JPS61226677A - Two-dimensional radioactive ray detector - Google Patents

Two-dimensional radioactive ray detector

Info

Publication number
JPS61226677A
JPS61226677A JP6777185A JP6777185A JPS61226677A JP S61226677 A JPS61226677 A JP S61226677A JP 6777185 A JP6777185 A JP 6777185A JP 6777185 A JP6777185 A JP 6777185A JP S61226677 A JPS61226677 A JP S61226677A
Authority
JP
Japan
Prior art keywords
scintillator
optical
scintillators
integrated circuit
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6777185A
Other languages
Japanese (ja)
Inventor
Motosada Kiri
喜利 元貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6777185A priority Critical patent/JPS61226677A/en
Publication of JPS61226677A publication Critical patent/JPS61226677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To form a two-dimensional radioactive ray detector with a high sensitivity and a high resolution by leading an optical signal outputted from each scintillator composed of picture elements to the photoelectric element of an integrated circuit input part through an optical guide path composed of optical fiber, for instance and converting it into an electrical signal. CONSTITUTION:A scintillator matrix plate 2 is constituted in such a way that 1,024 pieces of square solid-state scintillators 1 having 0.3mmX0.3mm square bottoms are closely arrayed in a horizontal direction to obtain a set of scintillators, and 1,024 sets of them are piled up in a longitudinal direction. At the reverse side of an image receiving plane, the end part of each scintillator is processed in a projecting shape to form a convex lens, and a light beam emitted from the scintillator 1 is condensed at the light receiving end of an optical fiber 8 having a glass diameter of 0.14mm and a core diameter of 0.1mm. The light beam emitted from each scintillator, which is inputted to the photodiode 5 of the integrated circuit optical signal input part from each optical fiber 8, is converted into an electrical pulse signal.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本考案は2次元放射線検出装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a two-dimensional radiation detection device.

〈従来の技術〉 ′ X線やT線等の放射線等の放射線を用いた撮像装置
としては従来より先づ、使用放射線に対して高感度の“
感光”特性を有する特殊なエマルジョン・フィルムを受
像面に置いて被写体を写真画像として撮像するX線カメ
ラやγ線カメラが一番よく知られている。ところで写真
の場合、受像面上での到来放射線の強度分布は感光した
エマルジョン・フィルムの黒化度に反映されるが、黒化
度の測定では放射線強度を定量的に精密に求めることは
できず、従って、写真判定では被写体各部の物理的情報
を詳しく知ることは不可能である。
<Prior art> ′ As an imaging device that uses radiation such as X-rays and T-rays, it has been developed
The most well-known are X-ray cameras and gamma-ray cameras, which take a photographic image of a subject by placing a special emulsion film with photosensitive characteristics on the image-receiving surface. The intensity distribution of radiation is reflected in the degree of blackening of the exposed emulsion film, but measuring the degree of darkening cannot accurately determine the radiation intensity quantitatively. It is impossible to know the information in detail.

これに対して、受像面上にガイガガー・カウンターをス
キャンさせ、放射線強度を電気信号に変換して精密に測
定する方法もあるが、この方法は受像面の局部に関する
情報の詳しい解析には適するが、被写体全体よりの情報
を総括的に把握するには非常に不便である。従って、こ
のような方法は、「カメラ」としてよりは、もっばらX
線解析る置などに用いられている。
On the other hand, there is a method that scans the image receiving surface with a Geigagar counter and converts the radiation intensity into an electrical signal to precisely measure it, but this method is suitable for detailed analysis of information about the local area of the image receiving surface. , it is extremely inconvenient to comprehensively grasp information from the entire subject. Therefore, such a method is more
It is used for line analysis equipment, etc.

しかも、以上いづれの方法も、被写体各部からの放射線
強度や、被写体そのもの形状に、かなり速い時間的な変
化がある場合には、それに応答して情報を得ることは不
可能である。そのため、受像面を多数の画素で分割構成
し、各画素面に入射される放射線を電気信号に変換して
撮像する方法が考えられている。このような方法はγ線
カメラに応用されているが、構成が非常に複雑なだけで
なく、高感度、高分解能な撮像を実現するためには後述
のような解決を要する問題が多数存在する。
Moreover, with any of the above methods, it is impossible to obtain information in response to changes in the radiation intensity from various parts of the object or in the shape of the object itself if there are fairly rapid temporal changes. Therefore, a method has been considered in which the image receiving surface is divided into a large number of pixels and the radiation incident on each pixel surface is converted into an electrical signal to capture an image. This method has been applied to gamma-ray cameras, but not only is the configuration extremely complex, but there are also many problems that need to be solved in order to achieve high-sensitivity, high-resolution imaging, as described below. .

〈発明が解決しようとする問題点〉 例えば、医療用X線撮像装置の場合、受像面の寸法を3
0cmX30cmとして1000 x 1000個以上
の画素で受像面を構成することが望まれ、また撮像を数
ミリ秒以内に完了することが必要となる。しかも高感度
でロスの少ない情報を得るためには、各画素に入射され
る放射線強度をフォトン単位で検知することが必要であ
る。従って、例えば受像面に1枚のシンチレータを置い
て放射線像を光学像に変換し、この像を、マトリックス
状に配列された光電素子を入力部に有する、光パルス用
集積回路で電気信号として受像することが考えられる(
この場合集積回路入力部の各光電素子が画素となる)。
<Problems to be solved by the invention> For example, in the case of a medical X-ray imaging device, the size of the image receiving surface is
It is desired that the image receiving surface is composed of 1000 x 1000 or more pixels (0 cm x 30 cm), and it is necessary to complete imaging within several milliseconds. Furthermore, in order to obtain information with high sensitivity and little loss, it is necessary to detect the intensity of radiation incident on each pixel in units of photons. Therefore, for example, a single scintillator is placed on the image receiving surface to convert a radiation image into an optical image, and this image is received as an electrical signal by an integrated circuit for optical pulses, which has photoelectric elements arranged in a matrix in its input section. It is possible to do (
In this case, each photoelectric element of the integrated circuit input section becomes a pixel).

しかし、既存のこの種集積回路では、光電素子の数は3
2 X 32 = 1024、入力部の受光面積は1(
bm2程度であって、側底、30cmX30cmの受像
面をカバーすることは不可能であり、将来においてもこ
のように大きな受光面積を育する集積回路の実現は期待
できない。勿論、多数の集積回路を用いても、並べられ
た集積回路の受光窓枠間が受像面を縦横に分断し、実用
とならない。本発明は、以上のような問題を解決し、高
感度、高分解能の2次元放射線検出装置を提供すること
を目的とする。
However, in existing integrated circuits of this type, the number of photoelectric elements is 3.
2 x 32 = 1024, the light receiving area of the input section is 1 (
bm2, it is impossible to cover the image receiving surface of 30 cm x 30 cm at the bottom of the side, and it is not expected that an integrated circuit with such a large light receiving area will be realized in the future. Of course, even if a large number of integrated circuits are used, the light receiving window frames of the arranged integrated circuits divide the image receiving surface vertically and horizontally, making this impractical. The present invention aims to solve the above problems and provide a two-dimensional radiation detection device with high sensitivity and high resolution.

〈問題点を解決するための手段〉 本発明においては上記の問題を解決するため、放射線像
受像面に、マl−IJソックス状配列された多数のシン
チレータを配し、これらのシンチレータによって放射線
像の段階で受像面を多数の画素に分割し、各シンチレー
タの光信号を、光信号受信用集積回路信号入力部の各光
電素子に導いている。このため、本発明により放射線検
出装置は、放射線検知面に密接配列された複数個のシン
チレータと、これら複数個のシンチレータのそれぞれに
対応して各シンチレータの出力光を光−電気変換素子に
導く複数個の光誘導路と、信号入力部が上記複数個の光
誘導路に対して配列された複数個の光−電気変換素子で
構成されこれら複数個の光−電気変換素子の出力信号を
測定する複数個の電子回路が集積されて成る複数個の集
積回路とから成ることを特徴としている。
<Means for solving the problem> In order to solve the above problem, in the present invention, a large number of scintillators arranged in a multi-IJ sock shape are arranged on the radiation image receiving surface, and the radiation image is At this stage, the image receiving surface is divided into a large number of pixels, and the optical signal from each scintillator is guided to each photoelectric element of the signal input section of the integrated circuit for receiving optical signals. Therefore, the radiation detection device according to the present invention includes a plurality of scintillators closely arranged on a radiation detection surface, and a plurality of scintillators that guide the output light of each scintillator to a photoelectric conversion element corresponding to each of the plurality of scintillators. The signal input section is composed of a plurality of optical guide paths and a plurality of optical-to-electric conversion elements arranged with respect to the plurality of optical guide paths, and measures the output signals of the plurality of optical-to-electrical conversion elements. It is characterized by comprising a plurality of integrated circuits formed by integrating a plurality of electronic circuits.

く作用〉 従って、画素を構成する各シンチレータから出力される
光信号は、例えば光ファイバーで構成される光誘導路を
通って集積回路入力部の光電素子に導かれ、そこで電気
信号に変換される。ところで、変換された電気信号は、
入力光のフォトン数に対応するパルス信号(パルス強度
は、入力部へ到達時刻が識、別できず同時到着と見做さ
れるフォトンの数に比例する)であって、これは、集積
回路中のPHA回路部およびバイナリ−・カウンタによ
って信号処理され出力データ・バスより出力される。
Effect> Therefore, the optical signal output from each scintillator constituting the pixel is guided to the photoelectric element of the integrated circuit input section through a light guide path composed of, for example, an optical fiber, and is converted into an electrical signal there. By the way, the converted electrical signal is
A pulse signal corresponding to the number of photons of the input light (the pulse intensity is proportional to the number of photons that cannot be distinguished at the time of arrival at the input part and is considered to arrive at the same time). The signal is processed by the PHA circuit section and the binary counter and output from the output data bus.

〈実施例〉 以下に本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の全体構成を示す図で、底面を0
.3 mmxO,3mの正方形とする角柱状の固体シン
チレータ1を、例えば、1024個水平方向に密接配列
したシンチレータの組を1024組縦方向に積み重ねて
成るシンチレータ・マトリックス板2を構成し、その片
面を面積3072 (=0.3 X1024)鶴平方の
受像面としている。受像面の裏側では各シンチレータの
端部は凸レンズを構成するよう凸面状に加工され、(第
3図の7参照)、シンチレ−夕1の発光は、各シンチレ
ータに対応して準備されたクラッド径0.14mm、コ
ア径0.1鶴の光ファイバー8の受光端にそれぞれ集光
される(第3図参照)。これらの光ファイバ8は、水平
方向に1024個配列されて成る上記シンチレータの組
毎に光ファイバー・ハンドル3に束ねられ、各シンチレ
ータの発光を、フォト・ダイオードを入力素子とする集
積回路4に導く。集積回路4の光信号入力窓には、第2
図に示すように32 x 32 = 1024個のフォ
ト・ダイオード5が入力素子として方形に配列されてお
り、各々に各光ファイバを通じて各シンチレータの発光
が入力されるようになっている。このようにして1個の
集積回路は水平に配列された1024個のシンチレータ
の組の1つを受は持つことになるので、集積回路の総数
は、このようなシンチレータの組の縦方向の積み重ね段
数(1024段)に対応して1024個となる。これら
1024個の集積回路は、その取付面積をできるだけ小
さくするため、光信号入力窓以外の部分が斜めに重なり
合うよう、図に示すようにルーバ状に配列された32板
の取付基板6に、光信号入力窓の部分だけを露呈させて
1枚につき32個の集積回路を取り付ける。このような
取付方法により、各取付基板上の集積回路取付間隔を1
511として、集積回路1024 (=32x32)個
の取付部占有面積は約50(hsX 500mの範囲に
おさまる。
Figure 1 is a diagram showing the overall configuration of an embodiment of the present invention, with the bottom surface being 0.
.. For example, a scintillator matrix plate 2 is constructed by vertically stacking 1024 sets of 1024 scintillators closely arranged in the horizontal direction, and one side of the prismatic solid scintillator 1 is 3 mm x O, 3 m square. The image receiving surface has an area of 3072 (=0.3×1024) and a square crane. On the back side of the image receiving surface, the end of each scintillator is processed into a convex surface to form a convex lens (see 7 in Figure 3), and the light emitted from scintillator 1 is controlled by the diameter of the cladding prepared corresponding to each scintillator. The light is focused on the receiving end of an optical fiber 8 with a core diameter of 0.14 mm and a core diameter of 0.1 mm (see FIG. 3). These optical fibers 8 are bundled into the optical fiber handle 3 for each set of 1024 scintillators arranged in the horizontal direction, and the light emitted from each scintillator is guided to an integrated circuit 4 having a photodiode as an input element. The optical signal input window of the integrated circuit 4 includes a second
As shown in the figure, 32 x 32 = 1024 photodiodes 5 are arranged in a rectangular array as input elements, and the light emitted from each scintillator is inputted to each one through each optical fiber. In this way, one integrated circuit will have one of 1024 scintillator sets arranged horizontally, and the total number of integrated circuits will be equal to the vertical stacking of such scintillator sets. The number is 1024 corresponding to the number of stages (1024 stages). In order to minimize the mounting area of these 1024 integrated circuits, the light beams are mounted on a mounting board 6 of 32 boards arranged in a louver shape as shown in the figure, so that the parts other than the optical signal input windows overlap diagonally. Thirty-two integrated circuits are mounted on each board with only the signal input window exposed. With this mounting method, the integrated circuit mounting interval on each mounting board can be reduced to 1
511, the area occupied by the mounting portion of 1024 (=32×32) integrated circuits falls within a range of approximately 50 (hs×500 m).

以上のような全体構成において、各光ファイバ8により
集積回路光信号入力部のフォト・ダイオード5に入力さ
れる各シンチレータの発光は、そこで電気パルス信号に
変換される。集積回路は第3図に示すような内部回路構
成を有しており、フォト・ダイオード5の出力信号は、
各フォト・ダイオード毎に設けられたパルス高検出増幅
回路部とバイナリ−・カウンタ部によって信号処理され
、各シンチレータlによって構成される撮像面の画素毎
に、入射放射線強度がフォトン・エネルギーに対応する
精度で撮像電気信号に変換される。このようにして高感
度、高分解能撮像信号が得られる。
In the overall configuration as described above, the light emitted from each scintillator that is input to the photodiode 5 of the integrated circuit optical signal input section through each optical fiber 8 is converted into an electric pulse signal there. The integrated circuit has an internal circuit configuration as shown in FIG. 3, and the output signal of the photodiode 5 is as follows.
The signal is processed by the pulse height detection amplification circuit section and binary counter section provided for each photodiode, and the incident radiation intensity corresponds to photon energy for each pixel on the imaging surface constituted by each scintillator l. The image is converted into an electrical signal with precision. In this way, a high-sensitivity, high-resolution imaging signal can be obtained.

以上の実施例においては、光ファイバー・バンドル3 
(第1図)は集積回路4の光信号入力窓に直接挿入され
、各光ファイバーの出力光が、対応する各フォト・ダイ
オードに直接入力されるようになっているが、光ファイ
バ・バンドルの断面を光信号入力窓に一致させることが
できない場合や、何らかの事情でバンドルの終端と光信
号入力窓の距離をおかねばならないときには(例えば、
真空部が介在するような場合)、各光バンドル毎に集光
レンズ等の光学系を介して、光ファイバの出力光をフォ
トダイオードに入力することができるのは勿論である。
In the above embodiment, the optical fiber bundle 3
(Fig. 1) is inserted directly into the optical signal input window of the integrated circuit 4, so that the output light of each optical fiber is directly input to each corresponding photodiode. cannot be matched with the optical signal input window, or if for some reason the end of the bundle and the optical signal input window must be separated (for example,
Of course, if a vacuum exists), the output light of the optical fiber can be input to the photodiode via an optical system such as a condenser lens for each optical bundle.

また、以上はフォトン計数法による光量測定で説明した
が、通常のアナログ式光量測定によっても実現できる。
Further, although the above description has been made by measuring the amount of light using a photon counting method, it can also be realized by a normal analog method of measuring the amount of light.

く効果〉 以上の説明から明らかなように本発明によれば、「受光
」面積の非常に小さい多数のシンチレータで受像面を小
さな画素に分解することができ、また、各シンチレータ
の発光はそれぞれ光ファイバーで光信号用集積回路の入
力部に導かれるので、既存の光信号集積回路を用いて、
任意の拡がりを有する2次元放射線像を、分断線を生ず
ることなく、高感度、高分解能で撮像することができる
Effect> As is clear from the above description, according to the present invention, the image receiving surface can be divided into small pixels using a large number of scintillators with very small "light receiving" areas, and the light emitted from each scintillator is transmitted through an optical fiber. is guided to the input part of the optical signal integrated circuit, so using the existing optical signal integrated circuit,
A two-dimensional radiographic image having an arbitrary spread can be captured with high sensitivity and high resolution without creating a dividing line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成を示す図である。 第2図は上記実施例に用いた集積回路の光信号入力部に
おけるフォト・ダイオードの配列を示す図−である。第
3図は上記実施例におけるシンチレータの発光を上記集
積回路へ導く手段、および同集積回路の内部構成を示す
図である。 1・・・シンチレータ 2・・・シンチレータ・マトリックス板3・・・光ファ
イバ・バンドル 4・・・集積回路 5・・・フォト・ダイオード 6・・・集積回路取付板 7・・・シンチレータ1の凸レンズ状端部8・・・光フ
ァイバ 9・・・パルス高検出回路 10・・・バイナリ・カウンタ
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. FIG. 2 is a diagram showing the arrangement of photodiodes in the optical signal input section of the integrated circuit used in the above embodiment. FIG. 3 is a diagram showing means for guiding light emitted from the scintillator to the integrated circuit in the above embodiment, and the internal structure of the integrated circuit. 1...Scintillator 2...Scintillator matrix plate 3...Optical fiber bundle 4...Integrated circuit 5...Photodiode 6...Integrated circuit mounting plate 7...Convex lens of scintillator 1 Shape end portion 8...Optical fiber 9...Pulse height detection circuit 10...Binary counter

Claims (3)

【特許請求の範囲】[Claims] (1)2次元的拡がりを有して入射されてくる放射線を
検知する装置であって、放射線検知面に密接配列された
複数個のシンチレータと、これら複数個のシンチレータ
のそれぞれに対応して各シンチレータの出力光を光−電
気変換素子に導く複数個の光誘導路と、信号入力部が上
記複数個の光誘導路に対して配列された複数個の光−電
気変換素子で構成されこれら複数個の光−電気変換素子
の出力信号を測定する複数個の電子回路が集積されて成
る複数個の集積回路とから成ることを特徴とする、2次
元放射線検出装置。
(1) A device that detects incident radiation with a two-dimensional spread, which includes a plurality of scintillators closely arranged on a radiation detection surface, and a A plurality of light guide paths for guiding the output light of the scintillator to a light-to-electrical conversion element, and a plurality of light-to-electricity conversion elements each having a signal input section arranged with respect to the plurality of light guide paths. 1. A two-dimensional radiation detection device comprising: a plurality of integrated circuits in which a plurality of electronic circuits for measuring output signals of a plurality of photoelectric conversion elements are integrated.
(2)上記複数個のシンチレータの配列が、横方向に1
列に並べられた複数個のシンチレータより成るシンチレ
ータの列を複数個縦に積み重ねて成ることを特徴とする
、特許請求の範囲第1項記載の2次元放射線検出装置。
(2) The above-mentioned plurality of scintillators are arranged in one direction in the horizontal direction.
2. A two-dimensional radiation detection device according to claim 1, characterized in that a plurality of scintillator rows each consisting of a plurality of scintillators arranged in rows are vertically stacked.
(3)上記複数個の集積回路が、よろい戸状に配列され
ていることを特徴とする、特許請求の範囲第1項または
第2項記載の2次元放射線検出装置。
(3) The two-dimensional radiation detection device according to claim 1 or 2, wherein the plurality of integrated circuits are arranged in the form of a shutter.
JP6777185A 1985-03-30 1985-03-30 Two-dimensional radioactive ray detector Pending JPS61226677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6777185A JPS61226677A (en) 1985-03-30 1985-03-30 Two-dimensional radioactive ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6777185A JPS61226677A (en) 1985-03-30 1985-03-30 Two-dimensional radioactive ray detector

Publications (1)

Publication Number Publication Date
JPS61226677A true JPS61226677A (en) 1986-10-08

Family

ID=13354537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6777185A Pending JPS61226677A (en) 1985-03-30 1985-03-30 Two-dimensional radioactive ray detector

Country Status (1)

Country Link
JP (1) JPS61226677A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304189A (en) * 1987-04-10 1988-12-12 ブリテッシュ エアロスペース パブリック リミテッド カンパニー Camera
JPS6439576A (en) * 1987-08-05 1989-02-09 Hamamatsu Photonics Kk Radiation position detector
JPH04276587A (en) * 1991-03-05 1992-10-01 Hamamatsu Photonics Kk Radiation detector
JPH0572344A (en) * 1991-09-11 1993-03-26 Hamamatsu Photonics Kk Radiation detecting apparatus
US5391879A (en) * 1993-11-19 1995-02-21 Minnesota Mining And Manufacturing Company Radiation detector
WO2005103759A1 (en) * 2004-04-20 2005-11-03 Forimtech Sa Large area radiation imaging detector
JP2006519377A (en) * 2003-01-28 2006-08-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray detector
JP2013134157A (en) * 2011-12-27 2013-07-08 Hitachi Ltd Dose rate measurement system and dose rate measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522485A (en) * 1975-06-24 1977-01-10 Mitsui Kinen Biyouin Radiation beam visible light converter
JPS5610269A (en) * 1979-07-05 1981-02-02 Sumitomo Electric Ind Ltd Optical sensor for radiation
JPS5875083A (en) * 1981-10-30 1983-05-06 Toshiba Corp Radiation detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522485A (en) * 1975-06-24 1977-01-10 Mitsui Kinen Biyouin Radiation beam visible light converter
JPS5610269A (en) * 1979-07-05 1981-02-02 Sumitomo Electric Ind Ltd Optical sensor for radiation
JPS5875083A (en) * 1981-10-30 1983-05-06 Toshiba Corp Radiation detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304189A (en) * 1987-04-10 1988-12-12 ブリテッシュ エアロスペース パブリック リミテッド カンパニー Camera
JPS6439576A (en) * 1987-08-05 1989-02-09 Hamamatsu Photonics Kk Radiation position detector
JPH0571914B2 (en) * 1987-08-05 1993-10-08 Hamamatsu Photonics Kk
JPH04276587A (en) * 1991-03-05 1992-10-01 Hamamatsu Photonics Kk Radiation detector
JPH0572344A (en) * 1991-09-11 1993-03-26 Hamamatsu Photonics Kk Radiation detecting apparatus
US5391879A (en) * 1993-11-19 1995-02-21 Minnesota Mining And Manufacturing Company Radiation detector
JPH07198852A (en) * 1993-11-19 1995-08-01 Minnesota Mining & Mfg Co <3M> Radiation detector
JP2006519377A (en) * 2003-01-28 2006-08-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray detector
WO2005103759A1 (en) * 2004-04-20 2005-11-03 Forimtech Sa Large area radiation imaging detector
JP2013134157A (en) * 2011-12-27 2013-07-08 Hitachi Ltd Dose rate measurement system and dose rate measurement method
US9274233B2 (en) 2011-12-27 2016-03-01 Hitachi, Ltd. Dosage rate measurement system and dosage rate measurement method

Similar Documents

Publication Publication Date Title
EP0262267B1 (en) Radiation image detecting apparatus
US4878234A (en) Dental x-ray diagnostics installation for producing panorama slice exposures of the jaw of a patient
US5760403A (en) High modulation transfer function CCD X-ray image sensor apparatus and method
JPH0975332A (en) X-ray diagnostic device
EP0089148B1 (en) Multiple line detector for use in radiography
US5118934A (en) Fiber fed x-ray/gamma ray imaging apparatus
US5554850A (en) X-ray scintillating plate utilizing angled fiber optic rods
EP0704131B1 (en) Imaging system
JPS61226677A (en) Two-dimensional radioactive ray detector
KR20000060730A (en) Method of and Apparatus for high resolution X ray photographing using multiple imaging devices.
US5017782A (en) X-ray detector for radiographic imaging
US5548122A (en) Radiation detector
EP0613023B1 (en) Radiation camera systems
CN101939667B (en) Device and method for checking an image
JP3560624B2 (en) Image signal reading method and apparatus
JP2851319B2 (en) Radiation detector of radiation measurement device
KR890000312B1 (en) Radioactive detecting device
JP2000300546A (en) Radiation photographing apparatus
EP1481262B1 (en) Apparatus and method for detection of radiation
RU2343504C2 (en) Method of registration of x-ray radiation and device for its realisation
CA2360129A1 (en) Ccd array as a multiple-detector in an optical imaging apparatus
RU63945U1 (en) X-RAY MATRIX RECEIVER
RU2123710C1 (en) Matrix x-ray receiver
JPH10300858A (en) Two-dimensional radiation detector
JPS61102579A (en) Detecting device for radiation source position