JPH0735305B2 - Method for manufacturing ceramics sintered body - Google Patents

Method for manufacturing ceramics sintered body

Info

Publication number
JPH0735305B2
JPH0735305B2 JP1140985A JP14098589A JPH0735305B2 JP H0735305 B2 JPH0735305 B2 JP H0735305B2 JP 1140985 A JP1140985 A JP 1140985A JP 14098589 A JP14098589 A JP 14098589A JP H0735305 B2 JPH0735305 B2 JP H0735305B2
Authority
JP
Japan
Prior art keywords
barrier
carbon
strength
sintered
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1140985A
Other languages
Japanese (ja)
Other versions
JPH038775A (en
Inventor
勝久 ▲籔▼田
共久 木藤
一久 板倉
正一 渡辺
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP1140985A priority Critical patent/JPH0735305B2/en
Publication of JPH038775A publication Critical patent/JPH038775A/en
Publication of JPH0735305B2 publication Critical patent/JPH0735305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高温ガスタービン、ディーゼルエンジン、MHD
発電等で使用される高温高強度材料、自動車部品やベア
リングボール等に用いられる高信頼性高強度セラミック
ス、通常の焼結法では焼結しない焼結助剤無添加Si
3N4、同Si3N4−SiC複合材料等からなるセラミックス部
品を得るための有利な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a high temperature gas turbine, a diesel engine, an MHD.
High-temperature and high-strength materials used in power generation, high-reliability and high-strength ceramics used in automobile parts and bearing balls, etc. Si that does not sinter by the usual sintering method Si additive-free Si
The present invention relates to an advantageous method for obtaining a ceramic component made of 3 N 4 and Si 3 N 4 —SiC composite material.

〈従来の技術〉 従来このようなセラミックス焼結体を製造する方法とし
ては、シリケート系ガラス容器を用いるか、焼結温度で
ガス不透過性層を形成するシリケート系ガラス材料を用
いて熱間静水圧プレス処理を行なう方法がある。(例え
ば特公昭58-1074号公報、特公昭58-11319号公報、特公
昭59-10946号公報、特公昭59-7323号公報、特公昭59-35
870号公報、特公昭62-32241号公報参照)。
<Prior Art> Conventionally, as a method for producing such a ceramics sintered body, a silicate glass container is used, or a silicate glass material that forms a gas impermeable layer at a sintering temperature is used to perform hot static treatment. There is a method of performing hydraulic press treatment. (For example, JP-B-58-1074, JP-B-58-11319, JP-B-59-10946, JP-B-59-7323, and JP-B-59-35.
870, Japanese Patent Publication No. 62-32241).

又この方法において更にBNの如きバリア材を成形体の表
面に塗布する熱間静水圧プレス方法がある(例えば特公
昭61-46432号公報、特公昭63-395号公報、特公昭62-347
11号公報参照)。
Further, in this method, there is a hot isostatic pressing method in which a barrier material such as BN is further applied to the surface of the molded body (for example, Japanese Patent Publication No. 61-46432, Japanese Patent Publication No. 63-395, and Japanese Patent Publication No. 62-347).
(See Publication No. 11).

かかる方法は高信頼性、高温高強度セラミックス材料の
製造に有効な手段であり、特にガラスとSi3N4の如き成
形体との間に難焼結性のバリア材料(BNの如きもの)を
用いる方法は、ガラスとの難型性を高め、焼結体の形状
を維持する上で重要である。
Such a method is an effective means for producing high-reliability, high-temperature, high-strength ceramic materials, and in particular, a non-sinterable barrier material (such as BN) is used between the glass and the molded body such as Si 3 N 4. The method used is important for increasing the difficulty with glass and maintaining the shape of the sintered body.

〈発明が解決しようとする課題〉 しかしながら、上記のようにセラミックスをガラスカプ
セル等で保護して熱間静水圧プレス処理を行なう場合、
カーボンと試料中に不純物として含まれている鉄元素と
からなる黒い斑点状欠陥が形成して、それが焼結体材料
の破壊起源となり、強度低下、信頼性の低下を引き起す
ことが判った。(本間克彦ら;窯行協会誌95〔2〕229
−341987参照) 〈課題を解決するための手段〉 本発明は上記の課題を解決するためになされたもので、
前記黒斑点の原因がバリア材中のカーボン量による影響
が大きいことに着目し、種々検討の結果バリア材中のカ
ーボンを制御することにより、この欠陥が発生しなくな
ることを見出した。
<Problems to be Solved by the Invention> However, when performing hot isostatic pressing by protecting the ceramics with a glass capsule or the like as described above,
It was found that black speckled defects composed of carbon and iron elements contained as impurities in the sample were formed, which became the origin of fracture of the sintered body material, causing strength deterioration and reliability deterioration. . (Katsuhiko Homma et al .; Journal of Kiln Association 95 [2] 229
-341987) <Means for Solving the Problems> The present invention has been made to solve the above problems.
Paying attention to the fact that the cause of the black spots is largely influenced by the amount of carbon in the barrier material, and as a result of various studies, it was found that this defect does not occur by controlling the carbon in the barrier material.

カーボン量を制御する手段としては、バリア材にカーボ
ン量の少ない高純度粉末を用いるか、或いはバリア材を
バリア材が悪影響を生じない温度で、予め酸化仮焼する
方法によりカーボンを除去したカーボン含有量の少ない
粉末をバリア材として用いることにより達成される。
As a means for controlling the amount of carbon, a high-purity powder having a small amount of carbon is used for the barrier material, or carbon containing carbon obtained by removing carbon by a method of pre-oxidizing the barrier material at a temperature at which the barrier material does not have an adverse effect. This is achieved by using a low amount of powder as a barrier material.

すなわち、本発明の概要はセラミックス粉末成形体の表
面に、難焼結性であって、セラミックス粉末成形体と反
応性の低いバリア材を塗布し、ガス不透過性容器、もし
くはガス不透過層で包被した後、熱間静水圧プレス処理
を行なうにあたり、カーボン含有量を0.10重量%以下よ
り好ましくは0.05重量%以下のバリア材を使用すること
を特徴とするセラミックス粉末成形体の製造方法であ
る。
That is, the outline of the present invention is to coat a surface of a ceramic powder compact with a barrier material that is difficult to sinter and has low reactivity with the ceramic powder compact, and to form a gas impermeable container or a gas impermeable layer. After encapsulation, in carrying out hot isostatic pressing treatment, a method for producing a ceramic powder compact characterized by using a barrier material having a carbon content of 0.10 wt% or less, more preferably 0.05 wt% or less. .

〈作用〉 本発明によるときは、カーボン含有量を0.10重量%以下
のバリア材を使用してセラミックス粉末成形体の表面を
覆うので、熱間静水圧プレス処理によっても黒斑点の発
生が極めて少なく、特にカーボン含有量を0.05重量%以
下のバリア材を使用する場合は黒斑点の発生が皆無とな
り、これにより黒斑点の破壊起源を解消し、その結果と
して焼結体の強度のバラツキを減少せしめ、平均強度の
レベルを向上するものである。
<Operation> According to the present invention, since the surface of the ceramic powder compact is covered with a barrier material having a carbon content of 0.10 wt% or less, the occurrence of black spots is extremely small even by hot isostatic pressing, In particular, when using a barrier material having a carbon content of 0.05% by weight or less, the occurrence of black spots is eliminated, which eliminates the fracture origin of black spots and, as a result, reduces the variation in the strength of the sintered body. It improves the level of average strength.

〈実施例〉 以下実施例について説明する。<Examples> Examples will be described below.

実施例1〜4 Si3N4粉末94重量%に、Al2O3粉末3重量%、Y2O3粉末3
重量%を混合し、プレス成形した。
Examples 1 to 4 Si 3 N 4 powder 94% by weight, Al 2 O 3 powder 3% by weight, Y 2 O 3 powder 3
% By weight was mixed and pressed.

このSi3N4粉末成形体に、予め500℃〜800℃の範囲で100
℃おきに2時間酸化仮焼を行ない、カーボン含有量を変
化させたBN粉末を塗布し、バイコールガラスに真空封入
して1600℃−1000kg/cm2−2hの条件で、熱間静水圧プレ
ス処理を行なった。
This Si 3 N 4 powder compact is preliminarily coated in the range of 500 ℃ ~ 800 ℃ 100
Oxidation calcination is performed every 2 ° C for 2 hours, BN powder with varying carbon content is applied, vacuum sealed in Vycor glass, and hot isostatic pressing is performed at 1600 ° C-1000kg / cm 2 -2h. Was done.

得られた焼結体について3点曲げ強度測定を行なうとと
もに、破壊起源の観察も併せて行った。
Three-point bending strength of the obtained sintered body was measured, and the origin of fracture was also observed.

比較例1〜2 BN酸化仮焼をしない外は実施例1と同じ条件で処理した
ものを比較1とし、400℃で仮焼した外は実施例1と同
じ条件で処理したものを比較例2とし、実施例と同様な
試験を行なった。
Comparative Examples 1 to 2 Comparative Example 1 was treated under the same conditions as Example 1 except that BN oxidation calcination was not performed, and Comparative Example 2 was treated under the same conditions as Example 1 except calcination at 400 ° C. Then, the same test as in the example was performed.

これらの実験例及び比較例の結果は次表に示すとおりで
ある。
The results of these experimental examples and comparative examples are shown in the following table.

すなわち、実施例によるものは、いずれもBN中のカーボ
ン量が少なく、平均強度も強く、最大強度(σmax),
最小強度(σmin)のバラツキも少なく、かつ黒斑点は
実施例1,2については微量にあるがその程度は極めて少
なく、実施例4,5については黒斑点は全く無く、実施例
全体としては破壊起源となるものの確率は少なく、比較
例よりも極めて優れていることが判る。
That is, in each of the examples, the amount of carbon in BN is small, the average strength is strong, the maximum strength (σmax),
There is little variation in the minimum strength (σmin), and the black spots are very small in Examples 1 and 2, but the degree thereof is extremely small, and there are no black spots in Examples 4 and 5, and the entire Examples are destroyed. It can be seen that the probability of the origin is small and that it is extremely superior to the comparative example.

また、上記においてバリア材としてBNの場合について述
べたが、AIN,Si3N4等の他のバリア材においてもカーボ
ン量を0.10重量%以下とすれば同様な成果を得られるこ
とは明らかでる。
Although the case where BN is used as the barrier material has been described above, it is clear that similar results can be obtained with other barrier materials such as AIN and Si 3 N 4 if the carbon content is 0.10 wt% or less.

〈発明の効果〉 本発明によれば、バリア材中のカーボン量を制御して0.
10重量%以下にすることによりセラミックス焼結体に黒
い斑点が少なくなるか消滅させることができ、焼結体の
強度のバラツキが減少し、平均強度レベルも向上し、高
信頼性、高強度の焼結体を得ることができる。
<Effects of the Invention> According to the present invention, the amount of carbon in the barrier material is controlled to 0.
When the content is 10% by weight or less, the black spots on the ceramic sintered body can be reduced or eliminated, the variation in the strength of the sintered body can be reduced, the average strength level can be improved, and high reliability and high strength can be obtained. A sintered body can be obtained.

Claims (1)

    【特許請求の範囲】[Claims]
  1. 【請求項1】セラミックス粉末成形体の表面に、難焼結
    性であってセラミックス粉末成形体と反応性の低いバリ
    ア材を塗布し、ガス不透過性容器もしくはガス不透過層
    で包被した後、熱間静水圧プレス処理を行なうにあた
    り、カーボン含有量が0.10重量%以下のバリア材を使用
    することを特徴とするセラミックス焼結体の製造方法。
    1. A ceramic powder compact is coated on its surface with a barrier material which is difficult to sinter and has low reactivity with the ceramic powder compact, and is covered with a gas impermeable container or a gas impermeable layer. A method for producing a ceramics sintered body, comprising using a barrier material having a carbon content of 0.10% by weight or less in performing hot isostatic pressing.
JP1140985A 1989-06-05 1989-06-05 Method for manufacturing ceramics sintered body Expired - Lifetime JPH0735305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140985A JPH0735305B2 (en) 1989-06-05 1989-06-05 Method for manufacturing ceramics sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140985A JPH0735305B2 (en) 1989-06-05 1989-06-05 Method for manufacturing ceramics sintered body

Publications (2)

Publication Number Publication Date
JPH038775A JPH038775A (en) 1991-01-16
JPH0735305B2 true JPH0735305B2 (en) 1995-04-19

Family

ID=15281454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140985A Expired - Lifetime JPH0735305B2 (en) 1989-06-05 1989-06-05 Method for manufacturing ceramics sintered body

Country Status (1)

Country Link
JP (1) JPH0735305B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5155439B1 (en) 2011-12-20 2013-03-06 ファナック株式会社 Abnormality detection device for injection molding machine

Also Published As

Publication number Publication date
JPH038775A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
Vasylkiv et al. Low‐temperature processing and mechanical properties of zirconia and zirconia–alumina nanoceramics
US4803183A (en) Dense molded bodies of polycrystalline aluminum nitride and process for preparation without use of sintering aids
Deeley et al. Dense silicon nitride
US4351787A (en) Process for sintering reaction bonded silicon nitride
US4820665A (en) Ceramic sintered bodies and a process for manufacturing the same
US5735332A (en) Method for making a ceramic metal composite
Padture In situ‐toughened silicon carbide
US6531423B1 (en) Liquid-phase-sintered SiC shaped bodies with improved fracture toughness and a high electric resistance
US4502983A (en) Composite silicon carbide sintered shapes and its manufacture
US4876226A (en) Silicon carbide sintering
US4879263A (en) Sliding member of high strength and high abrasion resistance
US3262763A (en) High temperature-resistant materials of aluminum, boron, nitrogen, and silicon and preparation thereof
JP4261130B2 (en) Silicon / silicon carbide composite material
CA1278672C (en) Method for preparing configured silicon carbide whisker-reinforced alumina ceramic articles
US4312899A (en) Process for the production of oxidation-resistant sintered silicon nitride bodies with improved mechanical strength
US4713302A (en) Sintered ceramic body
JPH09507467A (en) Low temperature pressureless sintering of silicon nitride
JP2005075726A (en) Transparent sintered ceramic material
JPH07149597A (en) Ceramic composite material
US6692839B2 (en) Titanium based composites and coatings and methods of production
Kim et al. Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys
JP4386695B2 (en) Method for producing aluminum nitride sintered body
Park et al. Effect of hot‐pressing temperature on densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid
US4019913A (en) Process for fabricating silicon carbide articles
JP2524201B2 (en) Silicon nitride sintered body and method for manufacturing the same