JPH0734800A - Backfilling method - Google Patents

Backfilling method

Info

Publication number
JPH0734800A
JPH0734800A JP20204093A JP20204093A JPH0734800A JP H0734800 A JPH0734800 A JP H0734800A JP 20204093 A JP20204093 A JP 20204093A JP 20204093 A JP20204093 A JP 20204093A JP H0734800 A JPH0734800 A JP H0734800A
Authority
JP
Japan
Prior art keywords
soil
backfilling
improved
pit
muddy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20204093A
Other languages
Japanese (ja)
Other versions
JP3046476B2 (en
Inventor
Tsunetaro Iwabuchi
常太郎 岩淵
Goro Kuno
悟郎 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5202040A priority Critical patent/JP3046476B2/en
Publication of JPH0734800A publication Critical patent/JPH0734800A/en
Application granted granted Critical
Publication of JP3046476B2 publication Critical patent/JP3046476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To improve an aseismatic property against backfilled soil and to effectively attain the removal of surplus soil, by a method wherein improved soil required is composed by mixing fine granular soil such as clay, silt and bentonite with excavated material from a ditch, in which service water pipes are laid, and backfilling is done with the improved soil. CONSTITUTION:Fine granular soil such as clay, silt and bentonite is mixed with surplus soil produced by excavating a ditch and is dispersed between course granular particles in the surplus soil, and thus improved soil is obtained, which is so composed that an axially compressive strength of 2 to 20kg/cm<2>, preferably of 5 to 10kg/cm<2>, is obtained in a vertically cross section of an opencut pit. Backfilling is done with this improved soil. When this backfilling is done, slurry and a caking agent are mixed with the improved soil, and the mixture thereof is put into the opencut pit and is allowed to harden by natural dehydration. In this way, an aseismatic property at the site of the backfilling is improved and the surplus soil can be effectively utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として、水道管、ガ
ス管、電力ケーブルあるいは通信ケーブル用配管などの
地中埋設に際して、その埋設個所の耐震性を向上するよ
うにした埋め戻し工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a backfilling method for improving the seismic resistance of a buried part of a water pipe, a gas pipe, a power cable or a communication cable when it is buried underground.

【0002】[0002]

【従来の技術】一般に、地震発生時の埋設管の被害を定
量的に予測することは、甚だ困難ではあるが、このよう
な震害を考慮して、通常、埋設管の施工に際して、施工
現場の土質、管種、管径、管継手、埋設深さなどを、設
計段階で、選択・設定することや、埋設用に掘削された
開削ピットでの、配管後の埋め戻し条件を厳しくするな
どの必要性は十分に認識されている。
2. Description of the Related Art Generally, it is extremely difficult to quantitatively predict damage to a buried pipe in the event of an earthquake, but in consideration of such earthquake damage, normally, when constructing a buried pipe, a construction site is usually used. Soil quality, pipe type, pipe diameter, pipe joint, burial depth, etc. can be selected and set at the design stage, and the backfill conditions after piping in the excavation pit excavated for burial can be tightened. The need for is well recognized.

【0003】特に、臨海部の沖積地、埋立地、河川流
域、埋没谷などの不良地盤では、埋設管の震害(管継手
の弛み、管体の折損など)が生じ易い。この主な原因
は、地盤の不均一性にあり、地震発生時、振動に対する
地盤応答が不均一になり、地中の変位に大きな差が生じ
るためである。因に、沖積地盤や河川流域の地盤では、
地震発生時、地中の変位が10mm近くになる。このよ
うな変位を埋設個所において吸収するために、上記震害
の要因について分析がなされ、その結果、埋設管の震害
は、主として、管種と地表面から深度5mまでの地盤の
N値(標準貫入試験の値)とに強く影響されることが解
っている。
Particularly, in the bad ground such as alluvial alleys, landfills, river basins, and buried valleys in coastal areas, earthquake damage (slack of pipe joints, breakage of pipes, etc.) of buried pipes is likely to occur. The main reason for this is that the ground is non-uniform, and when an earthquake occurs, the ground response to vibration becomes non-uniform, resulting in a large difference in the underground displacement. By the way, in the alluvial ground and the ground of the river basin,
When an earthquake occurs, the displacement in the ground is close to 10 mm. In order to absorb such displacements at the burial site, the factors of the above-mentioned earthquake damage were analyzed. As a result, the earthquake damage of the buried pipe was mainly due to the pipe type and the N value of the ground up to a depth of 5 m from the ground surface ( It has been found that it is strongly affected by the standard penetration test value).

【0004】[0004]

【発明が解決しようとする課題】しかし、埋設個所の状
況に応じて、地盤のN値をコントロールすることは、実
務上、また、経済性の面で現実的でない。即ち、上記開
削ピットに関しては、配管の埋設を、より深くし、ま
た、その埋め戻しに良質な土砂(例えば、東京圏では山
砂、関西地方ではマサ土)を用い、その締固めを十分に
行なうことが、震害を軽減する具体策として提言されて
いるが、掘削残土の後始末、良質な土砂の大量消費、締
固めなどの現場作業の負担などの問題が残されている。
従って、埋設管の震害を考慮した設計は、結局、その埋
設個所の地盤については、精々、良質な土砂を埋め戻し
に採用する程度を、その与えられた条件として、専ら、
その地盤に適した管種などの選定を行なう方向で検討さ
れているのが現状である。
However, it is not practical or economically practical to control the N value of the ground according to the condition of the buried portion. That is, for the excavation pits, the burial of the pipes should be deeper, and the backfilling should be done with good quality sand (for example, mountain sands in the Tokyo area, Masa soil in the Kansai region), and sufficiently compact it. Although it is suggested to do so as a concrete measure to reduce the earthquake damage, there are still problems such as the disposal of excavated soil, the large consumption of high quality soil and the burden of site work such as compaction.
Therefore, the design considering the earthquake damage of the buried pipe is, after all, about the ground of the buried place, the extent to which good quality earth and sand is adopted for backfilling, as a given condition, exclusively,
At present, it is being studied to select a pipe type suitable for the ground.

【0005】[0005]

【発明の目的】本発明は上記事情に基いてなされたもの
で、埋設管用の開削ピットの埋め戻しに、土砂の流動化
処理などで得られた改良土を採用することで、地盤のN
値を高め、埋設個所の耐震性を確保すると共に、埋め戻
しの実務および経済性の面からも十分に実現性のある埋
め戻し工法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made based on the above-mentioned circumstances, and by adopting improved soil obtained by fluidization treatment of earth and sand, etc., for backfilling an excavation pit for a buried pipe,
With the aim of increasing the value, ensuring the seismic resistance of the burial site, and providing a fully feasible backfilling method from the viewpoint of the practice and economics of backfilling.

【0006】[0006]

【課題を解決するための手段】このため、本発明では、
掘削残土などの被処理土に対して、粘土、シルト、ベン
トナイト程度の細粒土を混合して、被処理土の粗粒分の
間に分散し、所要の改良土を構成し、この改良土を、所
要の配管後、開削ピットに充填し、硬化した結果、上記
開削ピットの縦断面に関して、少なくとも、その一軸圧
縮強度が2kg/cm2 〜20kg/cm2 、好ましく
は、5kg/cm2 〜10kg/cm2になるように設
定している。
Therefore, in the present invention,
Fine soil such as clay, silt and bentonite is mixed with the soil to be treated such as excavated soil and dispersed in the coarse particles of the soil to form the required improved soil. Was filled in the open-cut pit after the required piping and cured, and as a result, the uniaxial compressive strength of the vertical cross-section of the open-cut pit was at least 2 kg / cm 2 to 20 kg / cm 2 , preferably 5 kg / cm 2 It is set to be 10 kg / cm 2 .

【0007】この場合、上記改良土は、次のような流動
化処理を施すことで得るのが、最良の方法である。即
ち、上記流動化処理によれば、改良土は、被処理土に対
して、粘土、シルト、ベントナイト程度の細粒土を含む
所要量の泥水を混合して得られのであって、その調整さ
れた泥水状態で開削ピットに充填され、自然脱水によっ
て硬化される。その結果、掘削残土を有効利用でき、充
填作業の効率向上、充填状態の均等性の確保などのメリ
ットが得られる。
In this case, the improved soil is best obtained by performing the following fluidization treatment. That is, according to the fluidization treatment, the improved soil was obtained by mixing the soil to be treated with a required amount of muddy water containing fine-grained soil such as clay, silt, and bentonite. It is filled in the open-cut pit in a muddy state and hardened by natural dehydration. As a result, the excavated soil can be effectively used, and there are advantages such as improvement of the efficiency of the filling work and securing of the uniformity of the filling state.

【0008】[0008]

【実施例】以下、本発明の埋め戻し工法について具体的
に説明する。ここでは、配管後の開削ピットの埋め戻し
に、流動化処理を施した改良土を採用するので、流動化
に利用する泥水として、先ず、一般の建設基礎工事など
で発生する泥水についての一般的な成分量を以下に示
す。 水 分 :70〜95% 礫 (2mm以上) :0% 砂 (2〜0.074mmの範囲) :0〜5% シルト (0.074〜0.005mmの範囲) :0〜10% 粘 土 (0.005mm以下) :0〜20% (但し、粘土には、0.001mm以下のコロイド分を含んでいる) このような泥水を、埋設管用の開削ピットの掘削発生土
である被処理土に混合して、調整泥水(泥水状態の改良
土)を生成する場合、本発明で、実用上、有効な範囲
を、図1のグラフで示す。なお、縦軸には、地盤に必要
な強度を、また、横軸には、泥水混合比(混合した泥水
の重量/掘削発生土の湿潤重量)を示している。即ち、
泥水混合比が0.2とは、泥水2kgに対して、発生土
10kgの場合を示している。また、データは、4通り
の比重(パラメータとして)の調整泥水について、プロ
ットしている。
EXAMPLES The backfilling method of the present invention will be specifically described below. Here, since the improved soil that has been fluidized is used for backfilling the excavation pit after piping, first of all, as mud used for fluidization, general mud generated in general construction foundation works etc. The amounts of various components are shown below. Water content: 70 to 95% Gravel (2 mm or more): 0% Sand (range of 2 to 0.074 mm): 0 to 5% Silt (range of 0.074 to 0.005 mm): 0 to 10% clay ( 0.005 mm or less): 0 to 20% (however, clay contains colloid content of 0.001 mm or less) Such muddy water is used as soil to be treated that is excavated soil in an excavation pit for a buried pipe. In the case of mixing to produce adjusted muddy water (improved soil in muddy water state), the range effective in practical use in the present invention is shown in the graph of FIG. The vertical axis shows the strength required for the ground, and the horizontal axis shows the muddy water mixing ratio (weight of mixed muddy water / wet weight of excavated soil). That is,
The muddy water mixing ratio of 0.2 indicates the case of 10 kg of generated soil with respect to 2 kg of muddy water. In addition, the data is plotted for the adjusted mud having four specific gravities (as parameters).

【0009】なお、ここでは、施工条件で要求される高
い強度を確保するため、セメント系あるいは石灰系の固
化材を補填することがなされており、上記データの場合
は、セメントを100kg/m3 の割合で、泥水混合の
際に添加する。また、この混合には、市販の往復回転式
撹拌機を使用するとよい。
[0009] Here, in order to secure the high strength required under construction conditions, cement-based or lime-based solidifying material is supplemented. In the case of the above data, 100 kg / m 3 of cement is used. Is added during mixing of muddy water. A commercially available reciprocating rotary stirrer may be used for this mixing.

【0010】上記グラフで、フロー値、ブリージング率
が、本発明に係る調整泥水による埋め戻し(開削ピット
への充填)の成果を決定する主要な因子である。即ち、
フロー値は、泥水を発生土に混合して、調整泥水を生成
する際の土の流動性を示す指標である。グラフには、フ
ロー値=100mm(これは日本道路公団の基準であ
り、JIS基準では180mm)の場合を点線で示して
あるが、この線を下限として、グラフの右側に向けて、
流動性が増す。なお、これは参考値であるが、この値を
とれば、実際の施工で、必要な流動性を十分確保でき
る。
In the above graph, the flow value and the breathing rate are the main factors that determine the result of backfilling (filling the excavation pit) with the adjusted mud water according to the present invention. That is,
The flow value is an index showing the fluidity of the soil when the muddy water is mixed with the generated soil to produce the adjusted muddy water. In the graph, the case of flow value = 100 mm (this is the standard of the Japan Highway Public Corporation, JIS standard is 180 mm) is shown by a dotted line, but with this line as the lower limit, toward the right side of the graph,
Increases liquidity. Note that this is a reference value, but if this value is taken, the necessary fluidity can be sufficiently secured in actual construction.

【0011】また、ブリージング率は、泥水と固化材を
発生土に混ぜ、撹拌した後に、処理土から滲み出てくる
水の量を示す指標であり、グラフには、フリージング率
=1%(上限)の場合を、1点鎖線で示してある。本発
明のように、泥水を用いることで、上記ブリージング率
は大幅(従来の10%台から1%以下)に低下する。こ
れは、工学的には大変に有利な性能であり、固定化の際
の体積収縮率を大幅に低減する効果がある。
The breathing rate is an index showing the amount of water that exudes from the treated soil after mixing the muddy water and the solidifying material with the generated soil and stirring, and the graph shows the freezing rate = 1% (upper limit). The case of () is indicated by a one-dot chain line. By using muddy water as in the present invention, the breathing rate is significantly reduced (from the conventional 10% level to 1% or less). This is a very advantageous performance from an engineering point of view, and has the effect of significantly reducing the volumetric shrinkage rate during immobilization.

【0012】上記泥水混合比は、発生土をできるだけ元
に埋め戻すなどの要求を満たすことを勘案すると、実際
上、0.2〜1.0程度が好ましい値である。このよう
な条件を考慮すると、本発明で、実際上、有効な調整泥
水の範囲は、耐震性で要求される一軸圧縮強度、フロー
値100mm以上、ブリージング率1%以下、泥水混合
比0.2〜1.0程度に決められる。なお、混合に際し
て、現場での具体的な指標としては、調整泥水の比重を
用いるのが便利である(調整泥水の組成を考慮すること
は、勿論、大切である)。
The muddy water mixing ratio is practically a preferable value of about 0.2 to 1.0 in consideration of satisfying the requirement of backfilling the generated soil as much as possible. Considering such conditions, in the present invention, the effective range of the adjusted mud is the uniaxial compressive strength required for earthquake resistance, the flow value of 100 mm or more, the breathing rate of 1% or less, and the mud mixing ratio of 0.2. It is decided to be about 1.0. When mixing, it is convenient to use the specific gravity of the adjusted mud as a specific index on site (it is important, of course, to consider the composition of the adjusted mud).

【0013】即ち、本発明に係る流動化処理では、調整
泥水比重が1.02〜1.20(グラフに使用したデー
タは、1.05、1.10、1.15、1.20の4種
類)の範囲を対象として、上記条件で、泥水の組成(シ
ルト、ベントナイトの混入を含む粘土分を15%〜40
%程度、確保するように)および水分の調整を行なうの
である。なお、ピットの掘削現場の発生土の土性によ
り、その有効な比重を選択する必要があるので、どの比
重が有効かを、予め、簡単な配合試験で確認する必要が
ある。なお、この調整泥水を用いて、現場での埋め戻し
を行なう場合に、ポンプ圧送などが採用される。
That is, in the fluidizing treatment according to the present invention, the adjusted muddy water specific gravity is 1.02 to 1.20 (the data used in the graph are 1.05, 1.10, 1.15, 1.20). 15% to 40% of clay composition including mixture of muddy water (silt and bentonite) under the above conditions for the range of types)
% So as to ensure) and adjust the water content. Since it is necessary to select an effective specific gravity depending on the soil properties of the soil generated at the pit excavation site, it is necessary to confirm in advance a simple mixing test which specific gravity is effective. In addition, when backfilling is performed on site using this adjusted mud, pumping or the like is adopted.

【0014】なお、上述のように、本発明の埋め戻し工
法に、流動化処理を採用するに当っては、泥水を被処理
土に混合する際、要すれば、セメント系あるいは石灰系
などの固化材を添加し、強度の補強を行なうようにして
もよい。また、流動性、固化時間の短縮などの目的で、
別に適当な添加剤、混和剤などを用いてもよい。
As described above, in adopting the fluidization treatment in the backfilling method of the present invention, when mixing mud water with the soil to be treated, if necessary, cement-based or lime-based materials are used. A solidifying material may be added to reinforce the strength. In addition, for the purpose of fluidity and shortening of solidification time,
Separately, appropriate additives and admixtures may be used.

【0015】次に、本発明の埋め戻し工法で、改良土に
要求される耐震性確保のための一軸圧縮強度について、
以下に説明する。上述のような流動化処理によって、開
削ピットを埋め戻した改良土は、従来から使用されてい
た良質の土砂(山砂、マサ土など)とは異なり、2kg
/cm2 〜20kg/cm2 程度の一軸圧縮強度を確保
することができる。これは、あたかも、ピット領域を梁
として構成した地中における耐震構造物として扱うこと
が可能である。
Next, in the backfilling method of the present invention, regarding the uniaxial compressive strength for ensuring the earthquake resistance required for improved soil,
This will be described below. The improved soil with the excavation pits backfilled by the above fluidization treatment is different from the high quality earth and sand (mountain sand, masa earth, etc.) that has been used in the past, and is 2 kg.
A uniaxial compressive strength of about / cm 2 to 20 kg / cm 2 can be secured. This can be treated as if it were a seismic structure in the ground where the pit area was constructed as a beam.

【0016】例えば、深さ:3m、幅:2.2mの開削
ピットに配管(継手部が位置する個所では、これより若
干、幅広にする)を行ない、本発明の改良土による埋設
が行なわれたとすると、配管周囲の改良土の一軸圧縮強
度を5kg/cm2 (この場合、引張り強度は1/12
程度、即ち、0.417kg/cm2 )とした場合で
も、次のような結果が得られる。
For example, pipes (at the place where the joint is located are made a little wider than this) are formed in the open / cut pits having a depth of 3 m and a width of 2.2 m, and burial with the improved soil of the present invention is performed. Then, the uniaxial compressive strength of the improved soil around the pipe is 5 kg / cm 2 (in this case, the tensile strength is 1/12
Even when the degree is set to 0.417 kg / cm 2 , the following results are obtained.

【0017】通常、梁の断面2次モーメントは、縦方向
で、I=bh3 /12、横方向で、I=b3 h/12
(bはピットの幅、hはその高さ)であるから、上述の
条件で計算すると、横方向断面でI=4.95m4 、縦
方向断面でI=2.66m4 となる。梁の引張り強度と
モーメントとの関係は、σc=M・y/I(ここで、
M:曲げモーメント、y:梁断面の中心からの距離)で
あるから、この関係より地盤の変形による梁に加わるモ
ーメントを逆算すると、本発明に係る改良土の梁は、縦
方向について、13.75t−mまで、横方向につい
て、10.08t−mまで、許容できることになる。
[0017] Normally, the beam of the second moment is the vertical direction, I = bh 3/12, in the transverse direction, I = b 3 h / 12
(B is the width of the pit, h is the height) because it is, as calculated under the conditions described above, transverse cross-section I = 4.95m 4, the I = 2.66 M 4 in longitudinal section. The relationship between the tensile strength of the beam and the moment is σc = My · I (where,
(M: bending moment, y: distance from the center of the beam cross section). Therefore, when the moment applied to the beam due to the deformation of the ground is back calculated from this relationship, the beam of the improved soil according to the present invention is 13. Up to 75 t-m, and up to 10.08 t-m in the lateral direction will be allowed.

【0018】一方、埋設管と改良土の埋め戻しの地中梁
を、単純梁(通常寸法として、例えば、管継手を用い
て、10mの埋設管を2本継いだ、スパン:20mの
梁)と仮定すると、中間の管継手周辺に加わるモーメン
トと変位との関係は、M=2EI・y/x2 (ここで、
EI:曲げこわさ、x:梁端部からの距離)となる。そ
こで、断面2次モーメントとヤング率(圧縮強度が5k
g/cm2 の場合、100kg/cm2 程度)が決ま
り、そして、地震発生の際の地盤変位(非常に不均一な
地盤の場合を想定して)を0.01mとすると、梁に加
わるモーメントは、縦方向について0.99t−m、同
じく、横方向について5.32t−mとなる。
On the other hand, a buried beam and an underground beam for backfilling with improved soil are simple beams (as a normal size, for example, two 10 m buried pipes are spliced using a pipe joint, a span: 20 m beam). Assuming that, the relation between the moment applied to the periphery of the intermediate pipe joint and the displacement is M = 2EI · y / x 2 (where,
EI: bending stiffness, x: distance from the beam end). Therefore, the second moment of area and Young's modulus (compressive strength is 5k
In the case of g / cm 2 , about 100 kg / cm 2 ) is determined, and if the ground displacement at the time of earthquake occurrence (assuming the case of extremely uneven ground) is 0.01 m, the moment applied to the beam Is 0.99 t-m in the vertical direction and 5.32 t-m in the horizontal direction.

【0019】しかるに、本発明に係る改良土の埋め戻し
による地中梁の断面の許容モーメントは、既に、上述し
たように、縦方向について13.75t−m、横方向に
ついて10.08t−mであるから、結果として、震害
に対する地盤改良効果が十分に発揮されたことになる。
However, the allowable moment of the cross section of the underground girder by backfilling with the improved soil according to the present invention is 13.75 t-m in the longitudinal direction and 10.08 t-m in the lateral direction, as described above. Therefore, as a result, the ground improvement effect against earthquake damage was fully exerted.

【0020】また、地震の際、臨海部の沖積地、埋立
地、河川流域、埋没谷などの不良地盤で発生する液状化
と、地盤の圧縮強度との関係を検討した結果は、図2の
ようになる。この場合、地盤の液状化抵抗は、繰返し回
数(例えば、30回)と、振動三軸試験の剪断応力比か
ら判断される。
In addition, the result of studying the relationship between the liquefaction that occurs in bad ground such as alluvial land, reclaimed land, river basin, and buried valley at the time of an earthquake and the compressive strength of the ground is shown in FIG. Like In this case, the liquefaction resistance of the ground is judged from the number of repetitions (for example, 30 times) and the shear stress ratio in the vibration triaxial test.

【0021】通常、地震の際の地盤の繰返し剪断応力
は、振動三軸試験の剪断応力比で、最大0.4程度であ
る。従って、地盤の圧縮強度としては、qu=1kg/
cm2程度であれば、液状化に対して十分に対処できる
ことになる。これは、本発明の埋め戻し工法で満足され
る。因に、周辺地盤の液状化による梁の浮き上がりに対
して、本発明に係る改良土の埋め戻し区間は、梁として
の抵抗で、その相対変位が10cm程度まで許容できる
のである。しかし、従来のような、山砂、マサ土によ
る、開削ピットの埋め戻しでは、液状化による、配管の
震害防止は達成されない。
Usually, the repeated shear stress of the ground at the time of an earthquake is a maximum of about 0.4 in the shear stress ratio of the vibration triaxial test. Therefore, the compressive strength of the ground is qu = 1kg /
If it is about cm 2, it is possible to sufficiently cope with liquefaction. This is satisfied by the backfilling method of the present invention. Incidentally, with respect to the floating of the beam due to the liquefaction of the surrounding ground, the backfill section of the improved soil according to the present invention has a resistance as a beam, and its relative displacement can be allowed up to about 10 cm. However, by backfilling the excavation pit with mountain sand and masa soil as in the past, liquefaction does not prevent seismic damage to pipes.

【0022】なお、上記実施例では、流動化処理に、産
業廃棄物である泥水を採用したが、通常の水と共に、粘
土質の材料、セメント系、石灰系の固化材を、掘削残土
に対して混合して、所要の改良土を生成してもよい。ま
た、掘削残土自体に、火山灰などの自硬性がある場合に
は、単に、流動化するだけで、あるいは、若干の土質の
調整を行って、流動化するだけで、埋め戻しに採用する
ことも可能である。
Although mud water, which is an industrial waste, is used for the fluidization treatment in the above-described embodiment, clay water, cement-based and lime-based solidifying material is added to the excavated residual soil along with ordinary water. And mixed to produce the required improved soil. In addition, if the excavated soil itself has self-hardening properties such as volcanic ash, it may be used for backfilling by simply fluidizing it or by slightly adjusting the soil quality and fluidizing it. It is possible.

【0023】また、本発明では、耐震性を確保するため
に開削ピットに埋め戻す改良土の、梁としての一軸圧縮
強度を、2kg/cm2 〜20kg/cm2 としたが、
安全性と、再掘削の際の便宜を考慮して、5kg/cm
2 〜10kg/cm2 程度とすることが好ましい。
[0023] In the present invention, the modified soil backfilled to excavation pit to ensure the earthquake resistance, the uniaxial compressive strength of the beam, but was 2kg / cm 2 ~20kg / cm 2 ,
5kg / cm for safety and convenience for re-digging
It is preferably about 2 to 10 kg / cm 2 .

【0024】[0024]

【発明の効果】本発明は、以上詳述したように、掘削残
土などの被処理土に対して、粘土、シルト、ベントナイ
ト程度の細粒土を混合し、被処理土の粗粒分の間に分散
して、所要の改良土を構成し、この改良土を、所要の配
管後、開削ピットに充填し、硬化した結果、上記開削ピ
ットの縦断面に関して、少なくともその一軸圧縮強度が
2kg/cm2 〜20kg/cm2 、好ましくは、5k
g/cm2 〜10kg/cm2 になるように設定してい
るので、埋設管用の開削ピットの埋め戻しに、土砂の流
動化処理などで得られた改良土を採用することで、地盤
のN値を高め、埋設個所の耐震性を確保することがで
き、しかも、残土処理、埋め戻し作業などの点で、実務
上および経済性の面で有利となる。
As described in detail above, the present invention mixes fine soil such as clay, silt, and bentonite with the soil to be treated such as excavated soil, and removes the coarse grains of the soil to be treated. To form the required improved soil, and after the required piping, the improved soil was filled into the open-cut pit and cured, and as a result, at least the uniaxial compressive strength of the vertical cross-section of the open-cut pit was 2 kg / cm. 2 to 20 kg / cm 2 , preferably 5 k
Since it is set to g / cm 2 to 10 kg / cm 2 , N of the ground can be reduced by adopting the improved soil obtained by fluidization treatment of earth and sand for backfilling the excavation pit for the buried pipe. It is possible to increase the value and secure the earthquake resistance of the burial site. Moreover, it is advantageous in terms of practical use and economy in terms of waste soil treatment and backfilling work.

【0025】また、被処理土を改良する際に、流動化処
理を採用することで、他の基礎工事現場などで発生す
る、産業廃棄物である泥水を活用して、被処理土の流動
化に供することが可能なので、この点でも、産業上の大
きな利益を生む効果がある。
Further, when the treated soil is improved, fluidization treatment is adopted to utilize the muddy water, which is an industrial waste, generated at other foundation construction sites to fluidize the treated soil. Since it can be used for industrial purposes, it has the effect of producing great industrial benefits in this respect as well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流動化処理工法による調整泥水の性能
を示すグラフである。
FIG. 1 is a graph showing the performance of adjusted mud water by the fluidization treatment method of the present invention.

【図2】圧縮強度をパラメータとして、剪断応力比と、
繰返し載荷回数との関係を示すグラフである。
FIG. 2 shows the shear stress ratio with the compressive strength as a parameter,
It is a graph which shows the relationship with the number of repeated loadings.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 掘削残土などの被処理土に対して、粘
土、シルト、ベントナイト程度の細粒土を混合し、被処
理土の粗粒分の間に分散して、所要の改良土を構成し、
この改良土を、所要の配管後、開削ピットに充填し、硬
化した結果、上記開削ピットの縦断面に関して、少なく
ともその一軸圧縮強度が2kg/cm2〜20kg/c
2 、好ましくは、5kg/cm2 〜10kg/cm2
になるように設定していることを特徴とする埋め戻し工
法。
1. A desired improved soil is formed by mixing fine soil such as clay, silt, and bentonite with the soil to be treated such as excavated soil and dispersing the coarse soil in the coarse soil. Then
After the required piping, this improved soil was filled in an open-cut pit and hardened, and as a result, at least the uniaxial compressive strength of the vertical cross-section of the open-cut pit was 2 kg / cm 2 to 20 kg / c.
m 2 , preferably 5 kg / cm 2 to 10 kg / cm 2
The backfilling method is characterized in that
【請求項2】 上記改良土は、被処理土に対して、粘
土、シルト、ベントナイト程度の細粒土を含む所要量の
泥水を混合して得られ、その調整された泥水状態で開削
ピットに充填され、自然脱水によって硬化されることを
特徴とする請求項1に記載の埋め戻し工法。
2. The improved soil is obtained by mixing a required amount of muddy water containing clay, silt, and fine-grained soil such as bentonite with the soil to be treated, and the adjusted muddy water is used in an excavation pit. The backfilling method according to claim 1, which is filled and hardened by natural dehydration.
【請求項3】 被処理土に対する泥水の混合の際に、所
要の固化材を添加することを特徴とする請求項1に記載
の埋め戻し工法。
3. The backfilling method according to claim 1, wherein a required solidifying material is added when the muddy water is mixed with the treated soil.
JP5202040A 1993-07-23 1993-07-23 Backfill method Expired - Lifetime JP3046476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202040A JP3046476B2 (en) 1993-07-23 1993-07-23 Backfill method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202040A JP3046476B2 (en) 1993-07-23 1993-07-23 Backfill method

Publications (2)

Publication Number Publication Date
JPH0734800A true JPH0734800A (en) 1995-02-03
JP3046476B2 JP3046476B2 (en) 2000-05-29

Family

ID=16450941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202040A Expired - Lifetime JP3046476B2 (en) 1993-07-23 1993-07-23 Backfill method

Country Status (1)

Country Link
JP (1) JP3046476B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031656A (en) * 2015-07-31 2017-02-09 三菱マテリアル株式会社 Weight fluidization treatment soil
CN110835915A (en) * 2019-11-26 2020-02-25 中国十七冶集团有限公司 Construction method for backfilling frame foundation by adopting slurry separation
CN114575327A (en) * 2022-03-31 2022-06-03 山西机械化建设集团有限公司 Improvement and high-fill reinforcement construction method for flow-plastic or soft-plastic clay filler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031656A (en) * 2015-07-31 2017-02-09 三菱マテリアル株式会社 Weight fluidization treatment soil
CN110835915A (en) * 2019-11-26 2020-02-25 中国十七冶集团有限公司 Construction method for backfilling frame foundation by adopting slurry separation
CN114575327A (en) * 2022-03-31 2022-06-03 山西机械化建设集团有限公司 Improvement and high-fill reinforcement construction method for flow-plastic or soft-plastic clay filler

Also Published As

Publication number Publication date
JP3046476B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JP5998713B2 (en) Filling method
Carlsten Lime and lime/cement columns
CN101008178B (en) Soft base processing construction process using excavating and stirring method
JPH0782984A (en) Fluidization treatment method
JP3046476B2 (en) Backfill method
KR100312457B1 (en) Solidified composition to strengthen weak stratum and constructing method using the same
JPH06344328A (en) Fast-curing fluidized threaded soil and rapid construction of roadbed/road body using the same
KR20240003601A (en) Construction method for tunnel of slope
KR940002457B1 (en) Method and apparatus for increasing bearing capacity of soft soil and constructing cutoff wall
JPH06108449A (en) Method of improving ground
JPH0571730B2 (en)
JPH0452327A (en) Stabilized soil and construction method using this soil
JP3363219B2 (en) Sabo dam structure
JP4027572B2 (en) How to use construction soil
JP2007131805A (en) Improved ground material
JPH0790272A (en) Super-plasticizable back-filling material and back-filling process
JP3738496B2 (en) Artificial consolidation material
KR100381056B1 (en) Construction method of porous concrete for river bank and surface
KR100451092B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
KR100462529B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
JP3230147B2 (en) Fluidized soil construction structure and its construction method
Miki et al. New soil treatment methods in Japan
US11486110B2 (en) Porous displacement piles meeting filter design criteria for rapid consolidation and densification of subsurface soils and intermediate geomaterials
DE10213396B4 (en) Mortar and method for the compaction-free filling of trenches, channels and cavities in earthworks, road construction and foundation engineering
JPS63234085A (en) Artificial basement material consisting of fly ash

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000307

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 14

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term