JPH0733705A - Purification of 2,6-naphtalenedicarboxylic acid - Google Patents
Purification of 2,6-naphtalenedicarboxylic acidInfo
- Publication number
- JPH0733705A JPH0733705A JP17781593A JP17781593A JPH0733705A JP H0733705 A JPH0733705 A JP H0733705A JP 17781593 A JP17781593 A JP 17781593A JP 17781593 A JP17781593 A JP 17781593A JP H0733705 A JPH0733705 A JP H0733705A
- Authority
- JP
- Japan
- Prior art keywords
- ndca
- salt
- aqueous solution
- added
- crude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、2,6−ジアルキルナ
フタレンまたはその酸化中間体を分子状酸素で酸化する
ことにより得られる2,6−ナフタレンジカルボン酸
(以下NDCAと略記する)の精製方法に関するもので
ある。NDCAは、耐熱性、機械的強度、寸法安定性に
優れたフィルムや繊維製品を与えることから、ポリエチ
レンナフタレート、ポリアミド等の原料として有用なも
のである。TECHNICAL FIELD The present invention relates to a method for purifying 2,6-naphthalenedicarboxylic acid (hereinafter abbreviated as NDCA) obtained by oxidizing 2,6-dialkylnaphthalene or its oxidation intermediate with molecular oxygen. It is about. NDCA provides a film or a fiber product excellent in heat resistance, mechanical strength and dimensional stability, and is therefore useful as a raw material for polyethylene naphthalate, polyamide and the like.
【0002】[0002]
【従来の技術】NDCAは、2,6−ジアルキルナフタ
レンを酢酸溶媒中でコバルト、マンガン及び臭素化合物
触媒の存在下、空気酸化することにより製造されること
が知られている。しかしながら、該酸化反応により得ら
れる粗NDCA中には、微量の重金属、構造不明な着色
物質、臭素誘導体や反応中間体などが混入しているの
で、該粗NDCAをそのまま原料として使用すると、得
られるポリマーの性能低下や着色といった弊害が現れ
る。そこで、従来から、下記するように、数々のNDC
A精製法が提案されている。 (1)粗NDCAをアルカリ水溶液に溶解し、100〜
250℃で1〜5時間撹拌して加熱処理を行い、次いで
固体吸着剤により脱色処理した後、炭酸ガス又は亜硫酸
ガス等の酸性ガスを圧入処理してpHを下げ、NDCA
をモノアルカリ塩として析出させる方法(特公昭52−
20993号公報) (2)粗NDCAのアルカリ水溶液を過マンガン酸アル
カリ等の酸化剤で処理した後、炭酸ガス又は亜硫酸ガス
を吹き込んでNDCAをモノアルカリ塩として分離する
方法(特開昭48−68554号公報) (3)粗NDCAのアルカリ水溶液を220℃以下の温
度でパラジウム、白金、ニッケル、ルテニウム等の金属
触媒の存在下、接触水素化処理した後、炭酸ガス又は亜
硫酸ガスを吹き込んでNDCAをモノアルカリ塩として
分離する方法(特開昭50−160248号公報) (4)粗NDCAを酢酸ナトリウム水溶液に溶解した
後、濃縮晶析してNDCAのモノアルカリ塩を分離する
方法(特開昭50−105639号公報) (5)粗NDCAのアルカリ水溶液に同じ陽イオンの水
溶性塩等を加える、いわゆる塩析によりNDCAジアル
カリ塩を単離する方法(特開昭62−212341号公
報) (6)粗NDCAをジメチルスルホキシド等の溶媒で再
結晶させる方法(特開昭62−230747号公報)It is known that NDCA is produced by air oxidation of 2,6-dialkylnaphthalene in an acetic acid solvent in the presence of a cobalt, manganese and bromine compound catalyst. However, the crude NDCA obtained by the oxidation reaction contains a trace amount of heavy metals, a coloring substance with an unknown structure, a bromine derivative, a reaction intermediate, and the like. Therefore, if the crude NDCA is used as a raw material, it can be obtained. Poor performance and coloration of the polymer appear. Therefore, there have been many NDCs as described below.
A purification method has been proposed. (1) Dissolve crude NDCA in an aqueous alkaline solution,
The mixture is stirred at 250 ° C. for 1 to 5 hours for heat treatment, then decolorized with a solid adsorbent, and then acid gas such as carbon dioxide or sulfurous acid is pressure-treated to lower the pH.
Method of precipitating as a monoalkali salt (Japanese Patent Publication No.
No. 20993) (2) A method in which an aqueous alkaline solution of crude NDCA is treated with an oxidizing agent such as alkali permanganate, and then carbon dioxide or sulfur dioxide is blown to separate NDCA as a monoalkali salt (JP-A-48-68554). (3) Catalytic hydrogenation treatment of an alkaline aqueous solution of crude NDCA at a temperature of 220 ° C. or lower in the presence of a metal catalyst such as palladium, platinum, nickel or ruthenium, followed by blowing carbon dioxide or sulfurous acid gas to remove NDCA. Method for separating as mono-alkali salt (JP-A-50-160248) (4) Method for separating crude NDCA by dissolving in crude sodium acetate aqueous solution and then concentrating and crystallization to separate mono-alkali salt of NDCA. -105639 gazette) (5) So-called salt in which a water-soluble salt of the same cation is added to an alkaline aqueous solution of crude NDCA Method for isolating NDCA dialkali salt by precipitation (JP-A-62-212341) (6) Method for recrystallizing crude NDCA with a solvent such as dimethyl sulfoxide (JP-A-62-230747)
【0003】上記(1)〜(4)の方法は、粗NDCA
を溶解したアルカリ水溶液のpHまたは温度の調節を厳
密に行なはないと、析出されるNDCAのモノアルカリ
塩の量や組成が一定にならないという問題があった。上
記(5)の方法は、塩析のために使用される塩と、アル
カリ塩の酸析により生成する塩とがあり、これら塩の総
量は非常に多量であるため、工業的規模の精製法として
は実用性を欠くものであった。上記(6)の方法は、再
結晶に高価な溶媒を多量使用するため、その回収ロスに
よるコストアップ、得られるNDCAの純度が十分に高
くない等の問題があった。The above-mentioned methods (1) to (4) are used for the crude NDCA.
If the pH or the temperature of the alkaline aqueous solution in which the is dissolved is not strictly adjusted, there is a problem in that the amount and composition of the monoalkali salt of NDCA to be precipitated will not be constant. The above method (5) includes a salt used for salting out and a salt formed by acid precipitation of an alkali salt, and since the total amount of these salts is very large, a purification method on an industrial scale. As a result, it lacked practicality. Since the method (6) uses a large amount of an expensive solvent for recrystallization, there are problems such as an increase in cost due to the recovery loss thereof and the purity of the obtained NDCA is not sufficiently high.
【0004】[0004]
【発明が解決しようとする課題】上記した従来法には種
々の技術上の問題があり、一方蒸留のよる精製はNDC
Aの融点が300℃以上であるために不可能であり、ま
たNDCAはメタノール、アセトン、ベンゼン等の汎用
有機溶媒には溶解しないので、溶媒洗浄による精製法も
採用することができない。そこで、本発明は、これらの
問題点を解決し、簡便で、安価で且つ効率的なNDCA
の精製法を提供することを目的とするものである。The above-mentioned conventional methods have various technical problems, while the purification by distillation requires NDC.
This is not possible because the melting point of A is 300 ° C. or higher, and since NDCA does not dissolve in general-purpose organic solvents such as methanol, acetone, benzene, etc., a purification method by solvent washing cannot be adopted. Therefore, the present invention solves these problems and is a simple, inexpensive and efficient NDCA.
The purpose of the present invention is to provide a purification method of.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記課題
の解決に鋭意努力した結果、アセトンを用いる晶析法の
採用がNDCAの効率的な精製に有効であることを見い
だし、本発明を完成するに至った。即ち、本発明は、
2,6−ジアルキルナフタレンを酸化して得られた粗
2,6−ナフタレンジカルボン酸を、中和当量以上のア
ルカリ水溶液に加えて、対応するジアルカリ塩の溶液を
形成させ、これにアセトンを加えることにより、該溶液
から2,6−ナフタレンジカルボン酸をジアルカリ塩と
して析出させることを特徴とする2,6−ナフタレンジ
カルボン酸の精製方法である。As a result of intensive efforts to solve the above problems, the present inventors have found that the crystallization method using acetone is effective for the efficient purification of NDCA. Has been completed. That is, the present invention is
A crude 2,6-naphthalenedicarboxylic acid obtained by oxidizing 2,6-dialkylnaphthalene is added to an aqueous alkaline solution having a neutralization equivalent or more to form a solution of a corresponding dialkali salt, and acetone is added to the solution. The method of purifying 2,6-naphthalenedicarboxylic acid is characterized in that 2,6-naphthalenedicarboxylic acid is precipitated as a dialkali salt from the solution.
【0006】[発明の具体的説明] 1.酸化反応 本発明で用いられる粗NDCAは、2,6−ジアルキル
ナフタレンを分子状酸素により酸化して得られるもので
ある。2,6−ジアルキルナフタレンとしては、2,6
−ジメチルナフタレン、2,6−ジイソプロピルナフタ
レン等を挙げることができ、またそれらの酸化中間体を
使用することもできる。酸化反応の条件は、特に制限さ
れないが、例えば次のような反応条件でNDCAを得る
ことができる。原料のジアルキルナフタレン1モルに対
して、触媒としてコバルトおよびマンガンが0.5〜5
0モル%程度使用される。コバルトとマンガンの比率は
1:99〜99:1の範囲である。臭素化合物は、コバ
ルト1モルに対して、1〜10モルが適当である。溶媒
としては、酢酸またはプロピオン酸が用いられ、その量
は原料に対して2〜50重量倍である。反応温度は80
〜250℃、好ましくは100〜200℃であり、反応
時間は通常1〜10時間の範囲である。反応圧力は反応
速度を考慮すると、気相中の酸素分圧が絶えず絶対圧で
0.2〜40kg/cm2となるような圧力であることが好ま
しい。分子状酸素としては、純酸素の他、酸素を窒素、
ヘリウム、アルゴンなどの不活性ガスで任意の濃度に希
釈したものも使用することができる。反応は回分式、半
連続式どちらでも構わないが、一般的には触媒当たりの
収量が多い半連続式が有利である。反応終了後、生成し
た粗NDCAは溶媒スラリー状であるため、濾別、回収
し、水または酸で洗浄後、水洗、乾燥される。[Detailed Description of the Invention] 1. Oxidation Reaction The crude NDCA used in the present invention is obtained by oxidizing 2,6-dialkylnaphthalene with molecular oxygen. As 2,6-dialkylnaphthalene, 2,6
-Dimethylnaphthalene, 2,6-diisopropylnaphthalene and the like can be mentioned, and their oxidation intermediates can also be used. The conditions of the oxidation reaction are not particularly limited, but for example, NDCA can be obtained under the following reaction conditions. Cobalt and manganese are 0.5 to 5 as a catalyst to 1 mol of the raw material dialkylnaphthalene.
About 0 mol% is used. The ratio of cobalt to manganese is in the range of 1:99 to 99: 1. The bromine compound is suitable in an amount of 1 to 10 mol with respect to 1 mol of cobalt. Acetic acid or propionic acid is used as the solvent, and the amount thereof is 2 to 50 times by weight that of the raw material. Reaction temperature is 80
To 250 ° C, preferably 100 to 200 ° C, and the reaction time is usually in the range of 1 to 10 hours. Considering the reaction rate, the reaction pressure is preferably such a pressure that the oxygen partial pressure in the gas phase is constantly 0.2 to 40 kg / cm 2 in absolute pressure. As molecular oxygen, in addition to pure oxygen, oxygen is nitrogen,
It is also possible to use those diluted to an arbitrary concentration with an inert gas such as helium or argon. The reaction may be either a batch system or a semi-continuous system, but in general, a semi-continuous system having a large yield per catalyst is advantageous. After the completion of the reaction, the produced crude NDCA is in the form of a solvent slurry, so it is filtered, collected, washed with water or an acid, washed with water and dried.
【0007】2.ジアルカリ塩の形成 粗NDCAを、中和当量以上のアルカリを溶解した水溶
液に加え、加熱しまたは室温で撹拌下に溶解させて、粗
NDCAのジアルカリ塩の溶液を形成させる。その際使
用されるアルカリとしては、水酸化ナトリウム、水酸化
カリウム、炭酸ナトリウム、炭酸カリウムまたはアンモ
ニア等を挙げることができる。アルカリの使用量は、N
DCAに対して1〜2当量の範囲であるが、通常はアル
カリが小過剰となるように、1.01〜1.50当量程
度使用することが好ましい。アルカリは水溶液として使
用され、その濃度は通常0.2〜10重量%であるが、
ナトリウム塩またはカリウム塩よりもアンモニウム塩の
場合は、より低濃度にすることが好ましい。アルカリ濃
度が高すぎると、NDCAジアルカリ塩が溶解せずに精
製効率が低下し、反対に濃度が低すぎると、ジアルカリ
塩の析出に用いられるアセトンの使用量が増加したり、
NDCAの回収率が低下する。ジアルカリ塩の形成は、
空気中でも構わないが、好ましくは窒素等の不活性ガス
中で実施される。ジアルカリ塩を生成させる際の温度
は、室温でも構わないが、一般には加熱下に、例えば4
0〜100℃の温度で行うことが好ましい。それはジア
ルカリ塩の溶解度が向上し反応容器効率が高くなるこ
と、粗NDCA中に微量含有されるコバルト、マンガン
の回収率が向上すること等の理由によるものである。こ
の加熱は通常0.5〜5時間行われ、得られたジアルカ
リ塩の水溶液は、不溶物があるときには濾過によりそれ
を除去した後、晶析操作に付される。2. Formation of dialkali salt Crude NDCA is added to an aqueous solution in which more than the neutralization equivalent of alkali is dissolved and dissolved under heating or stirring at room temperature to form a solution of crude NDCA dialkali salt. Examples of the alkali used at that time include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia and the like. The amount of alkali used is N
The amount is in the range of 1 to 2 equivalents with respect to DCA, but it is usually preferable to use about 1.01 to 1.50 equivalents so that the alkali is in a small excess. Alkali is used as an aqueous solution, and its concentration is usually 0.2 to 10% by weight,
In the case of ammonium salts, it is preferable to use a lower concentration than sodium or potassium salts. If the alkali concentration is too high, the NDCA dialkali salt will not dissolve and the purification efficiency will decrease, while if the concentration is too low, the amount of acetone used for precipitation of the dialkali salt will increase,
The recovery rate of NDCA decreases. The formation of dialkali salt
It may be carried out in air, but is preferably carried out in an inert gas such as nitrogen. The temperature for forming the dialkali salt may be room temperature, but it is generally under heating, for example, 4
It is preferable to carry out at a temperature of 0 to 100 ° C. This is because the solubility of the dialkali salt is improved and the efficiency of the reaction vessel is increased, and the recovery rates of a small amount of cobalt and manganese contained in the crude NDCA are improved. This heating is usually carried out for 0.5 to 5 hours, and the obtained aqueous solution of dialkali salt is subjected to crystallization operation after insoluble matter is removed by filtration.
【0008】3.ジアルカリ塩の晶析 上記のようにして得られたNDCAジアルカリ塩の水溶
液にアセトンを加えることにより、該ジアルカリ塩の晶
析が行われる。アセトンの添加は、該水溶液を加熱下ま
たは冷却下に行うこともできる。撹拌下に該水溶液にア
セトンを少量づつ間欠的に、または連続的に添加してい
くと、白色のNDCAジアルカリ塩の結晶が析出する。
アセトンの使用量は、ジアルカリ塩の水溶液濃度により
異なり一概に言えないが、その濃度が低い場合はより多
く、濃度が高い場合は少ない量でよい。一般的にいっ
て、アセトンは該水溶液に存在する水の量に対して0.
5〜5重量倍程度の範囲で使用される。NDCAの回収
率を高くしたい場合は、アセトンの添加後水溶液を5℃
程度まで冷却することが好ましい。析出したNDCAジ
アルカリ塩は濾別し、飽和食塩水及び/又はアセトンで
洗浄し、乾燥される。アセトンは濾液から蒸留により容
易に回収され、再使用することができ、また濾液中の微
量の未回収NDCAジアルカリ塩は酸を加えてNDCA
として回収し、精製用原料として使用される。3. Crystallization of dialkali salt By adding acetone to the aqueous solution of the NDCA dialkali salt obtained as described above, the dialkali salt is crystallized. Acetone can also be added while the aqueous solution is heated or cooled. Acetone is intermittently or continuously added to the aqueous solution little by little with stirring to precipitate white NDCA dialkali salt crystals.
The amount of acetone used varies depending on the concentration of the dialkali salt solution in water and cannot be generally stated. However, when the concentration is low, it may be high, and when the concentration is high, it may be low. Generally speaking, acetone has a pH of 0.02 relative to the amount of water present in the aqueous solution.
It is used in a range of about 5 to 5 times by weight. If you want to increase the recovery rate of NDCA, add an aqueous solution at 5 ° C after adding acetone.
It is preferable to cool to a certain degree. The precipitated NDCA dialkali salt is filtered off, washed with saturated saline and / or acetone, and dried. Acetone is easily recovered from the filtrate by distillation and can be reused, and a trace amount of unrecovered NDCA dialkali salt in the filtrate is added with acid to produce NDCA.
Used as a raw material for purification.
【0009】4.活性炭処理 上記で得られたジアルカリ塩は、そのまま後記する酸析
操作に付すことができるが、より高純度のNDCAを得
るには、活性炭処理を行うことが好ましい。活性炭処理
は、ジアルカリ塩を水に溶解させ流通式または回分式で
行えば良い。例えば、流通式の場合には、粒状の活性炭
をカラムに充填し、アップフローまたはダウンフローで
NDCAジアルカリ塩水溶液を流通させる。その際の温
度は、室温〜60℃程度であり、液流速度は0.1〜1
0.0が適当である。一方、回分式の場合には、ジアル
カリ塩に対して1〜10重量%程度の粉末活性炭を加
え、1〜5時間撹拌下に処理される。使用される活性炭
は特に制限はなく、どのような種類のものでも使用する
ことができる。4. Activated carbon treatment The dialkali salt obtained above can be directly subjected to the acid precipitation operation described below, but in order to obtain a higher purity NDCA, it is preferable to perform activated carbon treatment. The activated carbon treatment may be carried out by dissolving the dialkali salt in water and using a flow system or a batch system. For example, in the case of the flow type, granular activated carbon is packed in a column, and the NDCA dialkali salt aqueous solution is passed through the flow in an up flow or a down flow. The temperature at that time is about room temperature to 60 ° C., and the liquid flow rate is 0.1 to 1
0.0 is suitable. On the other hand, in the case of the batch system, powdered activated carbon is added in an amount of about 1 to 10% by weight with respect to the dialkali salt, and the mixture is treated under stirring for 1 to 5 hours. The activated carbon used is not particularly limited, and any kind of activated carbon can be used.
【0010】5.酸析操作 上記の晶析操作または活性炭処理により得られたNDC
Aジアルカリ塩は、その水溶液に酸を添加し、pHを2
近辺に調整してNDCAに変換される。その際ジアルカ
リ塩の濃度は、0.5〜30重量%の範囲に維持するこ
とが好ましい。濃度がこの範囲を越えると、析出したN
DCAにより高粘度スラリーとなるため撹拌等の操作が
困難となり、一方濃度が低すぎると操作効率が悪くな
る。しかし、NDCAは水には不溶であるためNDCA
の回収には影響はない。酸析に使用される酸としては、
通常硫酸、塩酸等であり、これらを水に希釈したものが
使用される。また、炭酸ガス等の酸性ガスも使用するこ
とができる。生成したNDCAは濾別した後、十分洗浄
し、乾燥される。5. Acid precipitation operation NDC obtained by the above crystallization operation or activated carbon treatment
For the dialkali salt A, acid is added to its aqueous solution to adjust the pH to 2
It is adjusted to the vicinity and converted to NDCA. At that time, the concentration of the dialkali salt is preferably maintained in the range of 0.5 to 30% by weight. When the concentration exceeds this range, the precipitated N
Since DCA forms a high-viscosity slurry, it becomes difficult to perform operations such as stirring, while if the concentration is too low, the operation efficiency becomes poor. However, since NDCA is insoluble in water, NDCA
There is no effect on the recovery of. As the acid used for acid precipitation,
Usually, it is sulfuric acid, hydrochloric acid or the like, and those diluted with water are used. Also, an acid gas such as carbon dioxide gas can be used. The generated NDCA is filtered, washed thoroughly, and dried.
【0011】[0011]
【実施例】以下に実施例および比較例を挙げて本発明を
詳細に説明する。なお、NDCAの純度は高速液体クロ
マトグラフィーにより、色相は40%メチルアミン水溶
液10mlに試料1gを溶解し10mmの石英セルを用
いて400nm、500nmの波長の吸光度(以下OD
と略記する)を測定する方法により分析した。また、色
相の改善を分かり易く示すために、下記式にて色相改善
率を求めた。臭素元素の定量は、蛍光X線、コバルトお
よびマンガンの定量は原子吸光により行った。EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. The purity of NDCA was determined by high performance liquid chromatography, and the hue was measured by dissolving 1 g of the sample in 10 ml of 40% methylamine aqueous solution and using a 10 mm quartz cell to measure absorbance at wavelengths of 400 nm and 500 nm (hereinafter referred to as OD).
Abbreviated). In order to show the improvement of the hue in an easy-to-understand manner, the hue improvement rate was calculated by the following formula. The bromine element was quantified by fluorescent X-rays and cobalt and manganese were quantified by atomic absorption.
【0012】[0012]
【数1】 [Equation 1]
【0013】精製原料としては、通常の液相酸化反応に
より得られた粗NDCAを使用した。この粗NDCA
は、純度99.5%であり、ODは0.3563(40
0nm)および0.0473(500nm)であり、N
DCA中のコバルト含有量は3ppm、マンガン含有量は
27ppm、臭素元素含有量は200ppmであった。Crude NDCA obtained by an ordinary liquid-phase oxidation reaction was used as a purification raw material. This crude NDCA
Has a purity of 99.5% and an OD of 0.3563 (40
0 nm) and 0.0473 (500 nm), and N
The cobalt content in DCA was 3 ppm, the manganese content was 27 ppm, and the bromine element content was 200 ppm.
【0014】実施例1 還流冷却器、滴下ロート、撹拌機、温度計を備えた20
0cc四つ口フラスコに粗NDCA10g(46mmol)
を入れ、これに水酸化ナトリウム4.07g(102mm
ol)を水65gに溶解させた水溶液を加え、加熱還流下
に1時間反応させた。このときの溶液は薄茶色の均一溶
液であった。その後冷却し、撹拌下に滴下ロートよりア
セトン80gをゆっくり約15分間かけて添加した。ア
セトンの添加により白色の結晶が析出した。アセトンの
添加終了後、反応混合物を約5℃まで冷却し、析出物を
濾別回収した。得られた白色結晶をアセトン40gで洗
浄し、乾燥し、11.74gのNDCAジナトリウム塩
を得た。一方、濾液は希塩酸によりpHを2に調整する
ことにより0.18gのNDCAが回収された。アセト
ンは蒸留により濾液からほぼ定量的に回収された。Example 1 20 equipped with a reflux condenser, a dropping funnel, a stirrer, and a thermometer
Crude NDCA 10 g (46 mmol) in a 0 cc four neck flask
Add 4.07g (102mm of sodium hydroxide)
ol) was dissolved in 65 g of water, and the mixture was heated and refluxed for 1 hour. The solution at this time was a light brown uniform solution. After cooling, 80 g of acetone was slowly added from a dropping funnel over about 15 minutes while stirring. White crystals were precipitated by the addition of acetone. After the addition of acetone was completed, the reaction mixture was cooled to about 5 ° C., and the precipitate was collected by filtration. The obtained white crystals were washed with 40 g of acetone and dried to obtain 11.74 g of NDCA disodium salt. On the other hand, the filtrate was adjusted to pH 2 with dilute hydrochloric acid to recover 0.18 g of NDCA. Acetone was almost quantitatively recovered from the filtrate by distillation.
【0015】上記で得られたジナトリウム塩5gを15
0mlの水に溶解し、極微量存在する不溶物を濾別した
後、10重量%硫酸水溶液を加え、pHを約2に調整し
た。生成したNDCAを濾別回収し、水洗、乾燥して、
白色のNDCA4.08g(粗NDCAよりの回収率9
5.8%)が得られた。このNDCAの純度は100%
であり、ODは400nmが0.0833(色相改善率
76.6%)、500nmが0.0069(色相改善率
85.4%)であり、コバルトおよびマンガン含有率は
共に1ppm以下、臭素元素含有率は60ppmであった。5 g of the disodium salt obtained above was added to
The mixture was dissolved in 0 ml of water, insoluble matter existing in an extremely small amount was filtered off, and then a 10 wt% sulfuric acid aqueous solution was added to adjust the pH to about 2. The produced NDCA was collected by filtration, washed with water, dried,
White NDCA 4.08 g (9% recovery from crude NDCA
5.8%) was obtained. The purity of this NDCA is 100%
OD is 0.0833 at 400 nm (hue improvement rate of 76.6%) and 500 nm is 0.0069 (hue improvement rate of 85.4%), both cobalt and manganese content is 1 ppm or less, and elemental bromine is contained. The rate was 60 ppm.
【0016】実施例2 実施例1で合成、単離されたNDCAジナトリウム塩5
g約150mlの水に溶解し、極微量存在する不溶物を
濾別した。直径10mmのカラムに粒状活性炭(武田薬
品工業社製「白鷺KL」)を1.5g(約8cc)充填
し、水を流通させ洗浄した。前記ジナトリウム塩水溶液
を室温でLHSV=4にて該カラムに流通させた。得ら
れた処理液に10重量%硫酸水溶液を加えてpHを2に
調整した。生成したNDCAを濾別回収し、水洗、乾燥
して、白色のNDCA4.01g(粗NDCAよりの回
収率94.2%)が得られた。このNDCAの純度は1
00%であり、ODは400nmが0.0269(色相
改善率92.5%)、500nmが0.0059(色相
改善率87.5%)であり、コバルトおよびマンガン含
有率は共に1ppm以下、臭素元素含有率は51ppmであっ
た。Example 2 NDCA disodium salt 5 synthesized and isolated in Example 1
g, dissolved in about 150 ml of water, and insoluble matter present in an extremely small amount was filtered off. A column having a diameter of 10 mm was filled with 1.5 g (about 8 cc) of granular activated carbon (“Shirasagi KL” manufactured by Takeda Pharmaceutical Co., Ltd.), and water was circulated for washing. The aqueous disodium salt solution was passed through the column at room temperature and LHSV = 4. A 10 wt% sulfuric acid aqueous solution was added to the obtained treatment liquid to adjust the pH to 2. The produced NDCA was collected by filtration, washed with water, and dried to obtain 4.01 g of white NDCA (recovery rate from crude NDCA 94.2%). The purity of this NDCA is 1
00%, OD 400 nm is 0.0269 (hue improvement rate 92.5%), 500 nm is 0.0059 (hue improvement rate 87.5%), both cobalt and manganese content is 1 ppm or less, bromine The element content was 51 ppm.
【0017】実施例3 還流冷却器、滴下ロート、撹拌機、温度計を備えた20
0ml四つ口フラスコに粗NDCA5g(23mmol)を
入れ、これに1.8重量%アンモニア水100g(NH
3:51mmol)を加え、加熱還流下に1時間反応させ
た。その後冷却し、撹拌下に滴下ロートよりアセトン6
0gをゆっくり約15分間かけて添加した。アセトンの
添加により白色の結晶が析出した。アセトンの添加終了
後、反応混合物を約5℃まで冷却し、析出物を濾別回収
した。得られた白色結晶をアセトン20gで洗浄し、乾
燥し、5.63gの白色NDCAジアンモニウム塩を得
た。得られたジアンモニウム塩5gを約200mlの水
に溶解し、極微量存在する不溶物を濾別した。直径10
mmのカラムに粒状活性炭(武田薬品工業社製「白鷺K
L」)を1.5g(約8cc)充填し、水を流通させ洗
浄した。前記ジアンモニウム塩水溶液を室温でLHSV
=4にて該カラムに流通させた。得られた処理液に10
重量%硫酸水溶液を加えてpHを2に調整した。生成し
たNDCAを濾別回収し、水洗、乾燥して、白色のND
CA4.16g(粗NDCAよりの回収率94.2%)
が得られた。このNDCAの純度は100%であり、O
Dは400nmが0.0194(色相改善率94.6
%)、500nmが0.0001以下(色相改善率10
0%)であり、コバルトおよびマンガン含有率は共に1
ppm以下、臭素元素含有率は40ppmであった。Example 3 20 equipped with a reflux condenser, a dropping funnel, a stirrer, and a thermometer
5 g (23 mmol) of crude NDCA was placed in a 0 ml four-necked flask, and 100 g of 1.8 wt% ammonia water (NH
3: 51 mmol) was added and reacted for 1 hour under reflux. After cooling, acetone 6 with a dropping funnel is added with stirring.
0 g was added slowly over about 15 minutes. White crystals were precipitated by the addition of acetone. After the addition of acetone was completed, the reaction mixture was cooled to about 5 ° C., and the precipitate was collected by filtration. The obtained white crystals were washed with 20 g of acetone and dried to obtain 5.63 g of white NDCA diammonium salt. 5 g of the obtained diammonium salt was dissolved in about 200 ml of water, and insoluble matters existing in a very small amount were filtered off. Diameter 10
Granular activated carbon (“Shirasagi K” manufactured by Takeda Pharmaceutical Co., Ltd.
L ") was charged in an amount of 1.5 g (about 8 cc), and water was passed to wash. The aqueous solution of diammonium salt was subjected to LHSV at room temperature.
= 4 and was passed through the column. 10 to the obtained treatment liquid
The pH was adjusted to 2 by adding a weight% sulfuric acid aqueous solution. The generated NDCA was collected by filtration, washed with water and dried to give a white ND.
CA 4.16g (Recovery rate from crude NDCA 94.2%)
was gotten. The purity of this NDCA is 100%.
D of 400 nm is 0.0194 (hue improvement rate 94.6
%), 500 nm is 0.0001 or less (hue improvement rate 10
0%), and the cobalt and manganese contents are both 1
The content of bromine was 40 ppm or less and the content of elemental bromine was 40 ppm.
【0018】比較例1 粗NDCA5g(23mmol)を5.9重量%水酸化ナト
リウム水溶液34.5g(NaOH:51mmol)を加え
溶解した。実施例2と同様の活性炭を充填したカラム
に、前記ジナトリウム塩水溶液を室温でLHSV=4に
て流通させた。得られた処理液に10重量%硫酸水溶液
を加えてpHを2に調整した。生成したNDCAを濾別
回収し、水洗、乾燥して、白色のNDCA4.77g
(粗NDCAよりの回収率95.3%)が得られた。こ
のNDCAの純度は100%であり、ODは400nm
が0.1425(色相改善率60.0%)、500nm
が0.0184(色相改善率61.1%)であり、コバ
ルトおよびマンガン含有率は共に1ppm以下、臭素元素
含有率は120ppmであった。Comparative Example 1 5 g (23 mmol) of crude NDCA was added and dissolved with 34.5 g (NaOH: 51 mmol) of a 5.9 wt% sodium hydroxide aqueous solution. The aqueous disodium salt solution was circulated at LHSV = 4 at room temperature through a column packed with activated carbon similar to that used in Example 2. A 10 wt% sulfuric acid aqueous solution was added to the obtained treatment liquid to adjust the pH to 2. The produced NDCA was collected by filtration, washed with water and dried to give 4.77 g of white NDCA.
(Recovery rate from crude NDCA 95.3%) was obtained. The purity of this NDCA is 100%, and the OD is 400 nm.
Is 0.1425 (hue improvement rate 60.0%), 500 nm
Was 0.0184 (hue improvement rate 61.1%), both the cobalt and manganese content was 1 ppm or less, and the bromine element content was 120 ppm.
【0019】比較例2 実施例1と同じ反応器に粗NDCA5g(23mmol)を
仕込み、水酸化ナトリウム2.04g(51mmol)を水
32gに溶解させた水溶液を加え、加熱還流下に1時間
反応させた。その後冷却し、撹拌下に滴下ロートよりメ
タノール約150gをゆっくり添加したが、添加時に反
応液が白濁するのみでNDCAジナトリウム塩の結晶は
析出しなかった。Comparative Example 2 The same reactor as in Example 1 was charged with 5 g (23 mmol) of crude NDCA, an aqueous solution prepared by dissolving 2.04 g (51 mmol) of sodium hydroxide in 32 g of water was added, and the mixture was reacted for 1 hour while heating under reflux. It was Thereafter, the mixture was cooled and about 150 g of methanol was slowly added from a dropping funnel under stirring, but the reaction solution was only clouded at the time of addition, and crystals of the NDCA disodium salt did not precipitate.
【0020】比較例3 比較例1と同様の原料を同量、実施例1と同じ反応器に
仕込み、水酸化ナトリウム2.04g(51ml)を水
23gに溶解させた水溶液を加え、加熱還流下に1時間
反応させた。その後冷却し、撹拌下に滴下ロートよりメ
チルエチルケトン70gを添加したが、反応液が二層に
分離するだけで結晶の析出は認められなかった。その後
反応液を約5℃まで氷冷すると、白色の結晶が析出し
た。これを濾過、洗浄、乾燥して、2.25gのNDC
Aジナトリウム塩を得た。このジナトリウム塩2.25
gを水60gに溶解し、10重量%硫酸水溶液を添加し
てpHを約2に調整した。生成したNDCAを濾別回
収、水洗、乾燥してNDCA1.82g(粗NDCAよ
りの回収率36.4%)が得られた。このNDCAの純
度は100%であり、ODは400nmが0.1079
(色相改善率69.7%)、500nmが0.0166
(色相改善率64.9%)であり、コバルトおよびマン
ガン含有率は共に1ppm以下、臭素元素含有率は120p
pmであった。Comparative Example 3 The same amount of the same raw materials as in Comparative Example 1 was charged in the same reactor as in Example 1, and an aqueous solution prepared by dissolving 2.04 g (51 ml) of sodium hydroxide in 23 g of water was added and heated under reflux. To react for 1 hour. Thereafter, the mixture was cooled and 70 g of methyl ethyl ketone was added from a dropping funnel with stirring, but the reaction solution was only separated into two layers and no precipitation of crystals was observed. Then, the reaction solution was cooled to about 5 ° C. with ice, and white crystals were precipitated. This is filtered, washed, dried and 2.25 g NDC
A disodium salt was obtained. This disodium salt 2.25
g was dissolved in 60 g of water, and a 10 wt% sulfuric acid aqueous solution was added to adjust the pH to about 2. The produced NDCA was collected by filtration, washed with water and dried to obtain 1.82 g of NDCA (recovery rate from crude NDCA: 36.4%). The purity of this NDCA is 100%, and the OD is 0.1079 at 400 nm.
(Hue improvement rate 69.7%), 500 nm is 0.0166
(Hue improvement rate 64.9%), both cobalt and manganese content is 1 ppm or less, and bromine element content is 120 p.
It was pm.
【0021】比較例4 比較例1と同様の原料を同量、実施例1と同じ反応器に
仕込み、水酸化ナトリウム2.04g(51ml)を水
23gに溶解させた水溶液を加え、加熱還流下に1時間
反応させた。得られた反応液に塩化ナトリウム4.2g
を少量づつ加え、NDCAジナトリウム塩を析出させ
た。析出した固形物を濾過し、19重量%塩化ナトリウ
ム水溶液30gで洗浄し、乾燥して、5.92gの固形
物を回収した。該固形物5.92gを水80ccに溶解
し、10重量%硫酸水溶液を添加してpHを約2に調整
した。生成したNDCAを濾別回収、水洗、乾燥してN
DCA4.00g(粗NDCAよりの回収率80.0
%)が得られた。このNDCAの純度は100%であ
り、ODは400nmが0.1246(色相改善率6
5.0%)、500nmが0.0321(色相改善率3
2.1%)であり、コバルトおよびマンガン含有率は共
に1ppm以下、臭素元素含有率は100ppmであった。Comparative Example 4 The same amount of the same raw materials as in Comparative Example 1 was charged in the same reactor as in Example 1, and an aqueous solution prepared by dissolving 2.04 g (51 ml) of sodium hydroxide in 23 g of water was added and heated under reflux. To react for 1 hour. 4.2 g of sodium chloride in the obtained reaction solution
Was added little by little to precipitate the NDCA disodium salt. The deposited solid matter was filtered, washed with 30 g of a 19 wt% sodium chloride aqueous solution, and dried to recover 5.92 g of a solid matter. The solid (5.92 g) was dissolved in water (80 cc), and a 10 wt% sulfuric acid aqueous solution was added to adjust the pH to about 2. The produced NDCA is collected by filtration, washed with water and dried to obtain N.
DCA 4.00 g (recovery rate from crude NDCA 80.0
%)was gotten. The purity of this NDCA is 100%, and the OD is 0.1246 at 400 nm (hue improvement rate 6
5.0%), 0.0321 at 500 nm (Hue improvement rate 3
2.1%), both the cobalt and manganese contents were 1 ppm or less, and the bromine element content was 100 ppm.
【0022】[0022]
【発明の効果】本発明によれば、アセトンを使用してN
DCAジアルカリ塩を晶析することにより、高い回収率
で、高純度且つ色相の良好なNDCAを得ることができ
る。このような本発明の優れた効果は、アセトン以外の
溶媒、例えばメタノール、メチルエチルケトン等の使
用、塩析による方法等では達成することはできない。According to the present invention, acetone is used to
By crystallizing the DCA dialkali salt, NDCA with high recovery and high hue can be obtained with a high recovery rate. Such excellent effects of the present invention cannot be achieved by using a solvent other than acetone, for example, methanol, methyl ethyl ketone, or the like, a method by salting out, or the like.
Claims (3)
て得られた粗2,6−ナフタレンジカルボン酸を、中和
当量以上のアルカリ水溶液に加えて、対応するジアルカ
リ塩の溶液を形成させ、これにアセトンを加えることに
より、該溶液から2,6−ナフタレンジカルボン酸をジ
アルカリ塩として析出させることを特徴とする2,6−
ナフタレンジカルボン酸の精製方法。1. A crude 2,6-naphthalenedicarboxylic acid obtained by oxidizing 2,6-dialkylnaphthalene is added to an alkaline aqueous solution having a neutralization equivalent or more to form a solution of a corresponding dialkali salt. 2,6-naphthalenedicarboxylic acid is precipitated as a dialkali salt from the solution by adding acetone to 2,6-
Method for purifying naphthalenedicarboxylic acid.
ム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムお
よびアンモニアから選ばれたアルカリ水溶液である請求
項1記載の方法2. The method according to claim 1, wherein the alkaline aqueous solution is an alkaline aqueous solution selected from sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and ammonia.
ジアルカリ塩を水に溶解した後、活性炭により吸着処理
を行う請求項1記載の方法。3. The method according to claim 1, wherein after the dialkali salt of 2,6-naphthalenedicarboxylic acid is dissolved in water, adsorption treatment with activated carbon is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17781593A JPH0733705A (en) | 1993-07-19 | 1993-07-19 | Purification of 2,6-naphtalenedicarboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17781593A JPH0733705A (en) | 1993-07-19 | 1993-07-19 | Purification of 2,6-naphtalenedicarboxylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0733705A true JPH0733705A (en) | 1995-02-03 |
Family
ID=16037584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17781593A Pending JPH0733705A (en) | 1993-07-19 | 1993-07-19 | Purification of 2,6-naphtalenedicarboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0733705A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001039921A (en) * | 1999-05-26 | 2001-02-13 | Mitsubishi Gas Chem Co Inc | Production of high purity aromatic polycarboxylic acid |
US7882660B2 (en) | 2005-03-10 | 2011-02-08 | Yugenkaisha Japan Tsusyo | Knockdown structure and methods of assembling same |
-
1993
- 1993-07-19 JP JP17781593A patent/JPH0733705A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001039921A (en) * | 1999-05-26 | 2001-02-13 | Mitsubishi Gas Chem Co Inc | Production of high purity aromatic polycarboxylic acid |
US7882660B2 (en) | 2005-03-10 | 2011-02-08 | Yugenkaisha Japan Tsusyo | Knockdown structure and methods of assembling same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07118201A (en) | Purification of 2,6-naphthalene dicarboxylic acid | |
CZ18597A3 (en) | Process for preparing 5-amino-2,4,6-triiodine-1,3-benzenedicarboxylic acid | |
JPH03157348A (en) | Production of highly purified 2,6-naphthalene dicarboxylic acid | |
JPH0733705A (en) | Purification of 2,6-naphtalenedicarboxylic acid | |
JPH054381B2 (en) | ||
JPH07118200A (en) | Production of naphthalenedicarboxylic acid | |
JP2940155B2 (en) | Method for purifying 4,4'-biphenyldicarboxylic acid | |
JPS62230747A (en) | Purification of 2,6-naphthalenedicarboxylic acid | |
JPH0531535B2 (en) | ||
JP5652008B2 (en) | Method for producing o-tolidine sulfone | |
SU576937A3 (en) | Method of preparing mono-o-b-oxoethyl-7-rutine | |
JP2664467B2 (en) | Purification method of biphenyldicarboxylic acid | |
JP2917462B2 (en) | Method for purifying 4,4'-diphenyldicarboxylic acid | |
JPH0737417B2 (en) | Method for purifying 4,4'-biphenyldicarboxylic acid | |
US4317924A (en) | Process for producing purified terephthalic acid | |
JPH06345684A (en) | Purification of 3,5-dimethyl benzoic acid | |
JP2002069031A (en) | Method for manufacturing high-purity pyromellitic acid and high-purity pyromellitic anhydride | |
JPH0530818B2 (en) | ||
JP2718179B2 (en) | Method for purifying 2,2,6,6-tetraalkyl-4-piperidinone | |
JPH06279355A (en) | Production of 2,6-naphthalene-dicarboxylic acid | |
JP4384748B2 (en) | Process for producing optically active 2-piperazinecarboxylic acid | |
JPH06256256A (en) | Production of highly pure 2,6-naphthalene dicarboxylic acid | |
JPH05320093A (en) | Production of biphenyldicarboxylic acid dichloride | |
JPH02235843A (en) | Method for purifying 4,4'-diphenylcarboxylic acid | |
JPS62212341A (en) | Purification of 2,6-naphthalenedicarboxylic acid |