JPS63234085A - Artificial basement material consisting of fly ash - Google Patents
Artificial basement material consisting of fly ashInfo
- Publication number
- JPS63234085A JPS63234085A JP6713087A JP6713087A JPS63234085A JP S63234085 A JPS63234085 A JP S63234085A JP 6713087 A JP6713087 A JP 6713087A JP 6713087 A JP6713087 A JP 6713087A JP S63234085 A JPS63234085 A JP S63234085A
- Authority
- JP
- Japan
- Prior art keywords
- fly ash
- artificial ground
- water
- ash
- artificial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010881 fly ash Substances 0.000 title claims abstract description 70
- 239000000463 material Substances 0.000 title claims abstract description 67
- 239000002956 ash Substances 0.000 claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000011362 coarse particle Substances 0.000 claims abstract description 29
- 239000004094 surface-active agent Substances 0.000 claims abstract description 5
- 239000004576 sand Substances 0.000 abstract description 14
- 238000002156 mixing Methods 0.000 abstract description 9
- 239000000945 filler Substances 0.000 abstract description 3
- 239000010882 bottom ash Substances 0.000 abstract description 2
- 230000005484 gravity Effects 0.000 description 20
- 239000004568 cement Substances 0.000 description 14
- 238000010276 construction Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 238000005056 compaction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000010883 coal ash Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- MPOKJOWFCMDRKP-UHFFFAOYSA-N gold;hydrate Chemical compound O.[Au] MPOKJOWFCMDRKP-UHFFFAOYSA-N 0.000 description 2
- -1 hydroxy acid salts Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/18—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、人工島等の埋立地や護岸等へ投入される埋
戻し材、充填材、埋立造成材等に用いて好適なフライア
ッシュよりなる人工地盤材料に関する。[Detailed Description of the Invention] "Industrial Application Field" This invention utilizes fly ash, which is suitable for use as backfilling material, filler material, reclaim material, etc., to be put into reclaimed land such as artificial islands, sea walls, etc. Regarding artificial ground materials.
「従来の技術およびその問題点」
従来、このような人工地盤材料としては、主に°上砂が
用いられていた。しかしながら、砂を用いた人工地盤に
は、以下に挙げるような問題点があり、その解決策が待
ち望まれていた。``Conventional technology and its problems'' Conventionally, top sand has been mainly used as such artificial ground material. However, artificial ground using sand has the following problems, and solutions to these problems have been awaited.
■ 前記人工島等の埋立地や護岸等に投入されて自然堆
積した埋立砂は、その比重が1.8〜1.85と大きい
ため、人工地盤下の原地盤が軟弱な場合には、原地盤の
大きな沈下や地滑り破壊が生じる恐れが大である。従っ
て、埋立砂投入前に原地盤の大幅な地盤改良を行う必要
が生じる。■ Landfill sand deposited naturally on reclaimed land or seawalls on artificial islands, etc. has a high specific gravity of 1.8 to 1.85, so if the original ground beneath the artificial ground is soft, it may There is a high risk of major ground subsidence and landslide destruction. Therefore, it will be necessary to perform significant ground improvement on the original ground before adding sand to the landfill.
■ 埋立砂投入時に転圧、締め固めを行うことは事実上
不可能であり、従って、この埋立砂は投入後原地盤上に
緩く堆積したままで放置される。よって、堆積後に人工
地盤に作用する種々の荷重により人工地盤自体の沈下が
発生する恐れがあると共に、地震等強大な外力が作用し
た際に地盤の液状化が発生する恐れが大である。このた
め、原地盤上に形成した人工地盤そのものに地盤改良を
行う必要が生じる。■ It is virtually impossible to perform compaction and compaction at the time of inputting the reclaimed sand, so the reclaimed sand is left loosely piled on the original ground after being input. Therefore, there is a risk that the artificial ground itself may sink due to various loads acting on the artificial ground after it has been deposited, and there is also a high risk that liquefaction of the ground may occur when a strong external force such as an earthquake is applied. For this reason, it becomes necessary to perform ground improvement on the artificial ground itself formed on the original ground.
■ 埋立砂には時間経過に伴う硬化、自立性の向上が期
待できないため、投入された埋立砂の厚さ、すなわち埋
立深さが深くなる程、この埋立砂を囲繞する締切り、護
岸等の外殻壁に作用する土圧も大きくなり、従って、非
常に強固な外殻壁を構築する必然性が生じる。また、前
記■に述べた如く、人工地盤に地盤改良を行う場合、こ
れに伴う圧力増加も考慮しなくてはならない。■ Because reclaimed sand cannot be expected to harden or improve its self-reliance over time, the thickness of the reclaimed sand that has been put in, that is, the deeper the reclaimed depth, the more difficult it is to prevent the outside of cofferdams, revetments, etc. surrounding the reclaimed sand. The earth pressure acting on the shell wall also increases, and therefore it becomes necessary to construct a very strong outer shell wall. Furthermore, as mentioned in (2) above, when performing ground improvement on artificial ground, the accompanying pressure increase must be taken into account.
「問題点を解決するための手段」
そこでこの発明は、フライアッシュを主成分とし、これ
に粗粒分と水とを混合してフライアッシュよりなる人工
地盤材料を形成すると共に、フライアッシュと粗粒分と
の総乾燥重量に対する粗粒分の乾燥重量比を20〜80
%の範囲内とし、かつ、前記総乾燥重量に対する水の重
量比を20〜70%の範囲内とすることで、前記問題点
を解決せんとするものである。``Means for Solving the Problems'' Therefore, this invention uses fly ash as a main component, mixes coarse particles and water to form an artificial ground material made of fly ash, and also uses fly ash and coarse particles as a main component. The dry weight ratio of coarse particles to the total dry weight of particles is 20 to 80.
% and the weight ratio of water to the total dry weight is within the range of 20 to 70%, thereby solving the above problems.
以下、この発明のフライアッシュよりなる人工地盤材料
について詳細に説明する。まず、フライアッシュは、石
炭火力発電所やその他の石炭燃焼プラントから発生され
る石炭灰から採集されたものが用いられ、特にその種類
、性質等に限定を受けない。このフライアッシュは、セ
メントと同様にポゾラン活性を有し、それ自体で水と反
応して硬化する性質を有している。また、フライアッシ
ュの比重は、水を加えて硬化した状態で1.55程度と
前記埋立砂よりも小さいため、軽蛍な人工地盤を形成す
ることが可能となる。Hereinafter, the artificial ground material made of fly ash of the present invention will be explained in detail. First, fly ash is collected from coal ash generated from coal-fired power plants and other coal-burning plants, and is not particularly limited in its type, properties, etc. This fly ash has pozzolanic activity similar to cement, and has the property of hardening itself by reacting with water. Furthermore, since fly ash has a specific gravity of about 1.55 when hardened by adding water, which is smaller than the reclaimed sand, it is possible to form a lightweight artificial ground.
ここで、前記石炭火力発電所等から排出されてからの放
置期間が長期間に亙ると、フライアッシュ中の含水比が
高くなる場合があり、これが故にフライアッシュが有す
る自己硬化性が低下しているおそれがある。あるいは、
施工条件等の理由で、形成された人工地盤に短期間で所
定の強度を発現させる必然性が生じる場合もある。この
ような場合、セメント、石膏等の硬化助材を適量添加す
ることが好ましい。この硬化助材の添加量は、例えばセ
メントの場合、その添加量が多い程強度も大きくなるが
、この発明の人工地盤材料の汎用性を考慮して、人工地
盤として十分な強度(通常材令28日で3kg「/cm
″以上の圧縮強度)を得るには、フライアッシュ及び粗
粒分の総乾燥重量に対して重量比にして2〜4%で十分
である。Here, if fly ash is left for a long time after being discharged from the coal-fired power plant, etc., the water content ratio in fly ash may increase, which may reduce the self-hardening properties of fly ash. There is a possibility that there may be. or,
Due to construction conditions or other reasons, there may be cases where it is necessary to make the formed artificial ground develop a predetermined strength in a short period of time. In such cases, it is preferable to add an appropriate amount of a curing aid such as cement or gypsum. For example, in the case of cement, the greater the amount of this hardening aid added, the greater the strength.However, considering the versatility of the artificial ground material of this invention, we have determined that it has sufficient strength as an artificial ground (normal material age). 3kg/cm in 28 days
In order to obtain a compressive strength of 2 to 4% by weight based on the total dry weight of fly ash and coarse particles, it is sufficient.
そして、このフライアッシュに水及び粗粒分が加えられ
て、スラリー状の人工地盤材料が製造される。すなわち
、フライアッシュ単体は粉体であり、このままでは水中
において転圧、締め固めが行いにくい。従って、フライ
アッシュをスラリー状の人工地盤材料とすることで、フ
ライアッシュの自己硬化性により転圧等の作業を不要と
すると共に、移送等の作業を容易にせしめるのである。Then, water and coarse particles are added to this fly ash to produce a slurry-like artificial ground material. That is, fly ash alone is a powder, and as it is, it is difficult to compact and compact it underwater. Therefore, by using fly ash as a slurry-like artificial ground material, the self-hardening properties of fly ash eliminate the need for operations such as compaction, and also facilitate operations such as transportation.
この水としては、通常の水道水、井戸水等の清水の他に
、湖沼水、海水等の自然水等が用いられる。As this water, in addition to clean water such as ordinary tap water and well water, natural water such as lake water and seawater can be used.
これら水のうち海水は、施工現場か主に臨海地帯である
ため入手が容易である等の点で好ましい。Among these waters, seawater is preferable because it is easily available at construction sites or mainly in coastal areas.
この水の混合量は、フライアッシュ及び粗粒分の総乾燥
重量(前記硬化助材が添加される場合はこの重量も加え
た値)に対する重量比で20〜70%、好ましくは40
〜60%の範囲内である。水の重量比が20%未満であ
ると、スランプ値がOに近づき、流動性が悪くなるがた
めに施工が困難となる。同様に、水の重量比が80%を
越えると、逆にスランプ値が大きくなることで材料分離
を招き、人工地盤の強度低下及び収縮率の上昇を招いて
しまう。The amount of water mixed is 20 to 70%, preferably 40% by weight, based on the total dry weight of fly ash and coarse particles (this weight is also added if the hardening aid is added).
It is within the range of ~60%. If the weight ratio of water is less than 20%, the slump value approaches O, fluidity deteriorates, and construction becomes difficult. Similarly, if the weight ratio of water exceeds 80%, the slump value increases, leading to material separation, resulting in a decrease in the strength of the artificial ground and an increase in the shrinkage rate.
また、前記水には、必要に応じてリグニンスルホン酸、
ハイドロキシ酸塩及びその誘導体、ポリオール及びその
誘導体等の界面活性材が添加される。この界面活性材の
添加により、スラリー状の人工地盤材料の流動性を向上
させ、均一なスラリー埋立地盤を構築することができる
。In addition, the water may contain ligninsulfonic acid, if necessary.
Surfactants such as hydroxy acid salts and their derivatives, polyols and their derivatives are added. By adding this surfactant, the fluidity of the slurry-like artificial ground material can be improved and a uniform slurry reclaimed ground can be constructed.
また、前記粗粒分としては、砂、火山灰、ボトムアッシ
ュ(石炭灰からフライアッシュを採集した残部)、軽量
骨材等が用いられる。この粗粒分は、フライアッシュ、
水等の均一な混練や、スラリー状人工地盤材料の増量や
、あるいは人工地盤材料の比重調整を目的として混合さ
れるものである。すなわち、フライアッシュ及び水のみ
を混練してスラリー状の人工地盤材料を製造したのでは
、これらフライアッシュ及び水が均一に混練されず、フ
ライアッシュが団子状に凝集して、いわゆる「だま」を
形成する。そこで、これらフライアッシュ及び水に粗粒
分を混合することで、この粗粒分により前記「だま」が
形成されるのを抑制して均一な混練を促進するのである
。また、フライアッシュの生産量及び生産地から施工現
場への距離等を考慮すると、フライアッシュと水のみで
スラリー状の人工地盤材料を構成するのは不経済である
ため、このフライアッシュと置換しうる増量材を適宜混
合することが好ましい。特に、前記火山灰は、フライア
ッシュには及ばないものの、比較的高いポゾラン活性を
有するので、フライアッシュの置換材として好ましい。Further, as the coarse particles, sand, volcanic ash, bottom ash (the remainder after fly ash is collected from coal ash), lightweight aggregate, etc. are used. This coarse particles are fly ash,
It is mixed for the purpose of uniformly kneading water, etc., increasing the amount of slurry-like artificial ground material, or adjusting the specific gravity of artificial ground material. In other words, if a slurry-like artificial ground material is produced by kneading only fly ash and water, the fly ash and water will not be mixed uniformly, and the fly ash will aggregate into lumps, resulting in so-called "clumps". Form. Therefore, by mixing coarse particles with these fly ash and water, the formation of the "clumps" due to the coarse particles is suppressed and uniform kneading is promoted. In addition, considering the amount of fly ash produced and the distance from the production site to the construction site, it is uneconomical to construct an artificial ground material in the form of a slurry with only fly ash and water, so it is necessary to replace it with fly ash. It is preferable to appropriately mix a moisturizing filler. In particular, the volcanic ash is preferable as a fly ash replacement material because it has a relatively high pozzolanic activity, although it is not as good as that of fly ash.
さらに言えば、この発明の人工地盤においてシールド工
法によりトンネルを造る場合、この人工地盤を含めたシ
ールド掘進機周辺の地盤の比重が軽すぎると、トンネル
の浮力を上部の地盤重量で抑えることが困難となり、掘
削に支障をきたす、あるいはトンネルの崩壊を招く愁れ
がある。このように、人工地盤材料には、その用途に応
じて粗粒分を混合することで、比重を適宜調整すること
が好ましい。そして、この粗粒分の混合量は、フライア
ッシュと粗粒分との総乾燥重量に対する粗粒分の乾燥重
量比で20〜80%、好ましくは30〜60%である。Furthermore, when building a tunnel using the shield construction method on the artificial ground of this invention, if the specific gravity of the ground around the shield excavator, including the artificial ground, is too light, it will be difficult to suppress the buoyancy of the tunnel by the weight of the upper ground. There is a concern that this could impede excavation or cause the tunnel to collapse. In this way, it is preferable to adjust the specific gravity of the artificial ground material as appropriate by mixing coarse particles in accordance with its use. The amount of the coarse particles mixed is 20 to 80%, preferably 30 to 60%, in dry weight ratio of the coarse particles to the total dry weight of fly ash and coarse particles.
粗粒分の乾燥重量比が20%未満であると、人工地盤の
比重が軽すぎて施工時あるいは施工後に周囲に悪影響を
及ぼす恐れがある。また、粗粒分の乾燥重量比h<so
%を越えると、フライアンシュがその分減少することで
、人工地盤に要求される強度が発現されな−い−。If the dry weight ratio of the coarse particles is less than 20%, the specific gravity of the artificial ground will be too light and there is a risk that it will have an adverse effect on the surrounding area during or after construction. In addition, the dry weight ratio of coarse particles h<so
If it exceeds %, the strength required for the artificial ground will not be achieved because the fly ash will be reduced by that amount.
このようにしてフライアッシュに所定量の水及び粗粒分
が混合され、さらに必要に応じて硬化助材、界面活性材
が添加され、これら混合物は強制練りミキサー等の通常
の混線機で混練され、目的とするスラリー状の人工地盤
材料となる。そして、この人工地盤材料は、移送管等に
より埋立予定地たる海底や護岸に投入されて埋立に用い
られたり、あるいは地盤上に埋戻し土、盛土として打設
されて、人工地盤が形成される。In this way, a predetermined amount of water and coarse particles are mixed with the fly ash, and if necessary, curing aids and surfactants are added, and this mixture is kneaded with a normal mixing machine such as a forced mixer. , it becomes the desired slurry-like artificial ground material. Then, this artificial ground material is used for reclamation by being put into the seabed or seawall that is the planned reclamation site through a transfer pipe, or it is placed on the ground as backfill soil or embankment to form an artificial ground. .
そして、このようにして形成された人工地盤は、圧縮強
度として3kgr/cm”以上の充分な強度を有するも
のとなるため、人工地盤そのものの地盤沈下や地盤の液
状化について考慮する必要が無く、従って人工地盤への
地盤改良作業が不要となる。The artificial ground formed in this way has sufficient compressive strength of 3 kgr/cm" or more, so there is no need to consider ground subsidence or liquefaction of the artificial ground itself. Therefore, ground improvement work on artificial ground becomes unnecessary.
これと共に、人工地盤材料が自己硬化性を有するため、
これを囲繞する外殻壁を強固なものとする必要が無く、
施工が容易となる。さらに、硬化した人工地盤の比重は
前記従来の人工地盤材料たる埋立砂の比重より軽いため
、原地盤の沈下、地滑り破壊の恐れが無くなり、原地盤
への地盤改良作業が不要となる。Along with this, since the artificial ground material has self-hardening properties,
There is no need to make the outer shell wall surrounding it strong,
Construction becomes easier. Furthermore, since the specific gravity of the hardened artificial ground is lighter than the specific gravity of reclaimed sand, which is the conventional artificial ground material, there is no fear of subsidence or landslide destruction of the original ground, and there is no need for ground improvement work on the original ground.
特に、人工地盤材料には火山灰等の粗粒分が混合され、
これによりフライアッシュ、水等の混合物の均一な混合
を図ることが可能となると共に、施工条件に合致させて
人工地盤の比重を調整することができる。さらに、粗粒
分が火山灰であると、この火山灰がフライアッシュと同
様のポゾラン活性を有するので、フライアッシュの置換
材として混合することが可能となる。In particular, artificial ground materials contain coarse particles such as volcanic ash,
This makes it possible to uniformly mix the mixture of fly ash, water, etc., and also allows the specific gravity of the artificial ground to be adjusted to match the construction conditions. Furthermore, when the coarse particles are volcanic ash, this volcanic ash has the same pozzolanic activity as fly ash, so it can be mixed as a fly ash replacement material.
「実施例」
以下、この発明のフライアッシュよりなる人工地盤材料
を、実施例により更に詳細に説明するが、この発明のフ
ライアッシュよりなる人工地盤材料は、以下に示す実施
例に限定されない。"Example" Hereinafter, the artificial ground material made of fly ash of the present invention will be explained in more detail with reference to Examples, but the artificial ground material made of fly ash of the present invention is not limited to the examples shown below.
(実験例)
フライアッシュ、火山灰、セメント及び水を混練して、
この発明のフライアッシュよりなる人工地盤材料を製造
した。フライアッシュは、石炭火力発電所から湿潤状態
で排出されたものを、1週間〜1ケ月放置した後乾燥せ
ずに使用した。フライアッシュの物性を第1表に示す。(Experiment example) By mixing fly ash, volcanic ash, cement and water,
An artificial ground material made of the fly ash of this invention was manufactured. The fly ash was discharged in a wet state from a coal-fired power plant and was used without drying after being left for one week to one month. The physical properties of fly ash are shown in Table 1.
以下本頁余白
第 1 表
これらフライアッシュには北海道産の石炭が用いられて
おり、カルシウム分も約6%と高い。従って、乾燥状態
で排出・保管されていれば、フライアッシュの自己硬化
性によって、水との混合に上り敗kgf/c+a”程度
の圧縮強度が発現されるものと推察される。Below is the margin of this page Table 1 These fly ash are made from coal produced in Hokkaido, and have a high calcium content of about 6%. Therefore, if it is discharged and stored in a dry state, it is presumed that due to the self-hardening properties of fly ash, it will develop a compressive strength of approximately kgf/c+a'' upon mixing with water.
火山灰は、フライアッシュよりなる人工地盤材料の増量
材として混合され、北海道中部から産出されたものを、
2IIII11以上の粒子を取り除いた後、湿潤状態の
ままで用いた。実験に用いた火山灰の自然含水比は22
.8%、平均粒径は290μm1比重は2.59である
。Volcanic ash is mixed as an extender for artificial ground material made of fly ash, and is produced from central Hokkaido.
After removing 2III11 or more particles, it was used in a wet state. The natural moisture content of the volcanic ash used in the experiment was 22.
.. 8%, average particle size is 290 μm, and specific gravity is 2.59.
前述のフライアッシュの自己硬化性が湿潤状態によって
低下しているおそれがあること、及び短期間内で所定の
強度を得る必要性があること等の理由で、人工地盤の硬
化助材として普通ポルトランドセメントを数%の範囲内
で添加した。また、これらフライアッシュ、火山灰、セ
メント混練用の水としては、−東京湾から採取した海水
を濾過して用いた。Portland cement is commonly used as a hardening agent for artificial ground because of the above-mentioned self-hardening properties of fly ash, which may be degraded by wet conditions, and the need to obtain a certain level of strength within a short period of time. The additives were added within a range of several percent. As water for mixing fly ash, volcanic ash, and cement, seawater collected from Tokyo Bay was filtered and used.
以上のような各材料を3eのホバート型ミキサー内にお
いて5分間混練することで、スラリー状の人工地盤材料
を調製した。ホバート型ミキサーの回転数は、遊星運動
で60 rpIls回転運動で14 Orpmである。A slurry-like artificial ground material was prepared by kneading each of the above materials in a 3e Hobart mixer for 5 minutes. The rotational speed of the Hobart mixer is 60 rpm with planetary motion and 14 Orpm with rotational motion.
このようにして得られたスラリー状の人工地盤材料につ
いて、その流動性、比重及び材料分離の検討を行った。The fluidity, specific gravity, and material separation of the slurry-like artificial ground material thus obtained were investigated.
人工地盤材料の流動性は、通常のコンクリート用スラン
プコーンと同様の形状で、高さ15cmのサイズを有す
るモルタル、プラスター用特殊スランプコーンで測定し
た。また、人工地盤材料の比重は、掘削泥水の密度測定
用に使用されろマッドバランスで測定した。さらに、人
工地盤材料の材料分離は、100m1のメスシリンダー
を用いて測定した。The fluidity of the artificial ground material was measured using a special slump cone for mortar and plaster that has the same shape as a normal slump cone for concrete and a height of 15 cm. In addition, the specific gravity of the artificial ground material was measured using a mud balance, which is used to measure the density of drilling mud. Furthermore, material separation of the artificial ground material was measured using a 100 ml measuring cylinder.
次に、これら人工地盤材料の各特性を測定した後、この
人工地盤材料を直径5cI111高さl’Ocmの塩化
ビニール製のモールド内に充填し、上面をポリエチレン
フィルムで閉塞してミこれを20℃に温度が維持された
海水中で養生した。そして、このようにして硬化した人
工地盤材料の強度特性を測定した。強度特性測定は、主
として一軸圧縮試験(歪み速度0゜8%/分)で把握し
た。Next, after measuring each characteristic of these artificial ground materials, this artificial ground material was filled into a vinyl chloride mold with a diameter of 5 cm and a height of 1'0 cm, and the upper surface was closed with a polyethylene film. It was cured in seawater whose temperature was maintained at ℃. The strength characteristics of the artificial ground material thus hardened were then measured. The strength characteristics were mainly measured using a uniaxial compression test (strain rate: 0°8%/min).
なお、以下の実験結果において、これらフライアッシュ
、火山灰、セメントの配合を示す用語は以下の如く定義
される。In the following experimental results, terms indicating the composition of fly ash, volcanic ash, and cement are defined as follows.
・火山灰含有率(As):フライアッシュ、火山灰の総
乾燥重量に対する乾燥火山灰の重量比・セメント添加率
(Ac):フライアッシュ、火山灰の総乾燥重量に対す
るセメントの重量比・配合含水比(Wp):乾燥フライ
アッシュ、乾燥火山灰、セメントの総乾燥重量に対する
全水分の重量比
第1図は、人工地盤材料内に火山灰が混合されていない
状態での(As=0% )、硬化助材たるセメントの添
加量と人工地盤の圧縮強度との関係を示す図である。他
の条件は図中に示しである。・Volcanic ash content (As): fly ash, weight ratio of dry volcanic ash to the total dry weight of volcanic ash ・Cement addition rate (Ac): weight ratio of cement to the total dry weight of fly ash, volcanic ash ・Blended water content ratio (Wp) : Weight ratio of total moisture to total dry weight of dry fly ash, dry volcanic ash, and cement Figure 1 shows the weight ratio of cement as a hardening aid when volcanic ash is not mixed in the artificial ground material (As = 0%). FIG. 3 is a diagram showing the relationship between the added amount of and the compressive strength of artificial ground. Other conditions are shown in the figure.
この実験に用いられたフライアッシュは、前記表に示し
た如く約6%のカルシウム分を含有しており、従って、
乾燥状態で排出・保管されていれば数kgf/am”程
度の圧縮強度が発現されるものと推察される。従って、
このフライアッシュが乾燥状態で保管されてあれば、硬
化助材たるセメントの添加は不必要と考えられる。しか
しながら、このフライアッシュは排出後湿潤状態で1ケ
月放置されているため、本来有すべき自己硬化性が低下
していたものと思われる。が、このようなフライアッシ
ュであっても、セメントを適宜少量添加することで、強
度増加を期待できる。The fly ash used in this experiment contains about 6% calcium as shown in the table above, and therefore,
If it is discharged and stored in a dry state, it is estimated that it will develop a compressive strength of several kgf/am.
If this fly ash is stored in a dry state, it is considered unnecessary to add cement as a hardening aid. However, since this fly ash was left in a wet state for one month after being discharged, it is thought that the self-hardening properties that it should originally have had deteriorated. However, even with such fly ash, strength can be expected to increase by adding a small amount of cement.
第2図は、火山灰の添加量と人工地盤の圧縮強度との関
係を示す図である。他の条件は、図中に示しである。火
山灰のみでは充分な圧縮強度が得られないが、これをフ
ライアッシュと混合して使用すれば、人工地盤の材料と
して充分な強度を発現しうろことが理解できる。この場
合、火山灰含有率が37〜63%の範囲内においては、
人工地盤の強度発現に有意な差が見られない。FIG. 2 is a diagram showing the relationship between the amount of volcanic ash added and the compressive strength of artificial ground. Other conditions are shown in the figure. Although volcanic ash alone cannot provide sufficient compressive strength, it is understood that if it is used in combination with fly ash, sufficient strength will be developed as a material for artificial ground. In this case, within the range of volcanic ash content of 37% to 63%,
No significant difference was observed in the strength development of the artificial ground.
第3図は、硬化後の人工地盤の湿潤密度と火山灰含有率
との関係を示す図である。図に見るように、火山灰の混
合量を適宜調製することで、形成された人工地盤の比重
を調整しうろことが理解できる。この結果は、火山灰、
の比重がフライアッシュの比重よりも大きいことに起因
するが、また同時に、材料分離や収縮が火山灰の添加に
よっても大きくなることにも起因すると考えられる。す
なわち、第4図は人工地盤のブリージング率及び収縮率
と火山灰含有率との関係を示す図であって、第4図に示
すように、火山灰含有率の増加に従って、ブリージング
率及び収縮率も増加し、すなわちスラリー状の人工地盤
材料の材料分離が大きくなって、火山灰含有率60〜7
5%付近でピークを迎えている。この結果は、火山灰の
粒径がフライアッシュの粒径に比して大きいため、火山
灰間の間隙内にフライアッシュが隙間無く充填されるこ
とで、いわゆる粒度調整効果によって混合物の見掛けの
比重が増加し、これによって自由水が発生されたため゛
と解釈できる。FIG. 3 is a diagram showing the relationship between the wet density of the artificial ground after hardening and the volcanic ash content. As shown in the figure, it is possible to adjust the specific gravity of the artificial ground formed by adjusting the amount of volcanic ash mixed appropriately. This result shows that volcanic ash,
This is due to the fact that the specific gravity of volcanic ash is greater than that of fly ash, but it is also thought to be due to the fact that material separation and shrinkage become greater due to the addition of volcanic ash. In other words, Figure 4 is a diagram showing the relationship between the breathing rate and contraction rate of artificial ground and the volcanic ash content.As shown in Figure 4, as the volcanic ash content increases, the breathing rate and contraction rate also increase. In other words, the material separation of the slurry-like artificial ground material increases, and the volcanic ash content increases to 60 to 7.
It has peaked at around 5%. This result is because the particle size of volcanic ash is larger than the particle size of fly ash, so fly ash fills the gaps between volcanic ash without any gaps, which increases the apparent specific gravity of the mixture due to the so-called particle size adjustment effect. However, it can be interpreted that this is because free water was generated.
第5図は、硬化後の人工地盤の湿潤密度と配合金水比と
の関係を示した図である。第3図と同様に、火山灰含有
率の増減によって、人工地盤の比重が調整可能であるこ
とが理解できる。同様に、配合金水比の増減によっても
、ある程度人工地盤の比重を調゛整することも可能であ
る。FIG. 5 is a diagram showing the relationship between the wet density of the artificial ground after hardening and the mixed gold/water ratio. As in Figure 3, it can be seen that the specific gravity of the artificial ground can be adjusted by increasing or decreasing the volcanic ash content. Similarly, it is also possible to adjust the specific gravity of the artificial ground to some extent by increasing or decreasing the mixed metal/water ratio.
第6図は1.スラリー状人工地盤材料の流動性を示すス
ランプ値と配合金水比との関係を示す図である。火山灰
の混合量にもよるが、配合金水比の増加に伴って人工地
盤材料の流動性も向上している。同様に、第7図は人工
地盤材料のスランプ値と火山灰含有率との関係を示す図
である。第4図の結果と同様な傾向が示されている。Figure 6 shows 1. It is a figure which shows the relationship between the slump value which shows the fluidity of a slurry-like artificial ground material, and a compound water ratio. Although it depends on the amount of volcanic ash mixed, the fluidity of the artificial ground material also improves as the gold-water ratio increases. Similarly, FIG. 7 is a diagram showing the relationship between the slump value and volcanic ash content of artificial ground materials. A similar trend to the results shown in FIG. 4 is shown.
以上示した実験結果から、人工地盤材料として適した各
混合物の配合比について検討する。人工地盤材料の汎用
性を考慮すれば、これに要求される性能は以下の如き値
となる。Based on the experimental results shown above, we will discuss the blending ratio of each mixture suitable as an artificial ground material. Considering the versatility of artificial ground materials, the required performance values are as follows.
■−軸圧縮強度 :材令28日で3 kgr/ am”
■湿潤密度 : 1 、7g/am’以下■ブリ
ージング率:3%以下
■流動性 ニスランプ値12cm以下これら性能
を満足する配合比は、以下の第2表に示す通りとなる。- Axial compressive strength: 3 kgr/am at 28 days old
■Wet density: 1.7 g/am' or less ■Breathing rate: 3% or less ■Fluidity Varnish lamp value 12 cm or less The compounding ratio that satisfies these performances is as shown in Table 2 below.
第 2 表
「発明の効果」
以上詳細に説明したように、この発明のフライアッシュ
よりなる人工地盤材料は、フライアッシュを主成分とし
、これに粗粒分と水とを混合してなると共に、フライア
ッシュと粗粒分との総乾燥重量に対する粗粒分の乾燥重
量比を20〜80%の範囲内とし、かつ、前記総乾燥重
量に対する水の重量比を20〜70%の範囲内としたも
のであるから、埋立予定地等に打設された後に自身で硬
化して人工地盤として充分な強度を有するものとなるた
め、人工地盤そのものの地盤沈下や地盤の液状化につい
て考慮する必要が無く、従って人工地盤への地盤改良作
業が不要となると共に、人工地盤を囲繞する外殻壁を強
固なものとする必要が無く、施工が容易となる。さらに
、硬化した人工地盤の比重は前記従来の人工地盤材料た
る埋立砂の比重よ−り一軽いため、原地盤の沈下、地滑
り破壊の恐れが無くなり、原地盤への地盤改良作業が不
要となる。そして、この発明の人工地盤材料には火山灰
等の粗粒分が混合され、これによりフライアッシュ、水
等の混合物の均一な混合を図ることが可能となると共に
、施工条件に合致させて人工地盤の比重を調整すること
ができる。Table 2 "Effects of the Invention" As explained in detail above, the artificial ground material made of fly ash of the present invention has fly ash as its main component, mixed with coarse particles and water, and The dry weight ratio of the coarse particles to the total dry weight of fly ash and coarse particles was within the range of 20 to 80%, and the weight ratio of water to the total dry weight was within the range of 20 to 70%. Because it is a concrete material, it hardens on its own after being poured into a planned landfill site, etc., and has sufficient strength as an artificial ground, so there is no need to consider ground subsidence or liquefaction of the artificial ground itself. Therefore, there is no need for ground improvement work on the artificial ground, and there is no need to strengthen the outer shell wall surrounding the artificial ground, making construction easier. Furthermore, since the specific gravity of the hardened artificial ground is lighter than the specific gravity of reclaimed sand, which is the conventional artificial ground material, there is no risk of subsidence or landslide destruction of the original ground, and there is no need for ground improvement work on the original ground. . Coarse particles such as volcanic ash are mixed into the artificial ground material of this invention, which makes it possible to uniformly mix the mixture of fly ash, water, etc. The specific gravity can be adjusted.
第1図はセメントの添加量と人工地盤の圧縮強度との関
係を示す図、第2図は火山灰の添加量と人工地盤の圧縮
強度との関係を示す図、第3図は硬化後の人工地盤の湿
潤密度と火山灰含有率との関係を示す図、第4図は人工
地盤のブリージング率及び収縮率と火山灰含有率との関
係を示す図、第5図は硬化後の人工地盤の湿潤密度と配
合金水比との関係を示す図、第6図は人工地盤材料のス
ランプ値と配合金水比との関係を示す図、第7図は人工
地盤材料のスランプ値と火山灰含有率との関係2を示す
図である。Figure 1 shows the relationship between the amount of cement added and the compressive strength of the artificial ground, Figure 2 shows the relationship between the amount of volcanic ash added and the compressive strength of the artificial ground, and Figure 3 shows the relationship between the amount of cement added and the compressive strength of the artificial ground. Figure 4 shows the relationship between the wet density of the ground and the volcanic ash content. Figure 4 shows the relationship between the breathing rate and shrinkage rate of the artificial ground and the volcanic ash content. Figure 5 shows the wet density of the artificial ground after hardening. Figure 6 is a diagram showing the relationship between the slump value of the artificial ground material and the mixed gold-water ratio, and Figure 7 is the relationship between the slump value of the artificial ground material and the volcanic ash content2. FIG.
Claims (4)
とを混合してなる人工地盤材料であって、フライアッシ
ュと粗粒分との総乾燥重量に対する粗粒分の乾燥重量比
が20〜80%の範囲内であり、かつ、前記総乾燥重量
に対する水の重量比が20〜70%の範囲内であること
を特徴とするフライアッシュよりなる人工地盤材料。(1) An artificial ground material consisting mainly of fly ash, mixed with coarse particles and water, in which the dry weight ratio of the coarse particles to the total dry weight of fly ash and coarse particles is An artificial ground material made of fly ash, characterized in that the weight ratio of water to the total dry weight is within the range of 20 to 80%, and the weight ratio of water to the total dry weight is within the range of 20 to 70%.
請求の範囲第1項記載のフライアッシュよりなる人工地
盤材料。(2) The artificial ground material made of fly ash according to claim 1, wherein the coarse particles are volcanic ash.
範囲第1項または第2項記載のフライアッシュよりなる
人工地盤材料。(3) An artificial ground material made of fly ash according to claim 1 or 2, characterized in that a hardening aid is added.
の範囲第1、2または3項記載のフライアッシュよりな
る人工地盤材料。(4) An artificial ground material made of fly ash according to claim 1, 2 or 3, characterized in that a surfactant is added thereto.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6713087A JPS63234085A (en) | 1987-03-20 | 1987-03-20 | Artificial basement material consisting of fly ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6713087A JPS63234085A (en) | 1987-03-20 | 1987-03-20 | Artificial basement material consisting of fly ash |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63234085A true JPS63234085A (en) | 1988-09-29 |
JPH051834B2 JPH051834B2 (en) | 1993-01-11 |
Family
ID=13336008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6713087A Granted JPS63234085A (en) | 1987-03-20 | 1987-03-20 | Artificial basement material consisting of fly ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63234085A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100398076B1 (en) * | 2000-12-28 | 2003-09-26 | (주)청석엔지니어링 | Filling composition with a high fluidity containing bottom ash, and method for preparing the same |
JP2008291497A (en) * | 2007-05-24 | 2008-12-04 | Shimizu Corp | Method of using coal ash for ground material |
JP2016142096A (en) * | 2015-02-04 | 2016-08-08 | 株式会社大林組 | Soil cement and banking construction method using the same |
CN110950589A (en) * | 2019-11-29 | 2020-04-03 | 交通运输部科学研究院 | Stabilizing material for road base layer in strong sulfate saline soil area, road base layer using stabilizing material and construction method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52135332A (en) * | 1976-05-07 | 1977-11-12 | Nisshin Eng | Curable composition from industrial sludge |
JPS6117452A (en) * | 1984-07-02 | 1986-01-25 | 日本磁力選鉱株式会社 | Useful use of steel slag and coal ash |
JPS61287980A (en) * | 1985-06-14 | 1986-12-18 | Mitsuru Sangyo:Kk | Mixed soil stabilizer comprising sludge combustion ash and coal ash |
-
1987
- 1987-03-20 JP JP6713087A patent/JPS63234085A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52135332A (en) * | 1976-05-07 | 1977-11-12 | Nisshin Eng | Curable composition from industrial sludge |
JPS6117452A (en) * | 1984-07-02 | 1986-01-25 | 日本磁力選鉱株式会社 | Useful use of steel slag and coal ash |
JPS61287980A (en) * | 1985-06-14 | 1986-12-18 | Mitsuru Sangyo:Kk | Mixed soil stabilizer comprising sludge combustion ash and coal ash |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100398076B1 (en) * | 2000-12-28 | 2003-09-26 | (주)청석엔지니어링 | Filling composition with a high fluidity containing bottom ash, and method for preparing the same |
JP2008291497A (en) * | 2007-05-24 | 2008-12-04 | Shimizu Corp | Method of using coal ash for ground material |
JP2016142096A (en) * | 2015-02-04 | 2016-08-08 | 株式会社大林組 | Soil cement and banking construction method using the same |
CN110950589A (en) * | 2019-11-29 | 2020-04-03 | 交通运输部科学研究院 | Stabilizing material for road base layer in strong sulfate saline soil area, road base layer using stabilizing material and construction method |
CN110950589B (en) * | 2019-11-29 | 2021-11-26 | 交通运输部科学研究院 | Stabilizing material for road base layer in strong sulfate saline soil area, road base layer using stabilizing material and construction method |
Also Published As
Publication number | Publication date |
---|---|
JPH051834B2 (en) | 1993-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3452330B2 (en) | Solidified material mixed with crushed stone powder and construction method using solidified material mixed with crushed stone powder | |
CN115140994B (en) | High-strength cementing material, mould-bag concrete, and preparation and application thereof | |
JPS63234085A (en) | Artificial basement material consisting of fly ash | |
CN115140995B (en) | Cementing material, mould bag concrete and preparation and application thereof | |
CN115321928B (en) | High-strength cementing material and mould bag concrete containing efficient anti-caking agent, and preparation and application thereof | |
JP2809496B2 (en) | Ground improvement method for liquefaction prevention | |
US20090142143A1 (en) | Fly Ash Bentonite Slurry Mixture for Slurry Wall Construction | |
JPH0953071A (en) | Treatment of surplus excavated soil | |
JP2840880B2 (en) | Method for producing self-hardening backfill material | |
JPH0452327A (en) | Stabilized soil and construction method using this soil | |
JP6776391B2 (en) | Ground improvement materials, cement milk, and ground improvement methods | |
JPH0571730B2 (en) | ||
JPH11269849A (en) | Breakwater and revetment structure | |
SU802225A1 (en) | Selfhardened suspension composition | |
JP2579733B2 (en) | Sandbag for civil engineering | |
JP4009045B2 (en) | Ground improvement material, composite ground and ground improvement method | |
US3192720A (en) | Anticorrosive back-fill method | |
JP3116766B2 (en) | Fluidization method of fine particle aggregate | |
JPH07101765A (en) | Hydraulic material | |
JP3046476B2 (en) | Backfill method | |
CN115286345B (en) | High-strength cementing material containing anti-caking agent, mould-bag concrete, and preparation and application thereof | |
JP7265691B2 (en) | Soil improvement method | |
JPS609171B2 (en) | How to build a continuous water-stop wall | |
JP3721495B2 (en) | Method of manufacturing filler for soil cement column wall construction | |
JPH0557225B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |