging system and infrared-ray imaging method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784323A (en) * 1980-11-14 1982-05-26 Toshiba Corp Device for sensing heated material
JPH03197828A (en) * 1989-12-27 1991-08-29 Nippon Tetsutou Kogyo Kk Temperature measuring method by infrared camera
JPH0735611A (en) * 1993-07-23 1995-02-07 Nec Corp Infrared camera
JPH11151580A (en) * 1997-11-18 1999-06-08 Toyota Auto Body Co Ltd Device for judging normal/defective condition of weld zone and mash seam welding machine using the same
JP2004223525A (en) * 2003-01-20 2004-08-12 Jfe Steel Kk Method and device for judging acceptance and rejection of seam weld
US20080099679A1 (en) * 2006-10-31 2008-05-01 Kouji Takemura Thermal-type infrared imaging device and operation method thereof
JP2009008439A (en) * 2007-06-26 2009-01-15 Nippon Steel Corp Method and device for measuring temperature distribution

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784323A (en) * 1980-11-14 1982-05-26 Toshiba Corp Device for sensing heated material
JPH03197828A (en) * 1989-12-27 1991-08-29 Nippon Tetsutou Kogyo Kk Temperature measuring method by infrared camera
JPH0735611A (en) * 1993-07-23 1995-02-07 Nec Corp Infrared camera
JPH11151580A (en) * 1997-11-18 1999-06-08 Toyota Auto Body Co Ltd Device for judging normal/defective condition of weld zone and mash seam welding machine using the same
JP2004223525A (en) * 2003-01-20 2004-08-12 Jfe Steel Kk Method and device for judging acceptance and rejection of seam weld
US20080099679A1 (en) * 2006-10-31 2008-05-01 Kouji Takemura Thermal-type infrared imaging device and operation method thereof
EP1918684A1 (en) * 2006-10-31 2008-05-07 NEC Corporation Thermal-type infrared imaging device and operation method thereof
JP2008111754A (en) * 2006-10-31 2008-05-15 Nec Corp Thermal-type infrared imaging device and its operating method
JP2009008439A (en) * 2007-06-26 2009-01-15 Nippon Steel Corp Method and device for measuring temperature distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457306A (en) * 2014-12-30 2015-03-25 合肥金星机电科技发展有限公司 Temperature monitor system for anode furnace
JP2018179932A (en) * 2017-04-21 2018-11-15 日本アビオニクス株式会社 Infrared-ray imaging device, infrared-ray imaging system and infrared-ray imaging method

Similar Documents

Publication Publication Date Title
US10586319B2 (en) Imaging tool for vibration and/or misalignment analysis
US11007576B2 (en) Irradiating a machining field
EP2924487B1 (en) Optical microscope and autofocus device for optical microscope
JP2020053976A (en) Imaging device with alignment analysis feature
JP2007054881A (en) Laser machining monitoring device
JP6636464B2 (en) Container thickness inspection device
JP2013250183A (en) Temperature measurement system and temperature measurement method
EP2367151B1 (en) Image processing device and image processing method
JP4907428B2 (en) Surface inspection system and diagnostic method for inspection performance of surface inspection system
WO2011139731A1 (en) An apparatus with temperature compensated an imaging lens position
CN201003982Y (en) Multi-functional infrared thermal imaging detector
JP5793370B2 (en) Scanning radiation thermometer
JP2016085153A (en) Infrared stress measurement method and infrared stress measurement device
RU2016116017A (en) DIAGNOSTICS OF INDUSTRIAL PROCESSES USING MEASUREMENTS OF TEMPERATURE OF INFRARED RADIATION
CN103292159A (en) Methane leakage detection device based on imaging
KR101668162B1 (en) Accurate level measuring system using laser
JP5179243B2 (en) Short position detector
CN104105975B (en) Electrode pattern proving installation
CN203443672U (en) Transformer equipped with infrared temperature measuring device
KR101763581B1 (en) Machine vision system for supporting various image sensor
CN102004390A (en) Lens module detection system and detection method thereof
CN108351507B (en) Optical tweezers device
JP5267471B2 (en) Semiconductor device inspection method and inspection apparatus
JP6343253B2 (en) Imaging device
JP2008209313A (en) Distortion measuring method, or the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018