JPH0734556U - Connection structure between plastic bipolar plate and metal collector - Google Patents

Connection structure between plastic bipolar plate and metal collector

Info

Publication number
JPH0734556U
JPH0734556U JP063982U JP6398293U JPH0734556U JP H0734556 U JPH0734556 U JP H0734556U JP 063982 U JP063982 U JP 063982U JP 6398293 U JP6398293 U JP 6398293U JP H0734556 U JPH0734556 U JP H0734556U
Authority
JP
Japan
Prior art keywords
bipolar plate
metal collector
plate
electrode
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP063982U
Other languages
Japanese (ja)
Inventor
昭雄 中村
智 小田嶋
広 小原
良明 西島
敏夫 重松
哲二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Sumitomo Electric Industries Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP063982U priority Critical patent/JPH0734556U/en
Publication of JPH0734556U publication Critical patent/JPH0734556U/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

(57)【要約】 (修正有) 【目的】本考案は、不安定な塩素イオンを含有するプラ
スチック双極板が金属集電極に与える影響を解決したプ
ラスチック双極板と金属集電極との接続構造を提供す
る。 【構成】このプラスチック双極板1と金属集電極2との
接続構造は、分子中に塩素を含む高分子マトリックスと
炭素系フィラーとからなるプラスチック双極板1と金属
集電極2との間に、塩素イオン含量が100ppm以下の導電
体3を挿入してなるものである。
(57) [Summary] (Modified) [Objective] The present invention provides a connection structure between a plastic bipolar plate and a metal collector electrode, which solves the effect of a plastic bipolar plate containing unstable chlorine ions on the metal collector electrode. provide. [Structure] This plastic bipolar plate 1 and the metal collector electrode 2 are connected to each other by connecting a chlorine electrode A conductor 3 having an ion content of 100 ppm or less is inserted.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案はレドックスフロー型二次電池、亜鉛−ハロゲン型二次電池等の電解液 循環型二次電池に用いられるプラスチック双極板と銅板等で作られた金属集電極 との接続構造に関するものである。 The present invention relates to a connection structure between a plastic bipolar plate used in an electrolytic solution circulation type secondary battery such as a redox flow type secondary battery and a zinc-halogen type secondary battery, and a metal collector electrode made of a copper plate or the like. .

【0002】[0002]

【従来の技術】[Prior art]

電力貯蔵用新型二次電池の最も有力な方法としてレドックスフロー型二次電池 がある。この二次電池は、図3に示すように、酸化還元反応によって価数の変化 する金属イオンの塩酸水溶液を、左右一対の正(負)極電解液タンク21(21’) に貯蔵し、それぞれの経路22、22の循環ポンプ23、23により二次電池セル24に供 給して充放電させるものである。 この金属イオンには正極活物質として鉄イオン(Fe3+、Fe2+)、負極活物 質としてクロムイオン(Cr2+、Cr3+)が代表的に用いられる。 二次電池セル24の構造は金属集電極25/双極板27/正極反応電極28/隔膜(陽 イオン交換膜)29/負極反応電極28’/双極板27/金属集電極25からなり、下記 酸化還元反応による電子(e- )は金属集電極25を通して充放電用直流電源30と の間で授受が行われる。 正極 Fe3++e- ⇔ Fe2+ 負極 Cr2+ ⇔ Cr3++e- ただし、この単セルの場合には出力ワット数が小さいため、実用(工業)的に は単セルを十数層スタッキングし、スタック単位を直列または並列接続して大出 力化して用いる。The redox flow secondary battery is one of the most promising methods for new type secondary battery for power storage. As shown in FIG. 3, this secondary battery stores a hydrochloric acid aqueous solution of a metal ion whose valence changes by a redox reaction in a pair of left and right positive (negative) electrode electrolyte tanks 21 (21 '), respectively. The recirculation pumps 23, 23 of the paths 22, 22 supply the secondary battery cells 24 for charging and discharging. For the metal ions, iron ions (Fe 3+ , Fe 2+ ) are typically used as the positive electrode active material, and chromium ions (Cr 2+ , Cr 3+ ) are typically used as the negative electrode active material. The structure of the secondary battery cell 24 is composed of a metal collector electrode 25 / a bipolar plate 27 / a positive electrode reaction electrode 28 / a diaphragm (cation exchange membrane) 29 / a negative electrode reaction electrode 28 ′ / a bipolar plate 27 / a metal collector electrode 25. Electrons (e ) due to the reduction reaction are exchanged with the charging / discharging DC power supply 30 through the metal collector electrode 25. Positive electrode Fe 3+ + e ⇔ Fe 2+ Negative electrode Cr 2+ ⇔ Cr 3+ + e However, in the case of this single cell, the output wattage is small, so for practical (industrial) stacking of more than 10 layers. Then, stack units are connected in series or in parallel to increase the output power.

【0003】 このスタック単位がn層の単セルからなるとすると、金属集電極25/双極板27 (1)/正極反応電極28(1)/隔膜29(1)/負極反応電極28’(1)/双極 板27(2)/正極反応電極28(2)/隔膜29(2)/負極反応電極28’(2)/ 双極板27(3)‥‥‥双極板27(n)/正極反応電極28(n)/隔膜29(n)/ 負極反応電極28’(n)/双極板27(n+1)/金属集電極25の構造となり、双 極板27はn+1枚使用され、最も外側に金属集電極25が2枚使用される。 このスタック構造において、双極板(バイポーラ・プレート)という言葉は、 その両面に正・負極の反応電極28、28' があるところから命名されたものである が、その要求特性は電子の移動が速やかに行われるために高導電性であること 、電解液の塩酸水溶液(塩酸濃度約10重量%)に侵されないこと、正・負極 電解液が相互に混じり合わない、すなわち液漏れのないこと等が挙げられ、従来 グラッシーカーボン(製法は後述)と呼ばれるガラス質のカーボン板が実証試験 に供されてきた。 しかし、このグラッシーカーボン双極板は高導電性(体積固有抵抗:約5× 10-3Ω・cm)と耐塩酸性を満足するものの極めて高価であり、また製法上ミクロ な空孔を皆無とすることが困難である、脆くて電池組立時に割れ易い等の欠点が あることから、最近では導電性プラスチック双極板の使用が再検討される状態に なっている。Assuming that the stack unit is composed of a single cell of n layers, the metal collector electrode 25 / bipolar plate 27 (1) / positive electrode reaction electrode 28 (1) / diaphragm 29 (1) / negative electrode reaction electrode 28 ′ (1). / Bipolar plate 27 (2) / Positive electrode 28 (2) / Differential membrane 29 (2) / Negative electrode 28 '(2) / Bipolar plate 27 (3) .................. Bipolar plate 27 (n) / Positive electrode 28 (n) / diaphragm 29 (n) / negative electrode reaction electrode 28 '(n) / bipolar plate 27 (n + 1) / metal collector electrode 25 structure, n + 1 sheets of bipolar plate 27 are used, and the outermost metal collector is used. Two electrodes 25 are used. In this stack structure, the term bipolar plate is named because there are positive and negative reaction electrodes 28 and 28 'on both sides, but the required characteristic is that electrons move quickly. Therefore, it is highly conductive, it is not affected by the hydrochloric acid aqueous solution of the electrolyte (hydrochloric acid concentration of about 10% by weight), and the positive and negative electrode electrolytes do not mix with each other, that is, there is no leakage. For example, a glassy carbon plate called glassy carbon (manufacturing method is described later) has been used for the verification test. However, this glassy carbon bipolar plate satisfies the requirements of high conductivity (volume resistivity: approx. 5 × 10 -3 Ω · cm) and hydrochloric acid resistance, but is extremely expensive, and it has no microscopic holes due to the manufacturing method. However, due to its drawbacks such as difficulty in assembly and brittleness and easy cracking during battery assembly, the use of conductive plastic bipolar plates has recently been reconsidered.

【0004】 導電性プラスチック双極板のマトリックス樹脂には当初ポリオレフィンが検討 されたが、この系の樹脂は結晶質のラメラ構造を分子中に多量に含むためフィラ ーが充填しにくく、体積固有抵抗1×10-1Ω・cm以下の高導電性を得ることが困 難である。ちなみに本考案者らの試験結果によれば、高いエネルギー効率を得る には体積固有抵抗3×10-2Ω・cm以下の高導電性が必要という知見が得られてい る。 また、本考案者らは検討の結果、フィラーを高充填できる高分子マトリックス は、分子構造中に非晶質部分が多いこと、側鎖に官能基があり、これが嵩高 いことが原因でポリマースパイラルの径が大きいこと等が挙げられるが、種々検 討の結果、耐塩酸性等の性質を加味してポリ塩化ビニル、塩素化ポリエチレン等 の分子中に塩素を含む高分子マトリックスの使用が好ましいという知見を得た。 ちなみにポリ塩化ビニルは食塩水電解設備や塩酸製造設備に長年使用された工業 的実績があり、塩素化ポリエチレンは塩素化度の低いポリ塩化ビニルとみなされ 、ほぼ同等の耐塩酸性を有する。Polyolefin was initially considered as the matrix resin for the conductive plastic bipolar plate, but since the resin of this system contains a large amount of crystalline lamella structure in the molecule, it is difficult for the filler to fill, and the volume resistivity 1 It is difficult to obtain high conductivity of × 10 -1 Ω · cm or less. By the way, according to the test results of the present inventors, it has been found that high conductivity with volume resistivity of 3 × 10 −2 Ω · cm or less is required to obtain high energy efficiency. In addition, as a result of investigations by the present inventors, a polymer matrix that can be highly filled with a filler has a large number of amorphous parts in its molecular structure and has a functional group in a side chain, which is bulky and causes a polymer spiral. However, as a result of various investigations, it was found that it is preferable to use a polymer matrix containing chlorine in the molecule such as polyvinyl chloride and chlorinated polyethylene in consideration of properties such as hydrochloric acid resistance. Got Incidentally, polyvinyl chloride has an industrial track record of being used for many years in salt water electrolysis equipment and hydrochloric acid production equipment, and chlorinated polyethylene is regarded as polyvinyl chloride with a low degree of chlorination and has almost the same hydrochloric acid resistance.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところが、電池セル試験の結果ではこれらの高分子マトリクスは成形時の熱履 歴によっては、次のような不具合のあることが分かった。 すなわち、塩素基を側鎖に有するこれらの樹脂は安定剤を添加しない状態では 加熱時にジッパー(Zipper)反応と呼ばれている脱塩化水素反応がラジカル的に 進行し分解に至る。これを抑制するために、鉛系、有機すず系、Ba−Zn系、 Ca−Zn系等の安定剤を添加し、脱離した塩化水素を捕捉して脱塩化水素加速 効果を抑制し、かつラジカル的に進行するジッパー反応を停止させるのである。 しかし、かかる樹脂を使用しプレス成形等により高温・長時間の熱履歴を受ける 場合には、上記した安定剤による塩化水素の捕捉が完全に行かない場合がある。 例えば、塩素化ポリエチレン(試験では有機すず系安定剤を3重量部添加した) に炭素系フィラーを配合した導電性樹脂を、 180℃の条件で30分間プレス成形を 行うと、 原料の塩素イオン濃度50〜100ppmに対して成形板の塩素イオン濃度は50 0ppm程度となり、この成形板を銅板と密着させると経時的に銅板面が白っぽく変 色し、かつ接触抵抗も初期値の約4倍に変化することが分かった。 したがって、本考案の目的は不安定な塩素イオンを含有するプラスチック双極 板が金属集電極に与える影響を解決したプラスチック双極板と金属集電極との接 続構造を提供するものである。 However, the results of battery cell tests revealed that these polymer matrices had the following problems depending on the thermal history during molding. That is, these resins having a chlorine group in the side chain undergo a radical dehydrochlorination reaction called a zipper reaction when heated without radical stabilizer, leading to decomposition. In order to suppress this, stabilizers such as lead-based, organic tin-based, Ba-Zn-based, and Ca-Zn-based stabilizers are added to capture the desorbed hydrogen chloride to suppress the dehydrochlorination acceleration effect, and The zipper reaction that proceeds radically is stopped. However, when such a resin is used and subjected to a high temperature and long-term heat history by press molding or the like, the above-mentioned stabilizer may not completely capture hydrogen chloride. For example, when a conductive resin containing a carbon-based filler mixed with chlorinated polyethylene (3 parts by weight of an organic tin stabilizer was added in the test) was press-molded at 180 ° C for 30 minutes, the chlorine ion concentration of the raw material was increased. The chlorine ion concentration of the molded plate is about 500 ppm with respect to 50 to 100 ppm, and when the molded plate is brought into close contact with the copper plate, the copper plate surface turns whitish over time, and the contact resistance also changes to about 4 times the initial value. I found out that Therefore, an object of the present invention is to provide a connection structure between a plastic bipolar plate and a metal collector electrode, which solves the influence of a plastic bipolar plate containing unstable chlorine ions on the metal collector electrode.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本考案によるプラスチック双極板と金属集電極との接続構造は、分子中に塩素 を含む高分子マトリックスと炭素系フィラーとからなるプラスチック双極板と金 属集電極との間に、塩素イオン含量が100ppm以下、好ましくは50ppm 以下、より 好ましくは 30ppm以下、1ppm 以上の導電体を挿入してなることを特徴とするも のである。 The connection structure between the plastic bipolar plate and the metal collector electrode according to the present invention has a chlorine ion content of 100 ppm between the plastic bipolar plate composed of a polymer matrix containing chlorine in the molecule and a carbon-based filler and the metal collector electrode. Below, preferably, 50 ppm or less, more preferably 30 ppm or less, 1 ppm or more of a conductor is inserted.

【0007】 以下、本考案のプラスチック双極板と金属集電極との接続構造について、その 具体的態様を示した図1〜図2に基づいて説明する。 図1は本考案によるプラスチック双極板と金属集電極との接続構造で、1はプ ラスチック双極板、2は金属集電極、3はこの両者の間に挿入された塩素イオン 含量が100ppm以下の導電体である。 図2は上記接続構造の実施態様を電解液循環型二次電池への適用例として示す ものである。 図中、11(11’)は酸化還元反応によって価数の変化する金属イオンの塩酸水 溶液を貯蔵する左右一対の正(負)極電解液タンクで、正(負)極電解液はそれ ぞれの経路12、12の循環ポンプ13、13により電解液循環型二次電池セル14に供給 されて充放電に供される。 二次電池セル14は金属集電極15/塩素イオン含量が100ppm以下の導電体16/プ ラスチック双極板17/正極反応電極18/隔膜(陽イオン交換膜)19/負極反応電 極18’/プラスチック双極板17/塩素イオン含量が100ppm以下の導電体16/金属 集電極15から構成されていて、還元反応による電子(e- )は金属集電極15を通 して充放電用直流電源20との間で授受が行われる。The connection structure between the plastic bipolar plate and the metal collector electrode according to the present invention will be described below with reference to FIGS. 1 and 2 showing specific embodiments thereof. FIG. 1 shows a connection structure of a plastic bipolar plate and a metal collector electrode according to the present invention, 1 is a plastic bipolar plate, 2 is a metal collector electrode, and 3 is a conductive material having a chlorine ion content of 100 ppm or less inserted between them. It is the body. FIG. 2 shows an embodiment of the above connection structure as an example of application to an electrolytic solution circulation type secondary battery. In the figure, 11 (11 ') is a pair of left and right positive (negative) electrode electrolyte tanks for storing a hydrochloric acid aqueous solution of metal ions whose valence changes due to oxidation-reduction reaction. It is supplied to the electrolytic solution circulation type secondary battery cell 14 by the circulation pumps 13 and 13 of the paths 12 and 12 and used for charging and discharging. The secondary battery cell 14 includes a metal collector electrode 15 / a conductor having a chloride ion content of 100 ppm or less 16 / a plastic bipolar plate 17 / a positive electrode reaction electrode 18 / a diaphragm (cation exchange membrane) 19 / a negative electrode reaction electrode 18 ′ / plastic It consists of a bipolar plate 17 / a conductor 16 with a chlorine ion content of 100 ppm or less / a metal collector electrode 15, and the electrons (e ) due to the reduction reaction pass through the metal collector electrode 15 and a DC power source 20 for charging / discharging. Exchange between the two.

【0008】 つぎに、本考案の接続構造の各構成要素について説明する。 上記プラスチック双極板17において、マトリックスとなる分子中に塩素を含む 高分子としては、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエーテル、 塩素化ポリエチレン、クロルスルホン化ポリエチレン、エチレン−塩化ビニル共 重合体、塩化ビニル−酢酸ビニル共重合体、アクリル系ゴム(ACM)、エピク ロルヒドリンゴム、エピクロルヒドリン−エチレンオキサイドゴム等が挙げられ るが、この中では耐塩酸性のほか炭素系フィラーの高充填性やフィラーを高充填 した樹脂の成形性などを考慮すると、塩素化ポリエチレンやクロロスルホン化ポ リエチレンの使用が好ましい。この2つの樹脂は過酸化物加硫によって架橋ゴム とすることもできるが、脱塩化水素をできるだけ起こさせないという観点からは 、架橋させずに用いるのがよい。 他方、炭素系フィラーとしては天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛粉末、 アセチレンブラック、導電性オイルファーネスブラック、ケッチェンブラックR EC等の単独または複合系が好ましく、体積固有抵抗3×10-2Ω・cm以下の高導 電性を得るためには、高分子マトリクス 100重量部に対して炭素系フィラー 150 重量部以上を充填する必要がある。Next, each component of the connection structure of the present invention will be described. In the plastic bipolar plate 17, as the polymer containing chlorine in the molecule serving as a matrix, polyvinyl chloride, polyvinylidene chloride, chlorinated polyether, chlorinated polyethylene, chlorosulfonated polyethylene, ethylene-vinyl chloride copolymer is used. , Vinyl chloride-vinyl acetate copolymer, acrylic rubber (ACM), epichlorohydrin rubber, epichlorohydrin-ethylene oxide rubber and the like. Among these, hydrochloric acid resistance as well as high carbonaceous filler filling and filler Considering the moldability of the filled resin, it is preferable to use chlorinated polyethylene or chlorosulfonated polyethylene. These two resins can be made into a crosslinked rubber by peroxide vulcanization, but from the viewpoint of preventing dehydrochlorination as much as possible, it is preferable to use without crosslinking. On the other hand, natural graphite powder as the carbon filler, artificial graphite powder, expanded graphite powder, acetylene black, conductive oil furnace black, preferably alone or combined system such as Ketjen Black R EC, volume resistivity 3 × 10 -2 In order to obtain a high conductivity of Ω · cm or less, it is necessary to add 150 parts by weight or more of carbon-based filler to 100 parts by weight of the polymer matrix.

【0009】 プラスチック双極板17と銅板等の金属集電極15との間に挿入される塩素イオン 含量が100ppm以下の導電体16としては、グラッシーカーボン板、CCコンポジッ ト板、Kシート、膨張黒鉛シート、黒鉛フィルム等が挙げられる。 ここで塩素イオン含量が100ppm以下と数値限定する理由は、塩素イオン含量が 約500ppmの塩素化ポリエチレンをマトリックスとする双極板を銅板に密着させ、 70℃で 240時間放置したところ、銅板の変色や接触抵抗の変化が検出されたのに 対し、塩素イオン含量が約30〜100ppmの塩素化ポリエチレンをマトリックスとす る双極板を銅板に密着させ、70℃で 240時間放置し銅板の変色や接触抵抗の変化 が皆無であったためである。なお、実用上は安全を見て塩素イオン含量を50ppm 以下とするのが望ましい。 上記グラッシーカーボン板とは熱硬化性樹脂と適当な骨材とで原料成形物を作 り、これを高温で加熱して炭素化したもので、例えば、フラン樹脂と塩素化ポリ 塩化ビニルとの混合樹脂に天然黒鉛粉末を混合して十分に練り、これをカレンダ ーロールまたはTダイ押出機によりシーティングし、このシート状物を 180℃付 近まで加熱した後、不活性雰囲気中で1000℃以上の高温で焼成して炭素化したガ ラス状カーボン板で、3×10-3〜4×10-3Ω・cmの高導電性を有する。 CCコンポジット板(炭素繊維/炭素複合材)とは炭素繊維クロスに樹脂また は石油・石炭ピッチ等の有機物結合剤を含浸して高温焼成したもので、炭素化の 過程で有機物が重量、容積とも減少して空孔を生ずるため、改めて結合剤を含浸 して再焼成を行う高密度化と呼ばれる工程を数回以上繰り返して製作する。The conductor 16 having a chlorine ion content of 100 ppm or less inserted between the plastic bipolar plate 17 and the metal collector 15 such as a copper plate is a glassy carbon plate, a CC composite plate, a K sheet, or an expanded graphite sheet. , Graphite film and the like. The reason for limiting the numerical value of the chlorine ion content to 100 ppm or less is that a bipolar plate having a chlorine ion content of about 500 ppm as a matrix and a bipolar plate is adhered to the copper plate and left at 70 ° C. for 240 hours. While a change in contact resistance was detected, a bipolar plate with a chloride ion content of about 30-100 ppm chlorinated polyethylene as a matrix was brought into close contact with the copper plate, and the plate was left at 70 ° C for 240 hours to discolor or contact resistance of the copper plate. This was because there was no change in. For practical purposes, it is desirable to keep the chlorine ion content below 50 ppm for safety. The above-mentioned glassy carbon plate is a carbonized material that is made by forming a raw material molded product from a thermosetting resin and a suitable aggregate, and heating this at high temperature to carbonize it. Natural graphite powder is mixed with resin and thoroughly kneaded, and this is sheeted with a calender roll or a T-die extruder. After heating this sheet material to a temperature close to 180 ° C, a high temperature of 1000 ° C or higher in an inert atmosphere. It is a glassy carbon plate which is fired and carbonized, and has high conductivity of 3 × 10 −3 to 4 × 10 −3 Ω · cm. A CC composite plate (carbon fiber / carbon composite material) is a carbon fiber cloth impregnated with a resin or an organic binder such as petroleum / coal pitch, and fired at high temperature. Since the number of pores is reduced and voids are generated, a process called densification, in which a binder is impregnated again and re-baking is repeated, is repeated several times.

【0010】 Kシートとは炭素繊維の短繊維とカーボン粉末とを樹脂で混練し、圧縮成形に よりシーティングした後、約2000℃で焼成したもので、体積固有抵抗が2×10-3 Ω・cmの高導電性を有する。 膨張黒鉛シートとは天然黒鉛粉末を硫酸・硝酸の混酸中に数分間浸漬した後、 水洗し、 700〜 800℃で焼成して得られる、体積が 200〜 300倍に膨張した粉末 (これが膨張黒鉛粉末)を圧縮成形したもので、鞣革のようなフィーリングの機 械的強度の低い黒鉛シートである。 黒鉛フィルムとはポリイミドフィルムや全芳香族ポリアミドフィルムのような 分子中にベンゼン核を多く含む芳香族高分子フィルムを、分子結晶が整列するよ うにして成形した後、2000℃以上で焼成したものである。この黒鉛フィルムは体 積固有抵抗が約5×10-4Ω・cmの高導電性を有する。 塩素イオン含量が100ppm以下の導電体には、上記の炭素系板材またはフィルム 材のほかに、金箔、チタン板等の耐食性金属板または箔、ポリエステル、ポリウ レタン、エポキシ樹脂、フェノール樹脂等の塩素イオン含量が100ppm以下の樹脂 をマトリックスとするカーボン系導電樹脂板または導電性インクのコーティング 皮膜、金属集電極板面に形成された金メッキ等の耐食性金属メッキ皮膜等が挙げ られる。The K sheet is a sheet in which short carbon fibers and carbon powder are kneaded with a resin, sheeted by compression molding, and fired at about 2000 ° C., and the volume resistivity is 2 × 10 −3 Ω. It has a high conductivity of cm. Expanded graphite sheet is a powder obtained by immersing natural graphite powder in a mixed acid of sulfuric acid and nitric acid for several minutes, washing it with water, and baking it at 700 to 800 ° C, which is expanded to a volume of 200 to 300 times. (Powder) is compression-molded, and is a graphite sheet with a mechanical strength low like a tanned leather. What is a graphite film? An aromatic polymer film containing a large amount of benzene nuclei in the molecule, such as a polyimide film or wholly aromatic polyamide film, which is formed so that the molecular crystals are aligned and then fired at 2000 ° C or higher. Is. This graphite film has high conductivity with a volume resistivity of about 5 × 10 −4 Ω · cm. For conductors with chlorine ion content of 100 ppm or less, in addition to the above carbon-based plate materials or film materials, corrosion-resistant metal plates or foils such as gold foil and titanium plate, chloride ions such as polyester, polyurethane, epoxy resin, phenol resin, etc. Examples thereof include a carbon-based conductive resin plate having a resin content of 100 ppm or less as a matrix, a coating film of a conductive ink, and a corrosion-resistant metal plating film such as gold plating formed on the surface of a metal collector electrode plate.

【0011】[0011]

【考案の効果】[Effect of device]

本考案は、プラスチック双極板と金属集電極との間に塩素イオン含量が100ppm 以下の導電体を挿入することにより、プラスチック双極板に含まれる塩素イオン が金属集電極に与える影響を極めて容易に解決することができる。 挿入導電体として高温焼成タイプの炭素板を例示したが、安価なプラスチック 板を使用しながら、高価なものを使用するという矛盾があるように考えられるが 、この挿入導電体は双極板を十数〜数十枚に2枚使用するのであるから、コスト アップの割合はかなり低く抑えることができる。 The present invention very easily solves the influence of chlorine ions contained in the plastic bipolar plate on the metal collector by inserting a conductor with a chloride ion content of 100 ppm or less between the plastic bipolar plate and the metal collector. can do. Although a high-temperature firing type carbon plate was illustrated as the insertion conductor, it seems that there is a contradiction that an expensive plastic plate is used while an expensive one is used. Since two to several tens of sheets are used, the rate of cost increase can be kept to a very low level.

【0012】[0012]

【実施例】【Example】

つぎに本考案を実施例により説明する。 塩素化度35%の塩素化ポリエチレン:エラスレン351A(昭和電工社製、商品名 ) 100重量部と有機すず系安定剤:グレッグ TO-248E(昭島化学工業社製、商品 名)3重量部と天然黒鉛粉末とカーボンブラックとを混合した炭素系フィラー 1 50重量部とをキシレン溶剤に溶解・撹拌して、固形分含量12重量%の導電性塗料 を調製し、これを支持体フィルム上に複数回コーティングして乾燥膜厚 0.3mmの 導電性樹脂層を形成した。 次に、この導電性樹脂層同士を合わせてプレス成形を行い、厚さ 0.6mmの導電 性樹脂板を製作した。このときの成形条件はプレス熱盤温度を 180℃に設定し、 支持体フィルムに形成された導電性樹脂層同士を密着させたものを熱盤上に置き 、圧力0kgf/cm2 で15分間予熱した後、 成形圧力50kgf/cm2 で15分間熱圧し、そ の後、熱盤内に通水して30℃まで下がるのを待って(この間約30分)圧力を解放 したもので、この導電性樹脂板は 180℃の熱履歴を約30分受けたことになる。Next, the present invention will be described with reference to examples. Chlorinated polyethylene with a chlorination degree of 35%: Erasulene 351A (Showa Denko KK, trade name) 100 parts by weight and organic tin stabilizer: Greg TO-248E (Akishima Chemical Industry Co., Ltd. trade name) 3 parts by weight and natural 50 parts by weight of carbon-based filler 1 in which graphite powder and carbon black are mixed is dissolved and stirred in a xylene solvent to prepare a conductive coating material having a solid content of 12% by weight, and this is coated on a support film multiple times. A conductive resin layer having a dry film thickness of 0.3 mm was formed by coating. Next, the conductive resin layers were combined and press-molded to manufacture a conductive resin plate having a thickness of 0.6 mm. The molding conditions at this time were to set the press heating plate temperature to 180 ° C, place the conductive resin layers formed on the support film in close contact with each other and place them on the heating plate, and preheat for 15 minutes at a pressure of 0 kgf / cm 2. After that, heat was applied at a molding pressure of 50 kgf / cm 2 for 15 minutes, and then water was passed through the heating plate to wait for the temperature to drop to 30 ° C (approximately 30 minutes during this time), and then the pressure was released. The resin sheet has been exposed to a thermal history of 180 ° C for about 30 minutes.

【0013】 この導電性樹脂板の塩素イオン濃度をイオンクロマトグラフィにより測定した ところ、試料中の塩素イオン濃度は 530〜560ppmであった。この測定は試料1g を蒸留水50ml中で60℃で2時間抽出した塩素イオン濃度実測値を試料質量当りに 換算したものである。同様の方法で原料の塩素化ポリエチレンの塩素イオン濃度 を測定したところ、70〜90ppm であった。確認のために、安定剤、炭素系フィラ ー、溶剤等、塩素化ポリエチレン以外の副資材の塩素イオン濃度を同様の方法で 測定したところ、いずれも30ppm 以下であったため、上記塩素イオン濃度の増大 はプレス成形時の熱履歴に起因するものと推測される。 この導電性樹脂板を無垢の電解銅箔2枚の間に挿入して1.5kgf/cm2の圧力で密 着させて70℃の雰囲気内に2週間放置し、1cm2 当りの接触抵抗をチェックした ところ、初期値で約 0.1Ωが約 0.4Ωとなっており、銅の導電性樹脂板との密着 面は白っぽく変色していた。 次に、膨張黒鉛パウダー:EXP-5 (丸豊鋳材製作所製、商品名)を、成形圧力 800kgf/cm2、常温、10分間の条件で厚さ 0.3mmの導電シートをプレス成形した。 この膨張黒鉛シートの体積固有抵抗実測値は約5×10-3Ω・cmであった。 この膨張黒鉛シートを上記導電性樹脂板を電解銅箔との間に挿入して、1.5kgf /cm2の圧力で密着させて70℃の雰囲気内に2週間放置し、接触抵抗をチェックし た後、分解したところ、1cm2 当りの接触抵抗は初期値とほぼ同様(約 0.1Ω) であり、銅箔の膨張黒鉛シート密着面の変色も観察されなかった。When the chlorine ion concentration of this conductive resin plate was measured by ion chromatography, the chlorine ion concentration in the sample was 530 to 560 ppm. In this measurement, 1 g of the sample was extracted in 50 ml of distilled water at 60 ° C. for 2 hours, and the measured value of chlorine ion concentration was converted to the mass of the sample. When the chlorine ion concentration of the chlorinated polyethylene as the raw material was measured by the same method, it was 70 to 90 ppm. For confirmation, the chloride ion concentrations of stabilizers, carbonaceous fillers, solvents, and other auxiliary materials other than chlorinated polyethylene were measured by the same method. Is presumably due to the heat history during press forming. Insert this conductive resin plate between two sheets of pure electrolytic copper foil, seal it with a pressure of 1.5 kgf / cm 2 and leave it in an atmosphere of 70 ° C for 2 weeks, then check the contact resistance per 1 cm 2. As a result, the initial value was about 0.1Ω to about 0.4Ω, and the adhesion surface of the copper with the conductive resin plate was discolored whitish. Next, an expanded graphite powder: EXP-5 (manufactured by Maruyo Casting Mfg. Co., Ltd.) was pressed into a conductive sheet having a thickness of 0.3 mm under a molding pressure of 800 kgf / cm 2 at room temperature for 10 minutes. The actual volume resistivity of this expanded graphite sheet was about 5 × 10 −3 Ω · cm. This expanded graphite sheet was inserted between the above conductive resin plate and the electrolytic copper foil, adhered under a pressure of 1.5 kgf / cm 2 and left in an atmosphere of 70 ° C. for 2 weeks to check the contact resistance. After that, when it was disassembled, the contact resistance per 1 cm 2 was almost the same as the initial value (about 0.1 Ω), and discoloration of the contact surface of the expanded foil with the copper foil was not observed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案によるプラスチック双極板と金属集電極
との接続構造を示す縦断面説明図である。
FIG. 1 is a longitudinal sectional view showing a connection structure between a plastic bipolar plate and a metal collector electrode according to the present invention.

【図2】本考案によるプラスチック双極板と金属集電極
との接続構造の実施態様を示す説明図である。
FIG. 2 is an explanatory view showing an embodiment of a connection structure between a plastic bipolar plate and a metal collector electrode according to the present invention.

【図3】従来のレドックスフロー型二次電池の概略説明
図である。
FIG. 3 is a schematic explanatory diagram of a conventional redox flow secondary battery.

【符号の説明】[Explanation of symbols]

1…プラスチック双極板、 2…金属
集電極、3…塩素イオン含量が100ppm以下の導電体。11
(11’)…正(負)極電解液タンク、 12
…経路、13…循環ポンプ、
14…二次電池セル、15…金属集電極、16…塩素イオン含
量が100ppm以下の導電体、17…プラスチック双極板、18
(18’)…正(負)極反応電極、 19
…隔膜、20…充放電用直流電源。21(21’)…正(負)
極電解液タンク、 22…経路、23…循環ポ
ンプ、 24…二次電池セル、
25…金属集電極、 27…双極
板、28(28’)…正(負)極反応電極、
29…隔膜、30…充放電用直流電源。
1 ... Plastic bipolar plate, 2 ... Metal collector electrode, 3 ... Conductor with chlorine ion content of 100 ppm or less. 11
(11 ') ... Positive (negative) electrode electrolyte tank, 12
… Route, 13… Circulation pump,
14 ... Secondary battery cell, 15 ... Metal collector electrode, 16 ... Conductor with chlorine ion content of 100 ppm or less, 17 ... Plastic bipolar plate, 18
(18 ')… Positive (negative) electrode, 19
... diaphragm, 20 ... DC power supply for charging and discharging. 21 (21 ') ... Positive (negative)
Electrolyte tank, 22 ... Path, 23 ... Circulation pump, 24 ... Secondary battery cell,
25 ... Metal collector electrode, 27 ... Bipolar plate, 28 (28 ') ... Positive (negative) electrode,
29 ... diaphragm, 30 ... DC power supply for charging / discharging.

フロントページの続き (72)考案者 小原 広 埼玉県大宮市吉野町1丁目406番地1 信 越ポリマー株式会社商品研究所内 (72)考案者 西島 良明 埼玉県大宮市吉野町1丁目406番地1 信 越ポリマー株式会社商品研究所内 (72)考案者 重松 敏夫 大阪市此花区島屋1丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)考案者 伊藤 哲二 大阪市此花区島屋1丁目1番3号 住友電 気工業株式会社大阪製作所内Front page continued (72) Inventor Hiro Ohara, 1-406-1, Yoshino-cho, Omiya-shi, Saitama Prefecture Shin-Etsu Polymer Co., Ltd. Product Research Laboratory (72) Yoshiaki Nishijima 1-406-1, Yoshino-cho, Omiya-shi, Saitama Prefecture Shin-Etsu Polymer Co., Ltd. Product Research Laboratory (72) Inventor Toshio Shigematsu 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Tetsuji Ito 1-3-1, Shimaya, Konohana-ku, Osaka City No. Sumitomo Electric Industries, Ltd. Osaka Works

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】分子中に塩素を含む高分子マトリックスと
炭素系フィラーとからなるプラスチック双極板と金属集
電極との間に、塩素イオン含量が100ppm以下の導電体を
挿入してなることを特徴とするプラスチック双極板と金
属集電極との接続構造。
1. A conductor having a chlorine ion content of 100 ppm or less is inserted between a metal bipolar electrode and a plastic bipolar plate composed of a polymer matrix containing chlorine in the molecule and a carbon-based filler. A connection structure between a plastic bipolar plate and a metal collector electrode.
【請求項2】請求項1記載の接続構造を用いた電解液循
環型二次電池。
2. An electrolyte circulating secondary battery using the connection structure according to claim 1.
JP063982U 1993-11-30 1993-11-30 Connection structure between plastic bipolar plate and metal collector Pending JPH0734556U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP063982U JPH0734556U (en) 1993-11-30 1993-11-30 Connection structure between plastic bipolar plate and metal collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP063982U JPH0734556U (en) 1993-11-30 1993-11-30 Connection structure between plastic bipolar plate and metal collector

Publications (1)

Publication Number Publication Date
JPH0734556U true JPH0734556U (en) 1995-06-23

Family

ID=13245007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP063982U Pending JPH0734556U (en) 1993-11-30 1993-11-30 Connection structure between plastic bipolar plate and metal collector

Country Status (1)

Country Link
JP (1) JPH0734556U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228059A (en) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd Dipole plate for redox flow battery
CN113921844A (en) * 2021-11-15 2022-01-11 成都先进金属材料产业技术研究院股份有限公司 Styrene butadiene rubber-based bipolar plate for all-vanadium redox flow battery and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228059A (en) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd Dipole plate for redox flow battery
CN113921844A (en) * 2021-11-15 2022-01-11 成都先进金属材料产业技术研究院股份有限公司 Styrene butadiene rubber-based bipolar plate for all-vanadium redox flow battery and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1287573B1 (en) Nanocomposite for fuel cell bipolar plate
Zhong et al. Fabrication and activation studies of conducting plastic composite electrodes for redox cells
CN105453321B (en) Flow battery with the hydrated ion exchange membrane for possessing maximum waters cluster size
AU2001269691A1 (en) Nanocomposite for fuel cell bipolar plate
EP2973783A1 (en) Improved electrode for flow batteries
JPH08287938A (en) Redox battery
JP3382654B2 (en) Solid polymer electrolyte fuel cell
Loktionov et al. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery
WO2021203932A1 (en) Composite electrode for flow cell, flow cell, and pile
EP3322011A1 (en) Electrode for redox flow battery, and redox flow battery system
JP2015138692A (en) integrated carbon electrode
CN111082069B (en) Implanted gradient composite electrode, production method and application thereof
JPH0734556U (en) Connection structure between plastic bipolar plate and metal collector
US4461813A (en) Electrochemical power generator
KR101742861B1 (en) Polymer electrolyte membrane and method for preparing same
JPH06231772A (en) Bipolar plate or electrode plate for secondary battery
JP6300824B2 (en) Graphite-containing electrode and related method
JP5773863B2 (en) Redox flow secondary battery
KR102248538B1 (en) Ion exchange membrane and flow battery comprising the same
KR101511843B1 (en) Bipolar Plate and Method of manufacturing the same and secondary battery using the same
JPS63197553A (en) Improved anion exchange membrane
JPS63205063A (en) Manufacture of battery
JP2000357521A (en) Carbon electrode material for redox flow battery
JPS61285663A (en) Cell structure
JPH0834109B2 (en) Battery carbon plastic electrode