JPH0735557B2 - Superconducting wire manufacturing method - Google Patents

Superconducting wire manufacturing method

Info

Publication number
JPH0735557B2
JPH0735557B2 JP60120685A JP12068585A JPH0735557B2 JP H0735557 B2 JPH0735557 B2 JP H0735557B2 JP 60120685 A JP60120685 A JP 60120685A JP 12068585 A JP12068585 A JP 12068585A JP H0735557 B2 JPH0735557 B2 JP H0735557B2
Authority
JP
Japan
Prior art keywords
billet
core material
holes
manufacturing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60120685A
Other languages
Japanese (ja)
Other versions
JPS61279661A (en
Inventor
健二郎 小西
▲靖▼三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP60120685A priority Critical patent/JPH0735557B2/en
Publication of JPS61279661A publication Critical patent/JPS61279661A/en
Publication of JPH0735557B2 publication Critical patent/JPH0735557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、超電導線材の製造方法に関するものである。TECHNICAL FIELD The present invention relates to a method for manufacturing a superconducting wire.

〔従来技術とその問題点〕[Prior art and its problems]

従来、Nb3SnやV3Gaなどの超電導フィラメントを含む超
電導導体を製造する方法として、次のようなものが公知
である。
Conventionally, as a method for producing a superconducting conductor containing a superconducting filament such as Nb 3 Sn or V 3 Ga, the following is known.

(a)Cu−Snブロンズからなる断面円形のビレットに軸
線方向に多数の孔を形成し、それぞれの孔にNb棒からな
る芯材を挿入したのち、これを押出加工し、さらに減面
加工して線材とし、この線材に拡散熱処理を施して超電
導導体を得る方法。
(A) A large number of holes are formed in the axial direction in a billet made of Cu-Sn bronze with a circular cross section, and a core material made of Nb rods is inserted into each of the holes, then extruded and then surface-reduced. To obtain a superconducting conductor by applying diffusion heat treatment to this wire.

(b)断面円形の銅ビレットに軸線方向に多数の孔を形
成し、それぞれの孔に、(a)の中間工程で得られる
「Cu−Snブロンズマトリックス中に多数のNb芯が埋め込
まれた複合棒」からなる芯材を挿入したのち、これを押
出加工し、さらに減面加工して線材とし、この線材に拡
散熱処理を施して超電導導体を得る方法。
(B) A complex in which a large number of Nb cores are embedded in a Cu-Sn bronze matrix obtained in the intermediate step of (a), by forming a large number of holes in a copper billet having a circular cross section in the axial direction. A method of obtaining a superconducting conductor by inserting a core material composed of "rods", extruding the core material, and further reducing the surface of the core material into a wire material, and subjecting the wire material to diffusion heat treatment.

これらはNb3Snの場合であるがV3Gaの場合も同様であ
る。
These are the cases of Nb 3 Sn, but the same applies to the case of V 3 Ga.

このように断面円形のビレットに軸線方向に多数の孔を
形成し、それぞれの孔に芯材を挿入した後、これを押出
加工し、さらに減面加工して超電導線材を製造する場
合、ビレットの孔の配置は従来、第3図または第4図の
ようになっていた。すなわち第3図はビレット1の中心
に1本の孔2aを形成し、その周囲に6本の孔2bを、さら
にその周囲12本の孔2cを形成した例で、隣合う孔の間隔
はそれぞれ等しくしてある。この例では中心の周囲の孔
は2層までであるが、3層以上形成することもあり、2
層目以上の孔数は〔内層の孔数+6〕本となる。第4図
は第3図の孔の配置において中心の孔を省略した例であ
る。
In this way, a large number of holes are formed in the axial direction in the billet having a circular cross section, the core material is inserted into each of the holes, and the core material is extruded and further surface-reduced to produce a superconducting wire. The holes are conventionally arranged as shown in FIG. 3 or FIG. That is, FIG. 3 shows an example in which one hole 2a is formed in the center of the billet 1, six holes 2b are formed around the hole, and 12 holes 2c are formed around the hole 2a. They are equal. In this example, the number of holes around the center is up to two layers, but three or more layers may be formed.
The number of holes in the layer and above is [the number of holes in the inner layer + 6]. FIG. 4 is an example in which the central hole is omitted in the arrangement of the holes in FIG.

第3図のような孔の配置では、押出加工のあとの減面加
工の際に、中心に位置する芯材が破断しやすいことが知
られている。中心の芯材が破断したあとも減面加工を続
けると、その周囲の芯材も破断するようになり、ついに
は線材の断線に至り、加工不能となる。このような欠点
をなくすため第4図の孔の配置が考案されたもので、通
常はこの配置で超電導線材の製造が行われている。
It is known that in the arrangement of holes as shown in FIG. 3, the core material located at the center is easily broken during the surface-reduction processing after the extrusion processing. If surface reduction processing is continued even after the central core material is broken, the core material around the core material will also be broken, and eventually the wire material will be broken, making it impossible to process. In order to eliminate such a defect, the hole arrangement shown in FIG. 4 was devised, and normally, the superconducting wire rod is manufactured with this arrangement.

ところで上記のような製造方法を実施する場合、いくつ
かの制約がある。まずビレットの外径は押出機によって
規制されるため一定である。また隣合う孔の間隔は孔と
孔の間の最小肉厚(以下孔間肉厚という)に影響する
が、この孔間肉厚があまり薄くなることは好ましくな
く、例えば100mmφビレットの場合、孔間肉厚は4mm以上
必要とされる。さらにビレット外周面に最も近い孔とビ
レット外周面の間の肉厚(以下最外肉厚という)は上記
孔間肉厚よりも十分大きいことが必要で、例えば100mm
φビレットでは、6mm以上あることが望ましい。
By the way, when carrying out the above-described manufacturing method, there are some restrictions. First, the outer diameter of the billet is constant because it is regulated by the extruder. Also, the distance between adjacent holes affects the minimum wall thickness between holes (hereinafter referred to as "hole thickness"), but it is not preferable that this hole thickness be too thin. A wall thickness of 4 mm or more is required. Furthermore, the wall thickness between the hole closest to the billet outer peripheral surface and the billet outer peripheral surface (hereinafter referred to as the outermost wall thickness) must be sufficiently larger than the above hole thickness, for example, 100 mm.
For φ billet, it is desirable that it is 6 mm or more.

このような制約のもとで、超電導線材を構成する各材料
の占有面積を定めると、ビレットに形成する孔の径は自
ずと定まることになる。例えばビレット外径を100mm、
ビレット材の占有面積を60%、芯材の占有面積を40%、
孔間肉厚を4mmとすれば、第3図の孔の配置では孔の直
径が14.51mm、最外肉厚が5.8mmとなり、第4図の孔の配
置では孔の直径が14.91mm、最外肉厚が4.8mmとなる。こ
れから分かるように第4図の孔の配置にすると、第3図
の孔の配置の場合より、最外肉厚が薄くなることにな
る。
Under such restrictions, if the area occupied by each material forming the superconducting wire is determined, the diameter of the hole formed in the billet is naturally determined. For example, the billet outer diameter is 100 mm,
60% of billet material occupied area, 40% of core material occupied area,
If the hole thickness is 4 mm, the hole arrangement shown in Fig. 3 has a hole diameter of 14.51 mm and the outermost wall thickness is 5.8 mm, and the hole arrangement shown in Fig. 4 has a hole diameter of 14.91 mm, The outer wall thickness is 4.8 mm. As can be seen from this, when the holes are arranged as shown in FIG. 4, the outermost wall thickness becomes smaller than that in the case where the holes are arranged as shown in FIG.

最外肉厚が薄くなると、押出あるいはその後の減面加工
において最外層芯材の剥げ出しが生じるおそれがあり、
好ましくない。特に押出工程では最外層の芯材がビレッ
トの段階より外側に変位する傾向があるため、芯材の剥
げ出しが生じやすい。つまり第4図の孔の配置にすると
中心芯材の破断に基づく断線は防止できるが、同じ条件
下では最外肉厚が薄くなるため芯材の剥げ出しが生じ易
くなるという問題が発生する。
If the outermost wall thickness becomes thin, the outermost core material may peel off during extrusion or subsequent surface reduction processing,
Not preferable. Particularly in the extrusion process, the core material of the outermost layer tends to be displaced to the outside of the billet stage, so that the core material is likely to be peeled off. That is, the arrangement of the holes in FIG. 4 can prevent the disconnection due to the breakage of the central core material, but under the same condition, the outermost wall thickness becomes thin, so that the core material is likely to be peeled off.

〔問題点の解決手段とその作用〕[Means for solving problems and their effects]

本発明は、上記のような従来技術の問題点に鑑み、中心
芯材の破断に基づく断線がなく、しかも芯材の剥げ出し
のない超電導線材の製造方法を提供するもので、その方
法は、断面円形のビレットに、その中心軸線の周囲に3
本、その周囲に〔内層の孔数+6〕本の孔を、隣合う孔
の間隔が等しくなるように形成し、それぞれの孔に芯材
を挿入したのち、これを押出加工し、さらに減面加工し
て線材とすることを特徴とするものである。
The present invention, in view of the problems of the prior art as described above, there is no disconnection due to the breakage of the central core material, and further provides a method for producing a superconducting wire rod without peeling of the core material. Billet with circular cross section, 3 around the center axis
Book, [the number of holes in the inner layer + 6] holes are formed around the book so that the intervals between adjacent holes are equal, and after inserting the core material into each hole, extruding this and further reducing the surface area It is characterized by being processed into a wire rod.

この方法によると、ビレット中心に芯材が配置されない
ため、芯材の破断が生じにくく、また最外肉厚を厚くで
きるため芯材の剥げ出しを防止できる。
According to this method, since the core material is not arranged at the center of the billet, the core material is unlikely to break, and the outermost wall thickness can be increased, so that the core material can be prevented from peeling off.

以下、本発明の実施例を詳述する。Hereinafter, examples of the present invention will be described in detail.

〔実施例〕〔Example〕

この実施例は、銅ビレットに多数の孔を形成し、その中
に芯材としてCu−Snブロンズマトリックス中に多数のNb
芯が埋め込まれた複合棒を挿入したのち、押出加工、減
面加工を行うものである。各条件は以下のとおりであ
る。
This example forms a large number of holes in a copper billet, in which a large number of Nb in a Cu-Sn bronze matrix is used as a core material.
After inserting the composite rod in which the core is embedded, extrusion processing and surface reduction processing are performed. Each condition is as follows.

銅ビレット:外径 100mm 孔間肉厚 4mm 芯材 複合棒:Cu−14.5wt%Snブロンズ Nb芯数 367芯 Cu−Snブロンズ/Nb比 3.0 拡散バリア:Nb箔 占有面積:銅 60% 拡散バリア 8% Nb芯 8% Cu−Snブロンズ 24% このような条件のもとで、第1図に示すようにビレット
1の中心軸線の周囲に3本の孔2aを、その周囲に9本の
孔2bを形成するものとすると、各孔の直径は18.26mm、
最外肉厚は7.0mmとなり、また複合棒の直径は16.33mm、
拡散バリアの厚さは0.96mmとなる。
Copper billet: Outer diameter 100mm Hole thickness 4mm Core material Composite rod: Cu-14.5wt% Sn bronze Nb Number of cores 367 cores Cu-Sn bronze / Nb ratio 3.0 Diffusion barrier: Nb foil Occupied area: Copper 60% Diffusion barrier 8 % Nb core 8% Cu-Sn bronze 24% Under these conditions, as shown in Fig. 1, there are three holes 2a around the center axis of the billet 1 and nine holes 2b around it. And the diameter of each hole is 18.26 mm,
The outermost wall thickness is 7.0 mm, the diameter of the composite rod is 16.33 mm,
The thickness of the diffusion barrier will be 0.96 mm.

また同じ条件で第3図の孔の配置にすると、各孔の直径
は14.51mm、最外肉厚は5.8mmとなり、また複合棒の直径
は12.98mm、拡散バリアの厚さは0.77mmとなる。
If the holes are arranged as shown in Fig. 3 under the same conditions, the diameter of each hole is 14.51 mm, the outermost wall thickness is 5.8 mm, the composite rod diameter is 12.98 mm, and the diffusion barrier thickness is 0.77 mm. .

さらに同じ条件で第4図の孔の配置にすると、各孔の直
径は14,91mm、最外肉厚は4.8mmとなり、また複合棒の直
径は13.33mm、拡散バリアの厚さは0.79mmとなる。
If the holes are arranged as shown in Fig. 4 under the same conditions, the diameter of each hole is 14,91 mm, the outermost wall thickness is 4.8 mm, the composite rod diameter is 13.33 mm, and the diffusion barrier thickness is 0.79 mm. Become.

以上の設計値に基づき、まず実施例として、第1図のよ
うなビレットを作製するとともに、外径16.33mmに加工
した複合棒に厚さ0.96mmになるようにNb箔を巻いて芯材
を作製し、この芯材をビレットの各孔に挿入して複合ビ
レットを作製した。
Based on the above design values, as an example, first, a billet as shown in FIG. 1 was manufactured, and a Nb foil was wound around a composite rod processed to an outer diameter of 16.33 mm to a thickness of 0.96 mm to form a core material. The composite billet was prepared by inserting the core material into each hole of the billet.

つぎに比較例1として、第3図のようなビレットを作製
するとともに、外径12.98mmに加工した複合棒に厚さ0.7
7mmになるようにNb箔を巻いて芯材を作製し、この芯材
をビレットの各孔に挿入して複合ビレットを作製した。
Next, as Comparative Example 1, a billet as shown in FIG. 3 was produced, and a composite rod processed to have an outer diameter of 12.98 mm had a thickness of 0.7.
A Nb foil was wound to have a thickness of 7 mm to prepare a core material, and the core material was inserted into each hole of the billet to prepare a composite billet.

さらに比較例2として、第4図のようなビレットを作製
するとともに、外径13.33mmに加工した複合棒に厚さ0.7
9mmになるようにNb箔を巻いて芯材を作製し、この芯材
をビレットの各孔に挿入して複合ビレットを作製した。
Further, as Comparative Example 2, a billet as shown in FIG. 4 was produced, and a composite rod processed to have an outer diameter of 13.33 mm had a thickness of 0.7.
A Nb foil was wound so as to be 9 mm to prepare a core material, and the core material was inserted into each hole of the billet to prepare a composite billet.

これらの複合ビレットを約800℃に加熱して押し出し、
それぞれ外径25mmの複合母材を得た。この時点で比較例
2の複合母材は押出開始部に一部芯材の剥げ出しがあっ
たが、それを除けば表面は正常であった。実施例および
比較例1の複合母材は問題がなかった。断面形状を観察
したところでは、いずれの複合母材もビレットの段階よ
り芯材が相対的に外側に変位していることが判った。
These composite billets are heated to about 800 ° C and extruded,
Composite base materials each having an outer diameter of 25 mm were obtained. At this time, the core material of the composite base material of Comparative Example 2 was partially peeled off at the extrusion start portion, but the surface was normal except for this. The composite base materials of Example and Comparative Example 1 had no problem. When the cross-sectional shape was observed, it was found that in any of the composite base materials, the core material was relatively displaced outward from the billet stage.

つぎにこれらの複合母材の正常部について、溝ロール加
工と焼鈍の繰り返しにより外径10mmまで減面加工し、そ
の後は丸ダイスによる引き抜き加工と焼鈍の繰り返しに
よりさらに減面加工を進めた。焼鈍は線材の断面積が約
20%減少する毎に、550℃×30分の条件で行った。
Next, the normal part of these composite base materials was subjected to surface reduction processing to an outer diameter of 10 mm by repeating groove roll processing and annealing, and then further surface reduction processing was carried out by repeating drawing and annealing with a round die. For annealing, the cross-sectional area of the wire is approximately
Every 20% reduction, it was performed under the condition of 550 ° C x 30 minutes.

この過程で1.5mmφから1.4mmφへの伸線中に、比較例1
の線材が断線した。残った試料をチェックした結果、2.
0mmの試料で、中心の芯材が所々で破断しており、加工
を進めるに従って、これが全芯材に拡大していることが
判った。このため比較例1の加工はここで中断し、実施
例と比較例2の加工をさらに進めて、最終的に0.75mmφ
の線材を得た。
In this process, during the wire drawing from 1.5 mmφ to 1.4 mmφ, Comparative Example 1
The wire was broken. As a result of checking the remaining sample, 2.
It was found that in the 0 mm sample, the central core material was broken at some places, and as the processing proceeded, this expanded to the whole core material. Therefore, the processing of Comparative Example 1 is interrupted here, and the processing of Example and Comparative Example 2 is further advanced to finally obtain 0.75 mmφ.
I got the wire.

仕上がった線材にそれぞれガラス編組を約0.05mmの厚さ
に施し、1.1mの長さに切り取ったものを、それぞれ外径
30mm、長さ10mmのステンレス筒に密巻きし、真空中で67
0℃×5日の拡散熱処理を行った。つぎにこのコイルの
両端から5cmの所に(即ち、その間隔を1mとして)電圧
測定用のリード線を取り付けた。その後このコイルをエ
ポキシ含浸して巻線を固定した。
Each of the finished wires was glass braided to a thickness of about 0.05 mm and cut into a length of 1.1 m.
30mm, 10mm long stainless steel tube tightly wound, 67 in vacuum
Diffusion heat treatment was performed at 0 ° C. for 5 days. Next, a lead wire for voltage measurement was attached at a position 5 cm from both ends of this coil (that is, the interval was 1 m). Thereafter, this coil was impregnated with epoxy to fix the winding.

つぎに各コイルをクライオスタット内のマグネットの中
に挿入し、4.2K、10Tの条件で臨界電流を測定した。臨
界電流の基準は、1mのコイルでの電圧発生が100μVの
電流値とした。各コイルの臨界電流の測定値は実施例が
162A、比較例2が114Aであった。これを臨界電流密度に
換算すると実施例は0.92×105A/cm2であり、比較例2は
0.65×105A/cm2であった。
Next, each coil was inserted into the magnet in the cryostat, and the critical current was measured under the conditions of 4.2K and 10T. The reference of the critical current was a current value of 100 μV for voltage generation in a 1 m coil. The measured value of the critical current of each coil is
162A and 114A in Comparative Example 2. When converted into a critical current density, it was 0.92 × 10 5 A / cm 2 in Example, and Comparative Example 2 was
It was 0.65 × 10 5 A / cm 2 .

残った試料をチェックしたところ、比較例2の線材では
1mmφ以下になる時点から18本の芯材のうち最外に突出
する6本の芯材の拡散バリアの損傷が始まり、0.75mmの
時点では、この6本の芯材がそれぞれ約100mm間隔で分
断されていることが判った。この原因は最外肉厚が薄い
ためと考えられる。実施例の線材については異常は発見
されなかった。
When checking the remaining sample, in the wire rod of Comparative Example 2,
From the time of 1 mmφ or less, the diffusion barriers of the six cores out of the 18 cores started to damage, and at 0.75mm, these six cores were divided at intervals of about 100mm. It turned out that it was done. This is probably because the outermost wall thickness is thin. No abnormality was found in the wire rods of the examples.

以上の試作により本発明の有効性が明らかとなった。The effectiveness of the present invention has been clarified by the above prototypes.

なお上記実施例では、中央の3本の孔を1層目とする
と、2層目まで孔を形成する場合を説明したが、ビレッ
ト径が大きく3層目まで孔を形成する場合は第2のよう
になる。つまり2層目以上の孔数は〔内層の孔数+6〕
本となる。
In the above embodiment, the case where three holes in the center are the first layer and the holes are formed up to the second layer has been described. However, when the billet diameter is large and holes are formed up to the third layer, the second hole is formed. Like In other words, the number of holes in the second layer and above is [number of holes in the inner layer + 6]
It will be a book.

本発明は上記実施例に限られるものではなく、例えば次
のような場合にも同様に適用可能である。
The present invention is not limited to the above-described embodiment, but can be similarly applied to the following cases, for example.

ビレットが銅であり、芯材がCu−Snブロンズマトリック
ス中に多数のNb芯が埋め込まれている複合棒である場合
(拡散バリアがない場合)。
When the billet is copper and the core material is a composite rod with multiple Nb cores embedded in a Cu-Sn bronze matrix (without diffusion barrier).

ビレットがCu−Snブロンズであり、芯材がNb棒である場
合。
When the billet is Cu-Sn bronze and the core is Nb bar.

ビレットが銅であり、芯材がCu−Gaブロンズマトリック
ス中に多数のV芯が埋め込まれた複合棒である場合(拡
散バリアがない場合)。
When the billet is copper and the core material is a composite rod in which multiple V cores are embedded in a Cu-Ga bronze matrix (when there is no diffusion barrier).

ビレットが銅であり、芯材がCu−Gaブロンズマトリック
ス中に多数のV芯が埋め込まれている複合棒とその上に
被覆された拡散バリアからなる場合。
When the billet is copper and the core material is composed of a composite rod in which a large number of V cores are embedded in a Cu-Ga bronze matrix and a diffusion barrier coated on the composite bar.

ビレットがCu−Gaブロンズであり、芯材がV棒である場
合。
When the billet is Cu-Ga bronze and the core is V bar.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、ビレット中心に芯
材が配置されないため、減面加工の際に芯材の破断が生
じにくく、かつ従来より最外肉厚を厚くできるため芯材
の剥げ出しを防止することができる。従って断線および
芯材の破断を起こすことなく、より細い線径までの加工
を円滑に行える利点がある。
As described above, according to the present invention, since the core material is not arranged at the center of the billet, the core material is less likely to be broken during the surface-reduction processing, and the outermost wall thickness can be made thicker than before, so that the core material can be peeled off. It is possible to prevent sticking out. Therefore, there is an advantage that a wire having a smaller diameter can be smoothly processed without causing wire breakage and breakage of the core material.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はそれぞれ本発明の製造方法で使用
するビレットの端面図、第3図および第4図はそれぞれ
従来の製造方法で使用するビレットの端面図である。 1〜ビレット、2a・2b・2c〜孔。
1 and 2 are end views of the billet used in the manufacturing method of the present invention, and FIGS. 3 and 4 are end views of the billet used in the conventional manufacturing method. 1-Billet, 2a / 2b / 2c-hole.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】断面円形のビレットに、その中心軸線の周
囲に3本、その周囲に〔内層の孔数+6〕本の孔を、隣
合う孔の間隔が等しくなるように形成し、それぞれの孔
に芯材を挿入したのち、これを押出加工し、さらに減面
加工して線材とすることを特徴とする超電導線材の製造
方法。
1. A billet having a circular cross section is formed with three holes around the central axis thereof and [the number of holes in the inner layer + 6] around the central axis so that the intervals between adjacent holes are equal. A method for manufacturing a superconducting wire, comprising inserting a core material into a hole, extruding the core material, and further reducing the surface area of the core material to obtain a wire material.
【請求項2】特許請求の範囲第1項記載の製造方法であ
って、ビレットは銅であり、芯材はCu−Snブロンズマト
リックス中に多数のNb芯が埋め込まれている複合棒であ
るもの。
2. The manufacturing method according to claim 1, wherein the billet is copper, and the core material is a composite rod in which a large number of Nb cores are embedded in a Cu—Sn bronze matrix. .
【請求項3】特許請求の範囲第1項記載の製造方法であ
って、ビレットは銅であり、芯材はCu−Snブロンズマト
リックス中に多数のNb芯が埋め込まれている複合棒とそ
の上に被覆された拡散バリアからなるもの。
3. The manufacturing method according to claim 1, wherein the billet is copper, and the core material is a composite rod in which a large number of Nb cores are embedded in a Cu—Sn bronze matrix and a composite rod thereon. Consisting of a diffusion barrier coated on.
【請求項4】特許請求の範囲第1項記載の製造方法であ
って、ビレットはCu−Snブロンズであり、芯材はNb棒で
あるもの。
4. The manufacturing method according to claim 1, wherein the billet is Cu—Sn bronze and the core is an Nb rod.
【請求項5】特許請求の範囲第1項記載の製造方法であ
って、ビレットは銅であり、芯材はCu−Gaブロンズマト
リックス中に多数のV芯が埋め込まれている複合棒であ
るもの。
5. The manufacturing method according to claim 1, wherein the billet is copper and the core material is a composite rod in which a large number of V cores are embedded in a Cu-Ga bronze matrix. .
【請求項6】特許請求の範囲第1項記載の製造方法であ
って、ビレットは銅であり、芯材はCu−Gaブロンズマト
リックス中に多数のV芯が埋め込まれている複合棒とそ
の上に被覆された拡散バリアからなるもの。
6. The manufacturing method according to claim 1, wherein the billet is copper, and the core material is a composite rod in which a large number of V cores are embedded in a Cu-Ga bronze matrix, and a composite rod thereon. Consisting of a diffusion barrier coated on.
【請求項7】特許請求の範囲第1項記載の製造方法であ
って、ビレットはCu−Gaブロンズであり、芯材はV棒で
あるもの。
7. The manufacturing method according to claim 1, wherein the billet is Cu-Ga bronze and the core is a V rod.
JP60120685A 1985-06-05 1985-06-05 Superconducting wire manufacturing method Expired - Lifetime JPH0735557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120685A JPH0735557B2 (en) 1985-06-05 1985-06-05 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120685A JPH0735557B2 (en) 1985-06-05 1985-06-05 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPS61279661A JPS61279661A (en) 1986-12-10
JPH0735557B2 true JPH0735557B2 (en) 1995-04-19

Family

ID=14792415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120685A Expired - Lifetime JPH0735557B2 (en) 1985-06-05 1985-06-05 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JPH0735557B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859614B (en) * 2010-05-18 2012-01-25 西部超导材料科技有限公司 Preparation method of multicore composite rod of low-temperature superconducting wire Cu/Nb
JP2012221842A (en) * 2011-04-12 2012-11-12 Auto Network Gijutsu Kenkyusho:Kk Wire harness

Also Published As

Publication number Publication date
JPS61279661A (en) 1986-12-10

Similar Documents

Publication Publication Date Title
JPH0377609B2 (en)
JPH0444365B2 (en)
US4161062A (en) Method for producing hollow superconducting cables
US4055887A (en) Method for producing a stabilized electrical superconductor
US5753862A (en) Compound superconducting wire and method for manufacturing the same
US4073666A (en) Method for making an insulated superconductor and article produced thereby
JPH0735557B2 (en) Superconducting wire manufacturing method
JP4423708B2 (en) Oxide superconducting wire and method for producing oxide superconducting multicore wire
JP2989932B2 (en) Manufacturing method of multilayer ceramic superconducting conductor
JP3736425B2 (en) Manufacturing method of oxide superconducting multi-core wire
JPS607014A (en) Method of producing nb3sn superconductive wire
JP3070969B2 (en) Superconducting wire manufacturing method
JPS5837928B2 (en) Manufacturing method of composite superconductor
JPH0554741A (en) Manufacture of compound superconducting wire
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH09139124A (en) Composite multiple-core superconductive wire and manufacture thereof
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPS60250508A (en) Method of producing nb3sn composite superconductive wire
JPH03257715A (en) Oxide superconductive wire rod and manufacture thereof
JPS6180809A (en) Superconductive coil equipment and manufacture thereof
JPH0660749A (en) Manufacture of nb3al-based multicore superconductive wire
JPH0821272B2 (en) Superconductor
JP2002279834A (en) Oxide superconducting wire and its manufacturing method
JPS6282612A (en) Manufacture of superconducting shaped conductor