JPS62212341A - Purification of 2,6-naphthalenedicarboxylic acid - Google Patents

Purification of 2,6-naphthalenedicarboxylic acid

Info

Publication number
JPS62212341A
JPS62212341A JP5635286A JP5635286A JPS62212341A JP S62212341 A JPS62212341 A JP S62212341A JP 5635286 A JP5635286 A JP 5635286A JP 5635286 A JP5635286 A JP 5635286A JP S62212341 A JPS62212341 A JP S62212341A
Authority
JP
Japan
Prior art keywords
salt
ndca
solution
water
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5635286A
Other languages
Japanese (ja)
Inventor
Shoichiro Hayashi
林 昭一郎
Noriharu Matsuda
松田 紀晴
Atsushi Sasagawa
笹川 厚
Yutaka Sachiuchi
幸内 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP5635286A priority Critical patent/JPS62212341A/en
Priority to GB8706038A priority patent/GB2187744B/en
Priority to CA000532056A priority patent/CA1303059C/en
Priority to DE19873708239 priority patent/DE3708239A1/en
Priority to FR878703503A priority patent/FR2595691B1/en
Priority to US07/026,322 priority patent/US4794195A/en
Publication of JPS62212341A publication Critical patent/JPS62212341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To enable the purification of the titled compound, by dissolving crude 2,6-naphthalenedicarboxylic acid in an aqueous solution of NaOH, K2CO3, etc., adding a water-soluble salt or hydroxide of the same cation and precipitating the objective compound as di-Na salt or di-K salt. CONSTITUTION:Crude 2,6-naphthalenedicarboxylic acid produced by the oxidization of 2,6-dialkylnaphthalene is dissolved in an aqueous solution of NaOH, KOH, Na2CO3 or K2CO3 of >=11 pH. A water-soluble salt or hydroxide of the cation same as the ion used above is added to the solution to precipitate the objective compound in the form of di-Na salt of di-K salt. The amount of the water-soluble salt or hydroxide of the above common cation is <=5mol/l as a cation concentration and below the solubility of the added component. preferably, the solution is added with 1-3wt% NaCl before or after salting-out teatment and is subjected to activated carbon treatment. EFFECT:A colorless objective compound having a purity of >=99.8% can be produced by combining the above process with activated carbon treatment.

Description

【発明の詳細な説明】 III上匹皿皿±1 本発明は、2.6−ジアルキルナフタレン又はその酸化
中間体を分子状酸素で酸化することによって得られた2
、6−ナフタレンジカルボン酸(以下2.6−NDCA
と略称す)の精製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides 2,6-dialkylnaphthalene or its oxidized intermediate obtained by oxidizing 2,6-dialkylnaphthalene or its oxidized intermediate with molecular oxygen.
, 6-naphthalene dicarboxylic acid (hereinafter referred to as 2.6-NDCA)
(abbreviated as )).

2.6− N D CAは、耐熱性の優れたフィルムや
繊維製品の製造に用いられるポリエチレン2.6−すフ
タレート、ポリエステル、ポリアミド等を製造するため
の原料である。
2.6-ND CA is a raw material for producing polyethylene 2,6-sphthalate, polyester, polyamide, etc., which are used to produce films and textile products with excellent heat resistance.

支夏及I 2.6−NDCAは、2.6−ジアルキルナフタレンを
氷酢酸中でコバルト及びマンガン触媒と臭素触媒の存在
下、高温・高圧で空気酸化することによって製造してい
る。しかしながら、酸化反応で副生するアルデヒドやケ
トン類、2.6−NDCAの臭素化誘導体及び酸化重合
体や着色物質が生成した2、6− N D CAに混入
するので、得られる粗2.6−NDCAの純度は通常的
95%である。
Chixia and I 2.6-NDCA is produced by air oxidation of 2,6-dialkylnaphthalene in glacial acetic acid in the presence of a cobalt and manganese catalyst and a bromine catalyst at high temperature and pressure. However, since aldehydes and ketones, brominated derivatives of 2.6-NDCA, oxidized polymers, and colored substances produced as by-products of the oxidation reaction are mixed into the produced 2,6-NDCA, the resulting crude 2.6 - The purity of NDCA is typically 95%.

このような不純物を含む2.6− N OOAをポリエ
チレン2.6−ナフタレート、ポリエステル、ポリアミ
ド等の製造原料として使用すると、上記ポリマーの重合
度が低下したり又は上記ポリマーから作られたフィルム
及び繊維の耐熱性等の物性が低下したり、着色して品質
が低下する。
If 2.6-N OOA containing such impurities is used as a raw material for producing polyethylene 2.6-naphthalate, polyester, polyamide, etc., the degree of polymerization of the above polymer may decrease or the films and fibers made from the above polymer may deteriorate. Physical properties such as heat resistance may deteriorate, or the quality may deteriorate due to coloring.

従って、2.6− N D CAの純度を99%以上の
高純度にすることが従来から要求されている′。
Therefore, it has been conventionally required that the purity of 2.6-N DC A be as high as 99% or higher.

2、(i−NDCAの製造方法及び精製方法としては次
のものが提案されている。
2. (The following methods for producing and purifying i-NDCA have been proposed.

2.6−ジイツブロビルナフタレン又はその酸化中間体
を、炭素数3以下の脂肪酸モノカルボンを少なくとも5
0重量%含有する溶媒中で分子状酸素により酸化し、2
.6−ナフタレンジカルボン酸を製造する方法において
、2.6−ジイツブロビルナフタレン又はその酸化中間
体の酸化を、(i)コバルト及び/又はマンガンよりな
る重金属及び(11)臭素よりなる触媒を、2.6−ジ
イツブロビルナフタレン又はその酸化中間体1モル当り
、該触媒の構成成分の重金属を少なくとも0.2モルの
割合でのなり 存在″T−τ・Sこ−とからなる2、6−ナフタレンジ
カルボン酸の製造方法(特ll昭6O−89445)。
2.6-diitubrobylnaphthalene or its oxidized intermediate is combined with at least 5 fatty acid monocarboxes having 3 or less carbon atoms.
Oxidized with molecular oxygen in a solvent containing 0% by weight,
.. In a method for producing 6-naphthalene dicarboxylic acid, oxidation of 2,6-diitubrobylnaphthalene or its oxidized intermediate is carried out using (i) a heavy metal consisting of cobalt and/or manganese and (11) a catalyst consisting of bromine; 2.6-diitubrobylnaphthalene or its oxidized intermediate 1 mole, the presence of a heavy metal as a component of the catalyst in a proportion of at least 0.2 mole "T-τ.S"; Method for producing 6-naphthalene dicarboxylic acid (Special ll Sho 6O-89445).

2.6−ジイツプロビルナフタレン又はその酸化中間体
を、炭素数3以下の脂肪族モノカルボン酸を少なくとも
50重量%含有するii中で分子状酸素により酸化し、
2.6−ナフタレンジカルボン酸をyA造する方法にお
いて、2.6−ジイツプロビルナフタレン又はその酸化
中間体の酸化をmコバルト及び/又はマンガンよりなる
重金属及び(ii)臭素よりなる触媒を、炭素数3以下
の脂肪族モノ2.6−ナフタレンジカルボン酸の製造方
法(特開昭60−89446)。
2. Oxidizing 6-diituprobylnaphthalene or its oxidized intermediate with molecular oxygen in ii containing at least 50% by weight of an aliphatic monocarboxylic acid having 3 or less carbon atoms;
In the method for producing 2.6-naphthalene dicarboxylic acid, the oxidation of 2.6-diituprobylnaphthalene or its oxidized intermediate is carried out using a heavy metal consisting of cobalt and/or manganese and (ii) a catalyst consisting of bromine. A method for producing an aliphatic mono-2,6-naphthalene dicarboxylic acid having 3 or less carbon atoms (JP-A-60-89446).

粗2.6− N D CAをアルカリ水溶液に溶解し、
100〜250℃で1〜5時間撹拌して熱処理を行い、
次いで固体吸着剤により脱色処理後、炭酸ガス又は亜硫
酸ガス等の酸性ガスを圧入告すしてpHを下げて2.6
−NDCAをモノアルカリ塩として析出させる方法(特
公昭52−20993)。
Dissolve crude 2.6-ND CA in aqueous alkaline solution,
Heat treatment is performed by stirring at 100 to 250°C for 1 to 5 hours,
Next, after decolorizing with a solid adsorbent, acidic gas such as carbon dioxide or sulfur dioxide is injected to lower the pH to 2.6.
- A method of precipitating NDCA as a monoalkali salt (Japanese Patent Publication No. 52-20993).

粗2.6−NDCAのアルカリ水溶液を過ハロゲン酸ア
ルカリ又は過マンガン酸アルカリ等の酸化剤で処理した
後、炭酸ガス又は亜1iIK酸ガスを吹き込んで2.6
−NDCAをモノアルカリ塩として分離する方法(特開
昭48−68554 )。
After treating an alkaline aqueous solution of crude 2.6-NDCA with an oxidizing agent such as an alkali perhalogenate or an alkali permanganate, carbon dioxide gas or 1iIK acid gas is blown into the 2.6-NDCA solution.
- A method for separating NDCA as a monoalkaline salt (JP-A-48-68554).

粗2.6−NDCAのアルカリ水溶液に220℃以下の
温度でパラジウム、白金、ルテニウム、ニッケル等の金
属触媒の存在下に接触的水素化処理をした後、炭酸ガス
を吹き込んで2.6−NDCAをモノアルカリ塩として
分離する方法(特開昭5O−160248)。
After performing a catalytic hydrogenation treatment on an alkaline aqueous solution of crude 2.6-NDCA at a temperature below 220°C in the presence of a metal catalyst such as palladium, platinum, ruthenium, or nickel, carbon dioxide gas is blown into the aqueous solution of 2.6-NDCA. A method for separating monoalkaline salts (JP-A-5O-160248).

粗2.6−NDCAを酢酸ナトウリム水溶液に溶解した
後、濃縮・晶析して2.6−NDCAのモノアルカリ塩
を分離する方法(特開昭50−105639)。
A method of dissolving crude 2.6-NDCA in an aqueous solution of sodium acetate and then concentrating and crystallizing it to separate the monoalkali salt of 2.6-NDCA (Japanese Patent Laid-Open No. 105639/1983).

いずれの方法も、2.6− N D CAをアルカリ水
溶液に溶解し、I)H調節をして2.6− N D C
Aのモノアルカリ塩の結晶を析出させて精製する方法と
熱処理法又は酸化還元処理法との組合せによる方法であ
る。
In both methods, 2.6-NDC is dissolved in an alkaline aqueous solution, I) H is adjusted, and 2.6-NDC
This method is a combination of a method of precipitating and purifying the monoalkali salt of A and a heat treatment method or a redox treatment method.

しかしながら、上述のpHを調節して2.6−NDCA
を精製する方法は、比較的高濃度の2.6−NDCAの
アルカリ水溶液を加温しながら炭酸ガス又は亜硫酸ガス
を圧入するか又は鉱酸を加えてpH6,5〜7.5に調
節し、20℃に冷却してモノアルカリ塩を析出させる方
法であるので、モノアルカリ塩及びジアルカリ塩と2.
6−NDCAとの間での微妙な平衡関係の為、pHや温
度及び濃度等の条件によって結晶の組成や析出1が一定
しない欠点がある。
However, by adjusting the pH mentioned above, 2.6-NDCA
The method for purifying is to adjust the pH to 6.5 to 7.5 by injecting carbon dioxide or sulfur dioxide gas or adding mineral acid while heating a relatively highly concentrated alkaline aqueous solution of 2.6-NDCA. Since this is a method in which monoalkali salts are precipitated by cooling to 20°C, monoalkali salts and dialkali salts and 2.
Due to the delicate equilibrium relationship with 6-NDCA, there is a drawback that the crystal composition and precipitation 1 are not constant depending on conditions such as pH, temperature, and concentration.

また、PKaが2.6− N D CAに近い他のカル
ボン酸類が2,6−ジアルキルナフタレンを酸化して得
られた2、6−NDCA中に含まれているので、1)H
調節のみの手段で2.6− N D CAを高純度に精
製することは困難である。更にpHlX節により析出し
たモノアルカリ塩を分離した後、結晶に付着及び含まれ
ている母液を水洗によって除去する必要があるが、2.
6−NDCAのモノアルカリ塩は水溶性であるので、洗
浄により2.6−NDCAの精製率が低下する欠点があ
る。
In addition, other carboxylic acids whose PKa is close to 2.6-NDCA are contained in 2,6-NDCA obtained by oxidizing 2,6-dialkylnaphthalene, so 1) H
It is difficult to purify 2.6-N DC A to high purity by means of control alone. Furthermore, after separating the monoalkali salt precipitated by the pHlX section, it is necessary to remove the mother liquor attached to and contained in the crystals by washing with water.
Since the monoalkali salt of 6-NDCA is water-soluble, it has the disadvantage that the purification rate of 2.6-NDCA decreases due to washing.

”しようとする−照点 モノアルカリ塩の晶析による精製のみでは2,6−ND
CAを高純度に精製することが出来ないので、他の方法
、例えば熱処理法や、酸化処理法及び還元処理法等と組
合せることが必要となった。
``Attempts to purify 2,6-ND only by crystallization of monoalkali salts''
Since CA cannot be purified to a high degree of purity, it has become necessary to combine it with other methods such as heat treatment, oxidation treatment, reduction treatment, etc.

しかしながら、熱処理は高温・高圧を必要とし、又酸化
反応や還元反応を併用する時は、新たに多数の副生物が
生成して不純物となる問題があり、その除去対策が必要
となるので精製法としては不完全なものであった。
However, heat treatment requires high temperature and high pressure, and when oxidation and reduction reactions are used together, there is a problem that many new by-products are generated and become impurities, and measures to remove them are required. It was incomplete.

一方、2.6−NDCAは融・点が300℃以上である
ので蒸留による生成は不可能であり、又メタノ゛−ル、
エタノール、アセトン、ベンゼン、キシレン、ジオキサ
ン。アセトニトリル、酢酸等の殆んどの有機溶剤に溶解
しないので再結晶法による精製も出来ない。
On the other hand, 2.6-NDCA has a melting point of 300°C or higher, so it cannot be produced by distillation, and methanol,
Ethanol, acetone, benzene, xylene, dioxane. Since it is insoluble in most organic solvents such as acetonitrile and acetic acid, it cannot be purified by recrystallization.

本発明者等は、まず酸化や還元等の化学反応を行なうこ
となく、2.6−NDCAをジアルカリ塩として晶析し
て精製する方法について検討をした。
The present inventors first studied a method of crystallizing and purifying 2,6-NDCA as a dialkali salt without performing any chemical reactions such as oxidation or reduction.

その結果、2.6− N D CAのジアルカリ塩は水
に対する溶解度が非常に大きいので、再結晶をする時の
溶液濃度を高くする必要があることを見出した。しかし
ながら、この方法では不純物の濃度が高くなるので晶析
した場合、結晶中に不純物が混入し純度の高い結晶が得
られない欠点があった。
As a result, it was found that since the dialkali salt of 2.6-N D CA has a very high solubility in water, it is necessary to increase the solution concentration during recrystallization. However, this method has the disadvantage that since the concentration of impurities is high, when crystallization is performed, impurities are mixed into the crystals, making it impossible to obtain highly pure crystals.

又水溶性が高いので十分に結晶の洗浄が出来ない等の欠
点があった。更に、工業的な規模で実施した場合、P液
や洗浄液中に含まれている2、6−NDCAのジアルカ
リ塩を回収する必要があるが、大量の水を蒸発させるの
で非常に大きい蒸発潜熱を必要としエネルギー損失も大
である。又濃縮に際し、激しい発泡現像があり濃縮が困
難になると共に、P液中の2.6− N D CAの純
度が低下するに伴い結晶析出が困難となり2.6−ND
CAの回収率が低下する欠点があった。
Also, because of its high water solubility, it has the disadvantage that the crystals cannot be washed sufficiently. Furthermore, when carried out on an industrial scale, it is necessary to recover the dialkali salt of 2,6-NDCA contained in the P solution and cleaning solution, but since a large amount of water is evaporated, a very large latent heat of vaporization is required. The energy loss is also large. In addition, during concentration, there is intense foaming development, which makes concentration difficult, and as the purity of 2.6-ND CA in the P solution decreases, crystal precipitation becomes difficult.
There was a drawback that the recovery rate of CA decreased.

本発明者らは、上述の如き問題点を全て解決するために
、化学反応や濃縮及び冷部等の操作を必要としない2.
6−NDCAの精製方法について鋭意研究の結果、2,
6−ジアルキルナフタレンを酸化して得られた粗2.6
− N D CAを水酸化ナトリウム、水酸化カリウム
、炭酸ナトリウム及び炭酸カリウムから選ばれたアルカ
リ水溶液に溶解し、使用したアルカリ水溶液と同じ陽イ
オンの水溶性塩又は水酸化物を2.6− N D CA
が溶解した水溶液に加えることによって高純度の2.6
−Nl’)CAをジナトリウム塩又はジカリウム塩とし
て析出させることがら成る2、6− N D CAの精
製方法を見出し、この知見に基づいて本発明を成すに至
った。
In order to solve all of the above-mentioned problems, the present inventors have discovered that 2. operations such as chemical reactions, concentration, and cooling sections are not required;
As a result of intensive research on the purification method of 6-NDCA, 2.
Crude 2.6 obtained by oxidizing 6-dialkylnaphthalene
- NDC is dissolved in an alkaline aqueous solution selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate, and a water-soluble salt or hydroxide of the same cation as the alkali aqueous solution used is dissolved in 2.6-N D CA
Highly purified 2.6
The inventors have discovered a method for purifying 2,6-N D CA that involves precipitating CA as a disodium salt or dipotassium salt, and have accomplished the present invention based on this finding.

1匪五且1 本発明の方法は、2.6−ジアルキルナフタレンを酸化
して得られた2、6−NDCAを酢酸、水又は鉱酸の水
溶液で洗浄又は抽出した後の2.6− NDCA(以下
、粗2.6− N D CAと略称する)をpH9以上
、好しくはpi−111以上の水酸化ナトリウム、水酸
化カリウム、炭酸ナトリウム及び炭酸カリウムから選択
されたアルカリ水溶液に溶解し、使用したアルカリ水溶
液と同じ陽イオン(以下、共通の陽イオンと略称する)
の水溶性塩又は水酸化物を2.6− N D CAが溶
解した水溶液に加えて2.6− N D CAをジナト
リウム塩、ジカリウム塩として析出させる、即ち塩析法
によって2.6− NDCAをIf製する方法である。
1匪5且1 The method of the present invention involves washing or extracting 2,6-NDCA obtained by oxidizing 2,6-dialkylnaphthalene with acetic acid, water or an aqueous solution of mineral acid, and then 2,6-NDCA. (hereinafter abbreviated as crude 2.6-ND CA) in an alkaline aqueous solution selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate having a pH of 9 or more, preferably pi-111 or more, Same cation as the alkaline aqueous solution used (hereinafter abbreviated as common cation)
A water-soluble salt or hydroxide of 2.6-ND CA is added to an aqueous solution in which 2.6-ND CA is dissolved, and 2.6-ND CA is precipitated as a disodium salt or a dipotassium salt, that is, by a salting-out method. This is a method for producing NDCA.

共通の陽イオンの水溶性塩又は水酸化物とは、ナトリウ
ム又はカリウムの水溶性塩又は水酸化物であって、20
℃の水に対して10重堡%以上・、好朱しくは15重間
%以上溶解する塩又は水酸化物で、例えば塩化ナトリウ
ム、塩化カリウム、炭酸ナトリウム、炭酸カリウム、重
炭酸カリウム、硫酸ナトリウム、硫酸カリウム、硝酸ナ
トリウム、硝酸カリウム、リン酸二カリウム、水酸ナト
リウム、水酸化カリウムを例示し得る。
Water-soluble salts or hydroxides of common cations are water-soluble salts or hydroxides of sodium or potassium,
Salts or hydroxides that dissolve 10% by weight or more, preferably 15% by weight or more in water at ℃, such as sodium chloride, potassium chloride, sodium carbonate, potassium carbonate, potassium bicarbonate, and sodium sulfate. , potassium sulfate, sodium nitrate, potassium nitrate, dipotassium phosphate, sodium hydroxide, and potassium hydroxide.

本発明の方法における塩析は、共通の陽イオンの水溶性
塩又は水酸化物を直接又は濃厚水溶液として粗2.6−
 N D CAの溶解したアルカリ水溶液に添加するこ
とによっておこなう。該水溶減性塩又は水酸化物の添加
量は、陽イオン濃度として10m0R11以下、好駈し
くは5soil / j以下で、且つその添加物の溶解
度以下である。溶解度を越えて添加すると、塩析された
結晶中に添加物が混入するので好駈りりない。又陽イオ
ン濃度が10110# / 1以上となるように添加し
ても塩析効果は高くならず、溶液の比重と粘度が増加す
る為、固液分離が困難となる。
Salting out in the method of the present invention involves adding the crude 2.6-
This is carried out by adding NDC to an aqueous alkaline solution in which NDC is dissolved. The amount of the water-soluble salt or hydroxide added is such that the concentration of cations is 10 m0R11 or less, preferably 5 soil/j or less, and the solubility of the additive or less. If the solubility is exceeded, the additive will be mixed into the salted-out crystals, resulting in poor results. Further, even if it is added so that the cation concentration is 10110#/1 or more, the salting-out effect will not be enhanced, and the specific gravity and viscosity of the solution will increase, making solid-liquid separation difficult.

2.8− N D CAのジアルカリ塩の溶解度は、共
通の陽イオン、例えばジナトリウム塩の場合はナトリウ
ムイオン、ジカリウム塩の場合はカリウムイオンの濃度
が高くなるに従って急激に低下する。
The solubility of dialkali salts of 2.8-N D CA decreases rapidly as the concentration of common cations increases, such as sodium ions in the case of disodium salts and potassium ions in the case of dipotassium salts.

例えば20℃でpH12の水酸化ナトリウム水溶液に対
する2、6− N D CAの溶解度は、ナトリウムイ
オン濃度が1.511101/ 1の場合的11%であ
るが、ナトリウムイオン濃度が2.2mon / 1の
場合1%となり、釦01/lでは溶解度は1.7%、4
IIlOft/lでは溶解度は0.4%、更にナトリウ
ムイオン濃度が5.4107) / !では溶解度は0
.2%に低下する。
For example, the solubility of 2,6-N DC A in a sodium hydroxide aqueous solution with pH 12 at 20°C is 11% when the sodium ion concentration is 1.511101/1, but when the sodium ion concentration is 2.2 mon/1 In case of 1%, the solubility is 1.7% in button 01/l, 4
At IIlOft/l, the solubility is 0.4%, and the sodium ion concentration is 5.4107)/! Then the solubility is 0
.. This decreases to 2%.

すなわち、2.6−ジアルキルナフタレンを酢酸等の溶
媒中でコバルト及び/又はマンガンと臭素触媒の存在下
で酸化して得られた純度90〜95%の粗2.6−ND
CAを前述のアルカリ水溶液に溶解した後、使用したア
ルカリ水溶液と同じ陽イオンの水溶性塩又は水酸化物を
加えると、純度99%以上の2.6−NDCAのジアル
カリ塩結晶を析出させることが出来る。
That is, crude 2.6-ND with a purity of 90 to 95% obtained by oxidizing 2.6-dialkylnaphthalene in a solvent such as acetic acid in the presence of cobalt and/or manganese and a bromine catalyst.
After dissolving CA in the alkali aqueous solution mentioned above, adding a water-soluble salt or hydroxide of the same cation as the alkali aqueous solution used can precipitate dialkali salt crystals of 2.6-NDCA with a purity of 99% or more. I can do it.

本発明の精製方法を詳細に説明すると、2.6=ジメチ
ルナフタレン又は2.6−ジイツブロビルナフタレン等
の2.6−ジアルキルナフタレンを低級脂肪族モノカル
ボン酸を70%以上含む溶剤中でコバルト及び/又はマ
ンガンと臭素触媒の存在下、1(yo〜250℃で加圧
空気を吹き込むことによって酸化し、得られた粗2.6
− N D CAを水酸化ナトリウム、水酸化カリウム
、炭酸ナトリウム又は炭酸カリウムのpH9以上の水溶
液に加えて溶解する。アルカリの使用量は、2.6−N
DCAの中和5屋以上であれば良いが、アルカリを過剰
に使用するときは、粗2.6−NDCAに含まれている
徴頃の重金属(コバルト及び/又はマンガン)を不溶性
の水酸化物又は塩基性炭酸塩として分離することが出来
るので、アルカリ水溶液を20%程度過剰に使用するこ
とが好よしい。又、アルカリの濃度はpH9以上であれ
ば良いが、pH11以上が特に好ましい。重金属の水酸
化物等を除去した後、P液に2.6− N OOAの溶
解に使用したと共通の陽イオンの水溶性塩又は水酸化物
のを加えると直ちに塩析が起き2.6−NDCAのジア
ルカリ塩の結晶が析出する。
To explain the purification method of the present invention in detail, 2.6-dialkylnaphthalene such as 2.6-dimethylnaphthalene or 2.6-diitubrobylnaphthalene is purified in a solvent containing 70% or more of lower aliphatic monocarboxylic acid. In the presence of cobalt and/or manganese and a bromine catalyst, the crude 2.6
- NDCA is added to and dissolved in an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, or potassium carbonate with a pH of 9 or higher. The amount of alkali used is 2.6-N
It is sufficient to neutralize DCA by 5 or more, but when using an excessive amount of alkali, use an insoluble hydroxide to remove the heavy metals (cobalt and/or manganese) contained in crude 2.6-NDCA. Alternatively, since it can be separated as a basic carbonate, it is preferable to use an aqueous alkaline solution in excess of about 20%. Further, the concentration of alkali may be at a pH of 9 or higher, and is particularly preferably at a pH of 11 or higher. After removing heavy metal hydroxides, etc., when a water-soluble salt or hydroxide of the common cation used for dissolving 2.6-NOOA is added to the P solution, salting out occurs immediately. - Crystals of dialkali salt of NDCA are precipitated.

塩析において、加える水溶性塩又は水酸化物の但及び2
.6− N D CAの濃度は精製目的により広い範囲
で調節される。例えば、2.6− N D CAの濃度
が低いアルカリ水溶液を塩析処理する場合には、共通の
陽イオンのm度を高くして塩析し、又2.6− N D
 CAの濃度が高いアルカリ水溶液を塩析処理する場合
は、共通の陽イオンの濃度を余り高くしなくても塩析す
ることが出来る。
In salting out, water-soluble salt or hydroxide added:
.. The concentration of 6-N DC A can be adjusted within a wide range depending on purification purposes. For example, when salting out an alkaline aqueous solution with a low concentration of 2.6-N D CA, salting out is carried out by increasing the m degree of the common cation;
When salting out an alkaline aqueous solution with a high concentration of CA, salting out can be carried out without increasing the concentration of common cations too much.

共通の陽イオンの濃度を高くすれば、2.6−NDCA
の回収率は97%以上に出来るが、共通の陽イオンの濃
度が高すぎると純度が低下することがあるので、粗2.
6−NDCAの純度が低い場合には、該陽イオンの濃度
を適度に調整すべきである。
By increasing the concentration of the common cation, 2.6-NDCA
The recovery rate can be over 97%, but if the concentration of common cations is too high, the purity may decrease, so crude 2.
If the purity of 6-NDCA is low, the concentration of the cation should be adjusted appropriately.

粗2.6−NDCAの純度が特に低い場合には、1回目
の塩析で得られた結晶を再びアルカリ水溶液に溶解して
塩析することが好上しい。
When the purity of crude 2.6-NDCA is particularly low, it is preferable to dissolve the crystals obtained in the first salting out in an alkaline aqueous solution again and salt out.

2.6−NDCAのアルカリ塩の溶解度は塩析工程の濃
度による影響よりむしろ共通の陽イオンの濃度により大
きく変化するので、塩析時に加熱や冷却処理をする必要
がないし、又濃縮をする必要もない。塩析時の溶液の温
度は通常20〜40℃であるので、工業的な実施に際し
てもエネルギー損失が少なくて良い。
2.6-Since the solubility of the alkali salt of NDCA changes largely depending on the concentration of common cations rather than the influence of the concentration in the salting-out process, there is no need for heating or cooling treatment during salting-out, and there is no need to concentrate. Nor. Since the temperature of the solution at the time of salting out is usually 20 to 40°C, energy loss may be small even in industrial implementation.

本発明の方法においては、塩析処理する前後に活性炭に
よる吸着処理をおこなうことが出来る。
In the method of the present invention, adsorption treatment using activated carbon can be performed before and after the salting-out treatment.

塩析処理を先に行なってから活性炭処理をする方が、活
性炭の使用針を少なくすることが出来るので好しい。活
性炭は粒状、顆粒状0球状、破砕状及び粉末状のいずれ
の形状のものでも使用出来るが、表面積の大きい粉末状
活性炭が効果的に作用する。
It is preferable to perform the salting-out treatment first and then the activated carbon treatment, since the number of activated carbon needles used can be reduced. Activated carbon can be used in any of granular, granular, spherical, crushed, and powdered forms, but powdered activated carbon with a large surface area works effectively.

契↓ 活性炭処理の方法を具体的に述べると、塩析処理の前に
行う場合は、粗2.6− N D CAのアルカリ水溶
液に活性炭を直接添加し、30分間以上撹拌してから活
性炭を分離しても良いが、活性炭を有効に利用するため
には、活性炭の充1filliを通過させて吸着処理す
ることが好まLい。
↓ To describe the method of activated carbon treatment specifically, if it is performed before salting out treatment, activated carbon is directly added to a crude alkaline aqueous solution of 2.6-NDC CA, stirred for at least 30 minutes, and then activated carbon is added. Although it may be separated, in order to effectively utilize the activated carbon, it is preferable to pass through a filler of activated carbon for adsorption treatment.

活性炭による吸着処理の温度は5〜100℃、打上しく
は10〜30℃である。父祖2,6−NDCAのアルカ
リ水溶液に1〜3重量%程度の塩化ナトリウムを添加し
ておくと活性炭の吸着能が増強されるので活性炭の使用
量を削減することが出来る。
The temperature of the adsorption treatment using activated carbon is 5 to 100°C, and the temperature of the adsorption treatment is 10 to 30°C. Adding about 1 to 3% by weight of sodium chloride to the aqueous alkaline solution of ancestral 2,6-NDCA enhances the adsorption capacity of activated carbon, making it possible to reduce the amount of activated carbon used.

例えば、水酸化ナトリウム水溶液に粗2.6− NDC
Aを溶解した後、塩化ナトリウムを用いて塩析し、得ら
れた結晶を塩化ナトリウム水で洗浄後、水に溶解すると
適切な塩化ナトリウムa度になるので活性炭処理すると
活性炭の消費量が少ないので、有利な方法である。
For example, crude 2.6-NDC is added to an aqueous sodium hydroxide solution.
After dissolving A, salting out using sodium chloride, washing the obtained crystals with sodium chloride water, and dissolving in water will give the appropriate sodium chloride degree, so if you treat it with activated carbon, the consumption of activated carbon will be small. , is an advantageous method.

塩析処理慢のP液中には、塩析処理の条件により2.6
−NDCAが残留していることがある。この場合は、少
量の希塩酸、硫酸、硝酸等の鉱酸をP、W&kJ[tテ
DH3以下ニtルト、2.[i−N D CAが析出す
る。かように析出した2、6−NDC’Aを再びアルカ
リ水溶液に溶解し、次いで塩析処理をすると2.6−N
l)CAのジアルカリ塩を回収することが出来る。
Depending on the conditions of the salting-out treatment, the P solution subjected to salting-out treatment may contain 2.6
- NDCA may remain. In this case, add a small amount of mineral acids such as dilute hydrochloric acid, sulfuric acid, nitric acid, etc. [i-N D CA precipitates. The 2,6-NDC'A thus precipitated was dissolved again in an alkaline aqueous solution and then subjected to salting out treatment to yield 2.6-NDC'A.
l) The dialkali salt of CA can be recovered.

Wピ1里 本発明の方法によると、2.6− N D CAのジア
ルカリ塩の溶解度は共通の陽イオンの濃度を高めること
により0.2%程度まで低下するので、加熱濃縮操作を
全く必要とせず又2,6−NDCAのアルカリ溶液中の
不純物の濃度を高くすることなく、高純度の2.6− 
N D CAのジアルカリ塩の結晶を得ることが出来る
According to the method of the present invention, the solubility of the dialkali salt of 2.6-N D CA decreases to about 0.2% by increasing the concentration of common cations, so no heating concentration operation is necessary. 2,6-NDCA without increasing the concentration of impurities in the alkaline solution of 2,6-NDCA.
Crystals of the dialkali salt of NDC A can be obtained.

又共通の陽イオンの水溶性塩又は水酸化物の水溶液に対
して2.6−NDCAのジアルカリ塩は難溶性であるの
で、適度な塩濃度の溶液を用いて塩析結果の洗浄をする
ことが可能である。
In addition, since the dialkali salt of 2.6-NDCA is poorly soluble in water-soluble salts of common cations or aqueous solutions of hydroxides, the salting-out results should be cleaned using a solution with an appropriate salt concentration. is possible.

更に、本発明の方法によれば、1回の塩析処理によって
、工業原料としての十分な品質、即ち純度99%以上の
2.6−NDCAを回収することが出来る。又特に高品
質の2.G−N D CAを必要とする場合には、活性
炭処理を組合せることによって純度99.8%以上の無
色の2.6−NDCAを回収することができる。
Further, according to the method of the present invention, 2.6-NDCA of sufficient quality as an industrial raw material, that is, 2.6-NDCA with a purity of 99% or more, can be recovered by a single salting-out treatment. Also, especially high quality 2. When G-NDCA is required, colorless 2.6-NDCA with a purity of 99.8% or more can be recovered by combining activated carbon treatment.

本発明の方法による2、6−NDCAの回収率は通常9
5%程度である。
The recovery rate of 2,6-NDCA by the method of the present invention is usually 9
It is about 5%.

以下、実施例によって本発明の精製方法を具体的に説明
するが、本発明は、これら実施例にのみ限定されるもの
ではない。
Hereinafter, the purification method of the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples.

尚、2.6− N D CAの純度は高速液体クロマト
グラフィーでおこない、臭素元素分析は蛍光X線分析法
で、着色成分は25%メチルアミン溶液のOD値により
分析した。
The purity of 2.6-N DC A was determined by high performance liquid chromatography, the bromine element was analyzed by fluorescent X-ray analysis, and the colored components were determined by the OD value of a 25% methylamine solution.

(1)  高速液体クロマトグラフィーウォーターズ社
、モデル510型HPLG測定装置 カ   ラ   ム :  L r  ChrO8Or
b  −RP−8(5−、メルク社)とラジア ルパックカートリッジ C− 8(ウォーターズ社)の連結 カラム 移 動  相:I))−13の水/アセトニトリル= 
45/ 55 (容積比)の溶液、流速:  0.6c
c/分 内部標準物質: 2−ナフトエ酸 検出波長: 260nm ■ 蛍光X1!分析法 理学電機蛍光X線分析装置(3080E 2型)X線チ
ューブ二ロジウム 50KV −5011Aで測定 検 出 蟲:PC検出器 結    晶:ゲルマニウム 試giogを径301I1mの錠剤に成形して分析する
(1) High Performance Liquid Chromatography Waters, Model 510 HPLG measuring device Column: L r ChrO8Or
b - RP-8 (5-, Merck & Co.) and Radial Pack Cartridge C-8 (Waters Co.) connected column mobile phase: I))-13 water/acetonitrile =
45/55 (volume ratio) solution, flow rate: 0.6c
c/min Internal standard: 2-naphthoic acid Detection wavelength: 260nm ■ Fluorescence X1! Analysis method: Rigaku Denki Fluorescence X-ray analyzer (Model 3080E 2) Measurement and detection using X-ray tube dirhodium 50KV-5011A Insect: PC detector Crystal: Germanium sample GIOG is molded into a tablet with a diameter of 301I1m and analyzed.

検出限界: 3PPm ■ 着色成分の分析 25%メチルアミン水溶液10ai!に試料1gを溶解
し、1001mの石英セルを用いて”;Do n lの
波長で光学密度を測定する。
Detection limit: 3PPm ■ Analysis of colored components 25% methylamine aqueous solution 10ai! 1 g of the sample is dissolved in the solution, and the optical density is measured using a 1001 m quartz cell at a wavelength of 100 m.

実施例1 還流冷却器、ガス吹込管、温度測定管及び攪拌機を有す
るチタンライニングをしたステンレス製の51オートク
レーブに氷酢酸2Kg、酢酸コバルト4水塩0.1[g
 、酢酸マンガン4水塩0.2Kg、臭化アンモン50
Q及び2.6−ジイツブロピルナフタレン0.2Kgを
入れて、180〜190℃で撹拌しながら20K g/
ciで圧縮空気を毎時600flの割合で吹き込み、5
時間反応させた。反応終了後、80℃に冷却し析出物を
濾過し、熱酢酸で洗浄後6型組%の塩酸2Ilを加えて
1時間撹拌した。
Example 1 2 kg of glacial acetic acid and 0.1 g of cobalt acetate tetrahydrate were placed in a titanium-lined stainless steel 51 autoclave equipped with a reflux condenser, a gas blowing tube, a temperature measuring tube, and a stirrer.
, manganese acetate tetrahydrate 0.2Kg, ammonium bromide 50
Add Q and 0.2Kg of 2.6-diitubropylnaphthalene and mix at 180-190°C with stirring at 20Kg/
Blow compressed air at a rate of 600 fl/hr with ci,
Allowed time to react. After the reaction was completed, the mixture was cooled to 80° C., the precipitate was filtered, washed with hot acetic acid, 6% hydrochloric acid (2Il) was added, and the mixture was stirred for 1 hour.

濾過・洗浄後、乾燥して165gの粗2.6− N D
 GAを得た。その純度は94.6%、着色成分の含有
量を示す25%メチルアミン溶液のOD値は0.66で
あった。また臭素元素の含有量は4600PPmであっ
た。
After filtration and washing, dry 165g of crude 2.6-ND
Obtained GA. Its purity was 94.6%, and the OD value of the 25% methylamine solution, which indicates the content of coloring components, was 0.66. Moreover, the content of bromine element was 4600 PPm.

尚、原料の2.6−ジイツプロビルナフタレンに対する
2、6− N D CAの収率は76.7%である。
Incidentally, the yield of 2,6-NDCA based on the raw material 2,6-diituprobylnaphthalene was 76.7%.

かようにして得られた粗2.6−NDCAの209を7
.61徂%の水酸化ナトリウム水溶液105gに加え2
5℃で撹拌溶解した後、不溶物を戸別した。P液に23
(lの塩化ナトリウムを加え25℃で撹拌すると、2.
6−NDCAのジナトリウム塩結晶が析出された。析出
した結晶を戸別し、19重1%の塩化ナトリウム水溶液
90Qで洗浄した後、300gの水に溶解した。撹拌し
ながら10重石%の塩酸を添加してpH1,5とし、2
.6−NDCA結晶を析出させた。戸別後、塩素イオン
が検出されなくなるまで水洗し、乾燥して18.2(l
の2.6− N D CAを得た。
209 of the crude 2.6-NDCA thus obtained was converted into 7
.. In addition to 105 g of 61% sodium hydroxide aqueous solution,
After stirring and dissolving at 5°C, insoluble matter was removed from door to door. 23 to P liquid
(When adding 1 liter of sodium chloride and stirring at 25°C, 2.
Disodium salt crystals of 6-NDCA were precipitated. The precipitated crystals were separated from each other, washed with a 1% by weight sodium chloride aqueous solution 90Q, and then dissolved in 300 g of water. While stirring, add 10% hydrochloric acid to adjust the pH to 1.5, and
.. 6-NDCA crystals were precipitated. After each house is washed with water until no chlorine ions are detected, dried and
2.6-NDCA of 2.6-NDCA was obtained.

得られた2、6−NDCAの純度は99.2%で、着色
成分の含有量を示す25%メチルアミン溶液のOD値は
0.060であった。また臭素元素の含有量は4PPn
+であった。尚、粗2.6−NDCAに対する精製2.
6−NDCAの回収率は95.4%であった。
The purity of the obtained 2,6-NDCA was 99.2%, and the OD value of the 25% methylamine solution, which indicates the content of coloring components, was 0.060. In addition, the content of bromine element is 4PPn
It was +. In addition, purification 2. for crude 2.6-NDCA.
The recovery rate of 6-NDCA was 95.4%.

実施例2 実施例1で得られた粗2.6−NDCAの20(Jを0
.5gの塩化ナトリウムを含む15重量%の炭酸カリウ
ム水溶液235gに加え室温で撹拌して溶解した後、2
.20の粉末状活性炭を充填した層を通過させて活性炭
処理を行なった。0.5重量%の塩化ナトリウム水溶液
12Gで活性炭素層を洗浄した復、50(lの塩化カリ
を25℃で撹拌しながら加えて塩析処理し、2.6− 
N D CAのジカリウム塩結晶を析出させた。
Example 2 20 (J of 0) of crude 2.6-NDCA obtained in Example 1
.. After adding it to 235 g of a 15% by weight aqueous potassium carbonate solution containing 5 g of sodium chloride and dissolving it by stirring at room temperature, 2
.. Activated carbon treatment was carried out by passing through a bed filled with powdered activated carbon. After washing the activated carbon layer with 12G of 0.5% by weight aqueous sodium chloride solution, 50(l) of potassium chloride was added with stirring at 25°C for salting out treatment, and 2.6-
Dipotassium salt crystals of ND CA were precipitated.

戸別後、25重量%の塩化カリウム水溶液80(]で洗
浄し、得られた結晶を30017の水に溶解後、10重
猾%の硫酸水を撹拌しながら加え、液のpHを1.5と
した。析出した2、6− N D CA結晶を戸別後、
洗液が中性になるま°で十分に水洗し、乾燥して17.
8gの2.6−NDCAを得た。
After each house, the crystals were washed with a 25% by weight potassium chloride aqueous solution 80 (), and the obtained crystals were dissolved in 30017 water, and 10% by weight sulfuric acid water was added with stirring to adjust the pH of the liquid to 1.5. After the precipitated 2,6-ND CA crystals were distributed from house to house,
Rinse thoroughly with water until the washing liquid becomes neutral, and dry.17.
8 g of 2.6-NDCA was obtained.

得られた2、6−NDCAの純度は99.8%で、着色
成分の含有量を示す25%メチルアミン溶液のOD値は
0.015であった。また、臭素元素は検出されなかっ
た。尚、粗2.6−NDCAに対する精製2.6−ND
CAの回収率は93.9%であった。
The purity of the obtained 2,6-NDCA was 99.8%, and the OD value of the 25% methylamine solution, which indicates the content of coloring components, was 0.015. Moreover, bromine element was not detected. In addition, purified 2.6-ND relative to crude 2.6-NDCA
The recovery rate of CA was 93.9%.

Claims (4)

【特許請求の範囲】[Claims] (1)2,6−ジアルキルナフタレンを酸化して得られ
た粗2,6−ナフタレンジカルボン酸を水酸化ナトリウ
ム、水酸化カリウム、炭酸ナトリウム及び炭酸カリウム
から選択されたアルカリ水溶液に溶解し、使用したアル
カリ水溶液と同じ陽イオンの水溶性塩又は水酸化物を2
,6−ナフタレンジカルボン酸が溶解した水溶液に加え
て2,6−ナフタレンジカルボン酸をジナトリウム塩又
はジカリウム塩として析出させることからなる2,6−
ナフタレンジカルボン酸の精製方法。
(1) Crude 2,6-naphthalene dicarboxylic acid obtained by oxidizing 2,6-dialkylnaphthalene was dissolved in an aqueous alkali solution selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate, and used. Water-soluble salt or hydroxide of the same cation as the alkaline aqueous solution
, 6-naphthalene dicarboxylic acid is added to an aqueous solution in which 2,6-naphthalene dicarboxylic acid is precipitated as a disodium salt or a dipotassium salt.
Method for purifying naphthalene dicarboxylic acid.
(2)析出した2,6−ナフタレンジカルボン酸のジナ
トリウム塩又はジカリウム塩を水に溶解して活性炭によ
る吸着処理をすることからなる特許請求の範囲第1項に
記載の精製方法。
(2) The purification method according to claim 1, which comprises dissolving the precipitated disodium salt or dipotassium salt of 2,6-naphthalene dicarboxylic acid in water and subjecting it to adsorption treatment with activated carbon.
(3)粗2,6−ナフタレンジカルボン酸のアルカリ水
溶液を、2,6−ナフタレンジカルボン酸をジナトリウ
ム塩又はジカリウム塩として析出させる塩析処理前に、
活性炭による吸着処理することからなる特許請求の範囲
第1項に記載の精製方法。
(3) Before salting out the aqueous alkaline solution of crude 2,6-naphthalene dicarboxylic acid to precipitate 2,6-naphthalene dicarboxylic acid as a disodium salt or dipotassium salt,
The purification method according to claim 1, which comprises adsorption treatment using activated carbon.
(4)活性炭による吸着処理する溶液に1〜3重量%の
塩化ナトリウムを加えることからなる特許請求の範囲第
2項又は第3項に記載の精製方法。
(4) The purification method according to claim 2 or 3, which comprises adding 1 to 3% by weight of sodium chloride to the solution to be adsorbed with activated carbon.
JP5635286A 1986-03-14 1986-03-14 Purification of 2,6-naphthalenedicarboxylic acid Pending JPS62212341A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5635286A JPS62212341A (en) 1986-03-14 1986-03-14 Purification of 2,6-naphthalenedicarboxylic acid
GB8706038A GB2187744B (en) 1986-03-14 1987-03-13 Process for producing 2, 6-naphthalenedicarboxylic acid
CA000532056A CA1303059C (en) 1986-03-14 1987-03-13 Process for producing 2,6-naphthalenedicarboxylic acid by oxidizing 2,6-diisopropylnaphthalene
DE19873708239 DE3708239A1 (en) 1986-03-14 1987-03-13 METHOD FOR PRODUCING 2,6-NAPHTHALINE CARBONIC ACID BY OXIDATION OF 2,6-DIISOPROPYLNAPHTHALINE
FR878703503A FR2595691B1 (en) 1986-03-14 1987-03-13 PROCESS FOR THE PRODUCTION OF NAPHTHALENE-DICARBOXYLIC-2,6 ACID BY OXIDATION OF 2,6-DIISOPROPYL-NAPHTALENE
US07/026,322 US4794195A (en) 1986-03-14 1987-03-16 Process for producing 2,6-naphthalenedicarboxylic acid by oxidizing 2,6-diisopropylnaphthalene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5635286A JPS62212341A (en) 1986-03-14 1986-03-14 Purification of 2,6-naphthalenedicarboxylic acid

Publications (1)

Publication Number Publication Date
JPS62212341A true JPS62212341A (en) 1987-09-18

Family

ID=13024838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5635286A Pending JPS62212341A (en) 1986-03-14 1986-03-14 Purification of 2,6-naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JPS62212341A (en)

Similar Documents

Publication Publication Date Title
JP5095390B2 (en) Purification of carboxylic acids by complex formation using selective solvents.
JPH07118201A (en) Purification of 2,6-naphthalene dicarboxylic acid
JP2011116792A (en) Method for producing highly pure aromatic polycarboxylic acid
JP2874223B2 (en) Method for producing high-purity 2,6-naphthalene dicarboxylic acid
US3465035A (en) Process for purifying terephthalic acid
JPS62212341A (en) Purification of 2,6-naphthalenedicarboxylic acid
JPS62230747A (en) Purification of 2,6-naphthalenedicarboxylic acid
EP0799179B1 (en) Purification process for aromatic dicarboxylic acids
JP2940155B2 (en) Method for purifying 4,4&#39;-biphenyldicarboxylic acid
JP5652008B2 (en) Method for producing o-tolidine sulfone
JPH07118200A (en) Production of naphthalenedicarboxylic acid
JPS62212342A (en) Purification of 2,6-naphthalenedicarboxylic acid
WO1996019432A9 (en) Purification process for aromatic dicarboxylic acids
JPH0531535B2 (en)
JPH0733705A (en) Purification of 2,6-naphtalenedicarboxylic acid
JPS62212345A (en) Continuous production of 2,6-naphthalenedicarboxylic acid
JP5648327B2 (en) Method for producing high purity o-tolidine sulfone
JPH04264050A (en) Method for purifying 2,6-naphthalenedicarboxylic acid
JPH0276837A (en) Method for purifying 4,4&#39;-biphenyldicarboxylic acid
JPH06279355A (en) Production of 2,6-naphthalene-dicarboxylic acid
JPH02264742A (en) Method for purifying biphenyldicarboxylic acid
JPH02243652A (en) Method for purifying naphthalenedicarboxylate
JPH05194311A (en) Purification of 4,4&#39;-bisnaphthalic acid
US2040926A (en) Concentration of aliphatic acids
JPH02235843A (en) Method for purifying 4,4&#39;-diphenylcarboxylic acid