JPH07336892A - Method and equipment for controlling self-excited dc transmission facility - Google Patents

Method and equipment for controlling self-excited dc transmission facility

Info

Publication number
JPH07336892A
JPH07336892A JP6119835A JP11983594A JPH07336892A JP H07336892 A JPH07336892 A JP H07336892A JP 6119835 A JP6119835 A JP 6119835A JP 11983594 A JP11983594 A JP 11983594A JP H07336892 A JPH07336892 A JP H07336892A
Authority
JP
Japan
Prior art keywords
power
voltage
value
converter
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6119835A
Other languages
Japanese (ja)
Inventor
Hiroo Konishi
博雄 小西
Hiroshige Kawazoe
裕成 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6119835A priority Critical patent/JPH07336892A/en
Publication of JPH07336892A publication Critical patent/JPH07336892A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To provide a control system of DC transmission facilities inhibiting the variation of DC voltage with the change of the command of transmission power and capable of stably controlling transmission power and DC voltage at high speed. CONSTITUTION:ACs are converted into DCs by a converter 31 on the transmission side, and DCs are converted into ACs by a converter 32 on the receiving side through a DC circuit 41. Each converter is composed of elements having a self-extinguishing function. Converter control sections 310, 320 have power control circuits and voltage control circuits respectively, and select one function by a tidal-current direction command from an operation command device 300. The converter control section 320 controls the transmission power of the converter 32 according to the power deviation of a power command and the measured value of a power detecting means 323. The converter control section 310 controls the converter 31 so that the DC voltage Vf of a power capacitor 40 is kept constant according to the voltage deviation of a voltage command x and a voltage detector 311 and the above-mentioned power deviation (or the power command).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自己消弧機能を持った素
子で構成される2台の電力変換装置から構成される自励
式直流送電設備に係り、特に直流送電電力を高速且つ安
定に制御する制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-excited DC power transmission equipment composed of two power converters composed of elements having a self-extinguishing function, and in particular, it controls DC power transmission power at high speed and stably. Control method.

【0002】[0002]

【従来の技術】近年、直流送電システムは長距離送電や
電源融通などに次々と適用されている。特に、自励式変
換器による直流送電設備は、電源喪失時の交流系統にも
送電でき且つ、進み、遅れいずれの無効電力も任意に制
御可能でニーズが高い。
2. Description of the Related Art In recent years, DC power transmission systems have been successively applied to long-distance power transmission and power source interchange. In particular, DC power transmission equipment using a self-exciting converter is capable of transmitting power to the AC system at the time of power loss and can control any reactive power, either advanced or delayed, which is in high demand.

【0003】自励式変換器は等価的に電圧源で置くこと
ができる。このため、変換器の至近端で事故が発生する
と、変換器から事故点に事故電流が流れ、事故電流が大
きい場合には変換器が壊れ、直流送電システムが停止す
る事態が懸念される。
Self-excited converters can be equivalently placed with a voltage source. Therefore, when an accident occurs at the near end of the converter, a fault current flows from the converter to the fault point, and when the fault current is large, the converter may be broken and the DC power transmission system may stop.

【0004】これを防止するために、特開平4−367
011号公報に開示されているように、自励式変換器の
電流をdqの2軸に変換、即ち有効分(実電流)と無効
分(虚電流)の2軸に分けて、変換器の電流を高速に制
御する方法が本発明者等によって提案されている。
In order to prevent this, JP-A-4-367
As disclosed in 011 publication, the current of a self-excited converter is converted into two axes of dq, that is, divided into two axes of an active component (real current) and a reactive component (imaginary current), and the current of the converter is divided. The inventors of the present invention have proposed a method of controlling the high speed.

【0005】さらに、この自励式変換器の制御方法を適
用した直流送電装置の基本的な制御方式が、特開平5−
211779号公報に開示されている。これは、電流の
有効分の制御として、順変換器で直流回路の直流電圧を
一定に制御し逆変換器で受電電力を指令値通りに制御す
る方法で、逆変換器側の受電電力値を順変換器で知るこ
となしに、即ち順変換器と逆変換器間で信号のやり取り
を行うことなく運転できるメリットがある。
Further, a basic control system of a DC power transmission device to which the control method of the self-excited converter is applied is disclosed in Japanese Unexamined Patent Publication No.
It is disclosed in Japanese Patent Publication No. 211779. This is a method of controlling the effective voltage of the current by controlling the DC voltage of the DC circuit with the forward converter to a constant value and controlling the received power with the inverse converter according to the command value. There is a merit that the operation can be performed without knowing the forward converter, that is, without exchanging signals between the forward converter and the inverse converter.

【0006】この制御方式の動作原理は、逆変換器で電
力制御するときに生じる直流回路の電圧変化を、その変
化に等しい電力を順変換器から直流回路に注入すること
により、即ち直流回路の電力の入出力を自動的にバラン
スさせることで、直流電圧を一定に保つものである。こ
のことを数式を用いて以下に説明する。
The operating principle of this control system is to inject the voltage change of the DC circuit which occurs when the power is controlled by the inverse converter, by injecting the power equivalent to the change into the DC circuit from the forward converter, that is, the DC circuit. The DC voltage is kept constant by automatically balancing the input and output of electric power. This will be described below using mathematical expressions.

【0007】今、直流回路のコンデンサ容量をC、逆変
換器から交流系統に送り出す送電電力をPd、直流回路
の直流電圧をVdと置くと、逆変換器に流れる電流Ii
は以下に示す(数1)となる。
Now, assuming that the capacitor capacity of the DC circuit is C, the transmission power sent from the inverse converter to the AC system is Pd, and the DC voltage of the DC circuit is Vd, the current Ii flowing through the inverse converter is Ii.
Becomes (Equation 1) shown below.

【0008】[0008]

【数1】Ii=Pd/Vd 順変換器から直流回路に流れ込む電流をIrと置き、直
流回路の損失を無視すると、直流電圧Vdは(数2)と
なる。
## EQU1 ## Ii = Pd / Vd When the current flowing from the forward converter to the DC circuit is set as Ir and the loss of the DC circuit is ignored, the DC voltage Vd becomes (Equation 2).

【0009】[0009]

【数2】Vd=1/C ∫(Ir−Ii)dt このように、逆変換器に流れ込む直流電流Iiは電力指
令値から(数1)によって求まり、順変換器から流れ出
る直流電流Irは順変換器を直流電圧一定制御すること
によって(数2)から必然的に決まる。従って、順変換
器で直流電圧制御、逆変換器で送電電力を制御すること
により、直流送電システムの安定な運転が可能になる。
[Expression 2] Vd = 1 / C∫ (Ir-Ii) dt As described above, the DC current Ii flowing into the inverse converter is obtained from the power command value by (Equation 1), and the DC current Ir flowing out from the forward converter is forward. It is inevitably determined from (Equation 2) by controlling the DC voltage of the converter constant. Therefore, stable operation of the DC power transmission system becomes possible by controlling the DC voltage with the forward converter and controlling the transmitted power with the inverse converter.

【0010】[0010]

【発明が解決しようとする課題】上記従来技術では、
(数2)から明かなように、直流電圧は電流の時間積分
から決まるので、逆変換器で指定の電力を交流側に送り
出しても直ちに直流電圧の変化には現われない。このた
め、順変換器から直流電圧を一定に保つのに必要な電流
の流入が遅くなり、直流電圧に変動を生じる。また、送
電電力にも変動を生じる。
In the above prior art,
As is clear from (Equation 2), since the DC voltage is determined by the time integration of the current, even if the specified power is sent to the AC side by the inverse converter, it does not immediately appear in the change of the DC voltage. Therefore, the inflow of the current required to keep the DC voltage constant from the forward converter is delayed, and the DC voltage fluctuates. In addition, the transmitted power also fluctuates.

【0011】この対策として直流電圧制御系の応答を上
げることが考えられる。しかし、直流電圧制御系のゲイ
ンをさらに上げるのは、制御系の安定度からみて限界に
近く、送電電力制御の応答を早く安定化することには困
難がある。
As a countermeasure against this, it can be considered to improve the response of the DC voltage control system. However, further increasing the gain of the DC voltage control system is close to the limit in view of the stability of the control system, and it is difficult to stabilize the response of the transmission power control quickly.

【0012】本発明の目的は、自励式直流送電設備にお
いて、送電電力と直流電圧を高速且つ安定に制御するこ
とのできる制御方法および装置を提供することにある。
An object of the present invention is to provide a control method and apparatus capable of controlling transmitted power and DC voltage at high speed and stably in a self-excited DC power transmission facility.

【0013】本発明の他の目的は、潮流反転によって両
方向に送電可能な直流送電設備において、変換器の運転
モードに対応して送電電力制御と直流電圧制御を任意に
選択できる柔軟な制御装置を提供することにある。
Another object of the present invention is to provide a flexible control device capable of arbitrarily selecting the transmission power control and the DC voltage control in accordance with the operation mode of the converter in the DC power transmission equipment capable of transmitting power in both directions by power flow reversal. To provide.

【0014】[0014]

【課題を解決するための手段】本発明は、送電側で交流
を直流に変換し直流回路を介して、受電側で直流を交流
に変換すると共に、送電側または受電側の一方の側で直
流回路の直流電圧を一定に制御し、他側で送電電力を指
令値通りに制御する自励式直流送電設備の制御方法であ
って、前記直流電圧の指令値と実測値による電圧偏差と
前記送電電力の指令値または指令値と実測値の電力偏差
に基づいて、前記直流電圧を一定に制御することを特徴
とする。
According to the present invention, an alternating current is converted into a direct current on the power transmitting side and a direct current is converted to an alternating current on the power receiving side through a direct current circuit, and a direct current is transmitted on one side of the power transmitting side or the power receiving side. A control method for a self-excited DC power transmission facility, which controls a DC voltage of a circuit to be constant and controls transmission power on the other side according to a command value, wherein a voltage deviation due to a command value of the DC voltage and an actual measurement value and the transmission power. The DC voltage is controlled to be constant based on the command value or the power deviation between the command value and the measured value.

【0015】本発明は、送電側で交流を直流に順変換す
る第1の変換器と、電力用コンデンサを含む直流回路
と、受電側で直流を交流に逆変換する第2の変換器を備
える自励式直流送電設備の制御装置であって、前記受電
側の送電電力を電力指令値通りとするように、前記電力
指令値とその実測値の電力偏差に応じた電力制御出力に
基づいて、前記第2の変換器を制御する電力制御手段
と、前記直流回路の直流電圧を一定とするように、前記
直流回路の直流電圧指令値とその実測値による電圧偏差
及び前記電力指令値または前記電力偏差に応じた電圧制
御出力に基づいて、前記第1の変換器を制御する電圧制
御手段と、を備えることを特徴とする。
The present invention comprises a first converter for converting AC into DC on the power transmitting side, a DC circuit including a power capacitor, and a second converter for converting DC into AC on the receiving side. A control device for a self-excited DC power transmission facility, so that the transmitted power on the power receiving side is as a power command value, based on a power control output according to a power deviation between the power command value and its measured value, A power control means for controlling the second converter, and a voltage deviation according to the DC voltage command value of the DC circuit and the measured value thereof and the power command value or the power deviation so that the DC voltage of the DC circuit is constant. Voltage control means for controlling the first converter based on a voltage control output according to the above.

【0016】本発明は、交流から直流への順変換と直流
から交流への逆変換を分担するに二つの電力変換器と、
前記二つの電力変換器を接続する直流回路と、前記二つ
の電力変換器を制御する制御装置から構成される自励式
直流送電設備の制御装置であって、送電電力指令値、直
流電圧指令値及び潮流方向指令値を出力する運転指令装
値と、前記電力変換器毎に、前記送電電力指令値とその
実測値の電力偏差に応じて送電電力を指令値通りに制御
する電力制御手段、前記直流電圧指令値とその実測値の
電圧偏差に基づいて前記直流電圧を一定制御する電圧制
御手段及び前記潮流方向指令に応じて前記電力制御手段
または前記電圧制御手段の一方を選択するスイッチ手段
を有する単位制御装置を備えることを特徴とする。
The present invention provides two power converters for sharing a forward conversion from AC to DC and a reverse conversion from DC to AC.
A control device for a self-excited DC power transmission facility comprising a DC circuit connecting the two power converters and a control device for controlling the two power converters, wherein a transmission power command value, a DC voltage command value and A power control means for controlling the transmitted power according to the command value according to the power deviation between the command value of the transmitted power and the actually measured value of the command value of the transmitted power for each of the power converters and the operation command device value that outputs the command value of the flow direction. A unit having a voltage control means for constantly controlling the DC voltage based on a voltage deviation between a voltage command value and an actual measurement value thereof, and a switch means for selecting one of the power control means or the voltage control means according to the power flow direction command. A control device is provided.

【0017】さらに上記の各構成において、前記電力変
換器の電流を有効分(実電流)と無効分(虚電流)の2
軸に分けて、前記電圧制御または前記電力制御を前記電
力変換器の有効分電流制御として行うことを特徴とす
る。
Further, in each of the above-mentioned constitutions, the current of the power converter is divided into an active component (real current) and a reactive component (imaginary current).
It is characterized in that the voltage control or the power control is performed as active component current control of the power converter separately for the axes.

【0018】[0018]

【作用】本発明の作用として、送電側の順変換器で直流
回路の電圧を一定に制御し、受電側の逆変換器で送電電
力を指定値に制御している場合を考える。いま、逆変換
器から交流系統へ送電する電力指令値を変更したとする
と、電力制御系に発生した電力偏差に応じて逆変換器の
有効電流が高速に制御され、指令通りの電力を交流変換
して出力する。この場合も、逆変換器の出力電力の変化
による直流電圧の変化は直ちには現れない。
As an operation of the present invention, consider a case where the forward converter on the power transmitting side controls the voltage of the DC circuit at a constant level and the reverse converter on the power receiving side controls the transmitted power to a specified value. Now, if the power command value to be transmitted from the inverse converter to the AC system is changed, the effective current of the inverse converter is controlled at high speed according to the power deviation generated in the power control system, and the power as commanded is converted to AC. And output. Also in this case, the change in the DC voltage due to the change in the output power of the inverse converter does not immediately appear.

【0019】しかし、本発明の構成によれば、本来電圧
偏差に応じて動作する直流電圧制御系に、前記電力指令
値または電力偏差を制御出力決定の要因として加えてい
るので、逆変換器に対する電力指令の変更が直ちに順変
換器の電圧制御に反映され、電圧制御のための有効分電
流制御を実行する。有効分電流制御は高応答に構成され
ているので、電力指令値または電力偏差に応じた電流が
順変換器から直流回路に注入され、直流回路の電圧変動
が抑制される。これによって電力の変動も抑制されるこ
とになり、高速な電力制御が実現できる。
However, according to the configuration of the present invention, the power command value or the power deviation is added as a factor for determining the control output to the DC voltage control system which originally operates according to the voltage deviation, so that the inverse converter is used. The change in the power command is immediately reflected in the voltage control of the forward converter, and active current control for voltage control is executed. Since the active current control is configured to have a high response, a current according to the power command value or the power deviation is injected from the forward converter into the DC circuit, and the voltage fluctuation of the DC circuit is suppressed. As a result, fluctuations in power are also suppressed, and high-speed power control can be realized.

【0020】さらに、本発明の構成によれば、電力変換
器を制御する単位制御装置が、電圧制御と電力制御の両
方の機能を選択可能に備える同一の構成とされているの
で、潮流方向指令によって順変換器と逆変換器の分担が
反転する場合、あるいは二つの電力変換器の電圧制御と
電力制御の分担が変更される場合いのいずれの組合せに
も対応できる柔軟なシステム構成が可能になり、電力融
通などの場合に好適である。
Further, according to the configuration of the present invention, since the unit control device for controlling the power converter has the same configuration with both the voltage control function and the power control function being selectable, the power flow direction command Enables a flexible system configuration that can handle any combination of when the sharing of the forward converter and the inverse converter is reversed, or when the sharing of the voltage control and power control of the two power converters is changed. It is suitable for power interchange.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照しながら
詳細に説明する。なお、各図面を通して同じ符号のもの
は同一の機能を示している。
Embodiments of the present invention will now be described in detail with reference to the drawings. The same reference numerals denote the same functions throughout the drawings.

【0022】図1に、自励式直流送電設備の制御装置の
一実施例を示す。自励式直流送電設備は、交流系統1
1、12、変換用変圧器21、22、自己消弧素子(G
TO)で構成される電圧型の自励式変換装置31、3
2、直流コンデンサ40及び直流送電線51、52から
構成される。直流回路は、直流コンデンサ40と直流送
電線41、42からなるが、電力融通などのように長距
離の送電線を持たない場合もある。
FIG. 1 shows an embodiment of a control device for a self-excited DC power transmission facility. Self-excited DC transmission equipment is AC system 1
1, 12, conversion transformers 21 and 22, self-extinguishing element (G
TO) voltage type self-excited converters 31, 3
2. A DC capacitor 40 and DC power transmission lines 51 and 52. The DC circuit includes a DC capacitor 40 and DC power transmission lines 41 and 42, but may not have a long-distance power transmission line such as power interchange.

【0023】本実施例の直流送電設備の制御装置は、運
転指令装置300、自励式変換器31、32の各々を制
御する変換器制御装置310、320から構成されてい
る。
The control device for the DC power transmission equipment of this embodiment comprises operation command device 300 and converter control devices 310, 320 for controlling each of the self-excited converters 31, 32.

【0024】変換器制御装置310には、交直連系点の
電圧を検出する交流電圧変成器311、交流系統11に
流れる自励式変換器31の電流を検出する交流電流変成
器312、交流電圧変成器331と交流電流変成器31
2の検出値から自励式変換器31の有効・無効電力を検
出する電力検出回路313及び直流回路の電圧を検出す
る直流電圧変成器315の検出値が取り込まれる。
The converter control device 310 includes an AC voltage transformer 311 for detecting the voltage at the AC / DC interconnection point, an AC current transformer 312 for detecting the current of the self-excited converter 31 flowing in the AC system 11, and an AC voltage transformer. 331 and AC current transformer 31
The detection values of the power detection circuit 313 that detects the active / reactive power of the self-exciting converter 31 and the detection value of the DC voltage transformer 315 that detects the voltage of the DC circuit are taken in from the detection value of 2.

【0025】同様に、変換器制御装置320には、交直
連系点の電圧を検出する交流電圧変成器321、交流系
統12に流れる自励式変換器32の電流を検出する交流
電流変成器322、交流電圧変成器の検出値と交流電流
変成器の検出値から自励式変換器32の有効・無効電力
を検出する電力検出回路323及び直流回路の電圧を検
出する直流電圧変成器315の検出値が取り込まれる。
Similarly, in the converter control device 320, an AC voltage transformer 321 for detecting the voltage at the AC / DC interconnection point, an AC current transformer 322 for detecting the current of the self-excited converter 32 flowing in the AC system 12, Based on the detected value of the AC voltage transformer and the detected value of the AC current transformer, the detected value of the power detection circuit 323 that detects the active / reactive power of the self-excited converter 32 and the detected value of the DC voltage transformer 315 that detects the voltage of the DC circuit are It is captured.

【0026】一般に、直流送電設備は交流系統11と1
2の間で電力融通を行なう必要があることから、潮流が
反転できることが必要であり、1つの変換器で順変換器
と逆変換器の両方の運転が可能となるように構成される
場合が多い。
Generally, the DC power transmission equipment is composed of AC systems 11 and 1
Since there is a need for power interchange between the two, it is necessary that the power flow can be reversed, and there is a case where one converter can be configured to operate both the forward converter and the inverse converter. Many.

【0027】図2は、直流送電設備の概略機能を説明す
る図で、潮流反転の前後における電力と電流の関係を示
している。同図(a)で、逆変換運転される変換器32
の送電電力をP2に指定し、電力用コンデンサ40の電
圧をVdとする。変換器32には定常状態で、交流系統
2に電力P2を送出するのに必要な電流i2(=P2/V
d)がコンデンサ40から図示の向きに流れる。
FIG. 2 is a diagram for explaining the general function of the DC power transmission equipment, and shows the relationship between the electric power and the current before and after the power flow inversion. In the same figure (a), the converter 32 operated in reverse conversion is operated.
Is designated as P 2 , and the voltage of the power capacitor 40 is Vd. In the steady state of the converter 32, the current i 2 (= P 2 / V) necessary for sending the electric power P 2 to the AC system 2
d) flows from the condenser 40 in the direction shown.

【0028】一方、順変換運転される変換器31では、
電流i2の流出による直流電圧の低下を防止するため
に、交流系統1から図示の方向に電流i1が流れて直流
電圧を一定に保とうとする。回路損失を無視すると、定
常的にはi1=i2で、直流電圧Vdの低下はなくなり、
(数3)の平衡状態となる。
On the other hand, in the converter 31 which performs the forward conversion operation,
In order to prevent the DC voltage from decreasing due to the outflow of the current i 2 , the current i 1 flows from the AC system 1 in the direction shown in the drawing to keep the DC voltage constant. Ignoring the circuit loss, i 1 = i 2 is constantly maintained, and the decrease in the DC voltage Vd disappears.
The equilibrium state of (Equation 3) is reached.

【0029】[0029]

【数3】P1=Vd・i1=Vd・i2=P2 図2(b)は、潮流反転し交流系統2から交流系統1へ
電力を送る場合である。変換器31は逆変換運転、変換
器32は順変換運転されている。送電電力をP1に指定
すると、変換器31には定常状態でコンデンサ40から
1の電流が図示向きに流れ、これによる直流電圧の低
下を防止するために、変換器32は交流系統2から電流
2をコンデンサ40に流し込みむ。回路損失を無視す
ると、定常的にはi1=i2で、直流電圧Vdの低下はな
くなり、この場合にも(数3)の平衡状態となる。
Equation 3] P 1 = Vd · i 1 = Vd · i 2 = P 2 FIG. 2 (b) is a case of transmitting the power from tidal currents inverted AC system 2 to the AC system 1. The converter 31 is in reverse conversion operation, and the converter 32 is in forward conversion operation. When the transmitted power is designated as P 1 , a current of i 1 flows from the capacitor 40 to the converter 31 in the direction shown in the figure in a steady state, and the converter 32 is switched from the AC system 2 in order to prevent the DC voltage from being lowered. The current i 2 is applied to the capacitor 40. Ignoring the circuit loss, i 1 = i 2 is constantly maintained, and the DC voltage Vd does not drop. In this case as well, the equilibrium state of (Equation 3) is obtained.

【0030】このように、直流送電設備における電力の
向きが変わっても、順変換器と逆変換器に同じ制御機能
を持たせておくことにより、双方向の電力送電が可能に
なる。本実施例の制御装置も、変換器31を順変換器、
変換器32を逆変換器として運転する場合とその反対の
場合の両方に備えて、基本的には同一構成の変換器制御
装置310と320を備えている。
As described above, even if the direction of electric power in the DC power transmission equipment is changed, bidirectional power transmission can be performed by providing the forward converter and the inverse converter with the same control function. In the control device of this embodiment, the converter 31 is a forward converter,
The converter control devices 310 and 320 having basically the same configuration are provided in both cases of operating the converter 32 as an inverse converter and vice versa.

【0031】図3に、1つの変換器制御装置310(3
20)の詳細な構成を機能ブロックにより示す。電力制
御回路3101(3201)は、運転指令装置300か
らの電力指令値Ppと電力検出回路313(323)か
らの有効電力検出値Pfを受け、その電力偏差△Pを0
とする有効電流指令値Idp1を出力する。
In FIG. 3, one converter controller 310 (3
The detailed configuration of 20) is shown by functional blocks. The power control circuit 3101 (3201) receives the power command value Pp from the operation command device 300 and the active power detection value Pf from the power detection circuit 313 (323), and sets the power deviation ΔP to 0.
And outputs the active current command value Idp 1 .

【0032】電圧制御回路3102(3202)は、運
転指令装置300からの直流回路の直流電圧指令値Vp
と直流電圧変成器315からの直流電圧検出値Vfを受
け、その電圧偏差△Vを演算して有効電流指令値Idp2
を出力する。
The voltage control circuit 3102 (3202) controls the DC voltage command value Vp of the DC circuit from the operation command device 300.
And the DC voltage detection value Vf from the DC voltage transformer 315, the voltage deviation ΔV is calculated, and the active current command value Idp 2
Is output.

【0033】図4に、電力制御回路3101(320
1)と電圧制御回路3102(3202)の構成を示
す。前者は、電力指令値Ppと有効電力検出値Pfの偏
差を求める第1の加算器AD1、この偏差を増幅して指
令値Idp1を出力する第1の演算増幅器AM1から構成
される。後者は、直流電圧指令値Vpと直流電圧検出値
Vfの偏差を求める第2の加算器AD2、この偏差を増
幅する第2の演算増幅器AM2、AM1とAM2の出力
を加算して指令値Idp2を出力する第3の加算器AD3
から構成される。
FIG. 4 shows a power control circuit 3101 (320).
1) and the configuration of the voltage control circuit 3102 (3202) are shown. The former, a first adder AD1 to obtain the deviation of the power command value Pp and active power detected value Pf, composed of the first operational amplifier AM1 for outputting a command value Idp 1 by amplifying the deviation. The latter is a second adder AD2 for obtaining the deviation between the DC voltage command value Vp and the DC voltage detection value Vf, and a command value Idp 2 by adding the outputs of the second operational amplifiers AM2, AM1 and AM2 for amplifying this deviation. Third adder AD3 for outputting
Composed of.

【0034】スイッチ回路3103(3203)は、運
転指令装置300からの潮流方向指令COMによって、
Idp1またはIdp2いずれかを選択して出力Idpとす
る。潮流方向指令COMは、制御対象となる変換器31
(32)が、順変換器として運転するか、逆変換器とし
て運転するかを指定する命令である。
The switch circuit 3103 (3203) receives the flow direction command COM from the operation command device 300,
Either Idp 1 or Idp 2 is selected as the output Idp. The tidal current direction command COM is the converter 31 to be controlled.
(32) is an instruction that specifies whether to operate as a forward converter or an inverse converter.

【0035】有効分電流制御回路3104(3204)
は、自励式変換器31(32)の有効分電流(実電流)
成分を指令値Idpに制御する。無効電力制御回路31
05(3205)は、運転指令装置300からの無効電
力指令値Qpと電力検出回路313(323)からの無
効電力検出値Qfを受け、無効電力偏差△Qを演算して
無効電流指令値Iqpを出力する。無効分電流制御回路
3106(3206)は、自励式変換器31(32)の
無効分電流(虚電流)成分を指令値Iqpに制御する。
2相/3相変換回路3107(3207)は、有効分電
流制御回路3104(3204)と無効分電流制御回路
3106(3206)の出力をdq逆変換、αβ逆変換
した後、3相変換する。2相/3相変換回路、PWM制
御回路3108(3208)は、3相変換された制御信
号から自励式変換器31(32)を制御する制御パルス
を出力する。
Effective current control circuit 3104 (3204)
Is the effective component current (actual current) of the self-exciting converter 31 (32)
The component is controlled to the command value Idp. Reactive power control circuit 31
05 (3205) receives the reactive power command value Qp from the operation command device 300 and the reactive power detection value Qf from the power detection circuit 313 (323) and calculates the reactive power deviation ΔQ to obtain the reactive current command value Iqp. Output. The reactive current control circuit 3106 (3206) controls the reactive current (imaginary current) component of the self-exciting converter 31 (32) to the command value Iqp.
The 2-phase / 3-phase conversion circuit 3107 (3207) performs dq inverse conversion and αβ inverse conversion on the outputs of the active component current control circuit 3104 (3204) and the reactive component current control circuit 3106 (3206), and then performs the 3-phase conversion. The two-phase / three-phase conversion circuit, PWM control circuit 3108 (3208) outputs a control pulse for controlling the self-excited converter 31 (32) from the three-phase converted control signal.

【0036】なお、自励式変換器におけるdq2軸変換
による有効分電流(実電流)と無効分電流(虚電流)制
御の方法は、応答の早い安定な電力変換方法として、上
記の特開平4−367011号に詳細に開示されてい
る。同例の図1に説明されているように、有効分電流制
御回路と無効分電流制御回路は指令値と共に、実測した
交流電流の有効分と無効分を分離して各々の入力として
いる。本実施例でも同様に構成されるが、上記した図2
の有効分電流制御回路3104(3204)と無効分電
流制御回路3106(3206)では、説明を簡単にす
るために省略的に記述している。
The method of controlling the active component current (real current) and the reactive component current (imaginary current) by the dq two-axis conversion in the self-exciting converter is a stable power conversion method with a quick response and is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei. It is disclosed in detail in No. 367011. As illustrated in FIG. 1 of the same example, the active component current control circuit and the reactive component current control circuit separate the active component and the reactive component of the actually measured alternating current together with the command value and use them as inputs. Although the same configuration is used in this embodiment, the configuration shown in FIG.
The active component current control circuit 3104 (3204) and the reactive component current control circuit 3106 (3206) are described in abbreviated form for the sake of simplicity.

【0037】次に、上記のように構成される直流送電設
備の制御装置の動作を説明する。直流送電では、受電交
流系統の電力を要求値(指令値)に制御するのが一般的
である。この場合、順変換器で直流電圧の制御を行な
い、逆変換器で送電電力の制御を行なう。以下では、変
換器31を順変換器、変換器32を逆変換器として運転
するものとする。
Next, the operation of the control device for the DC power transmission equipment configured as described above will be described. In DC power transmission, it is general to control the power of the power receiving AC system to a required value (command value). In this case, the forward converter controls the DC voltage and the inverse converter controls the transmission power. In the following, it is assumed that the converter 31 operates as a forward converter and the converter 32 operates as an inverse converter.

【0038】運転指令装置300からの潮流方向指令C
OMは、変換器31、32の運転モードと対応し、各々
の変換器制御装置310、320に与えられ、そのスイ
ッチ回路3103、3203を切替る。制御装置310
では、電圧制御回路3102の出力Idp2を選択し、順
変換器の電圧一定制御運転を行なう。一方、制御装置3
20では、電力制御回路3201の出力Idp1を選択
し、逆変換器の電力制御運転を行なう。
Power flow direction command C from the operation command device 300
The OM corresponds to the operation mode of the converters 31 and 32, is given to the converter control devices 310 and 320, and switches its switch circuits 3103 and 3203. Controller 310
Then, the output Idp 2 of the voltage control circuit 3102 is selected to perform the constant voltage control operation of the forward converter. On the other hand, the control device 3
At 20, the output Idp 1 of the power control circuit 3201 is selected and the power control operation of the inverse converter is performed.

【0039】ここで、電力指令値Ppを変化させたとす
る。制御装置320では、電力制御回路3201の電力
指令値Ppが変化するために、第1の加算器AD1に偏
差が現われて、有効分電流指令値Idp1を変化させる。
Idp1が変化すると高速応答の有効分電流制御回路32
04が動作して逆変換器32に流れる有効分電流(実電
流)を変化させ、送電電力が電力指令値Ppとなるよう
に制御する。
Here, it is assumed that the power command value Pp is changed. In the control device 320, since the power command value Pp of the power control circuit 3201 changes, a deviation appears in the first adder AD1, and the active component current command value Idp 1 is changed.
When Idp 1 changes, a fast response active current control circuit 32
04 operates to change the effective component current (actual current) flowing through the inverse converter 32, and controls the transmitted power to the power command value Pp.

【0040】一方、制御装置310では、電力指令値P
pが変化し逆変換器32の有効分電流が変化しても、直
流回路の直流電圧はすぐには変化せず、電圧制御回路3
102の第2の加算器AD2には偏差が現れない。しか
し、電力制御回路3101のIdp1が変化しているの
で、電圧制御回路3102の出力が変化する。Idp2
変化すると、有効分電流制御回路3104が動作して順
変換器31に流れる有効分電流を変化させ、直流回路の
電圧変化を抑制する。
On the other hand, in the control device 310, the power command value P
Even if p changes and the effective current of the inverse converter 32 changes, the DC voltage of the DC circuit does not immediately change, and the voltage control circuit 3
No deviation appears in the second adder AD2 of 102. However, since Idp 1 of the power control circuit 3101 has changed, the output of the voltage control circuit 3102 changes. When Idp 2 changes, the active component current control circuit 3104 operates to change the active component current flowing through the forward converter 31, thereby suppressing the voltage change of the DC circuit.

【0041】逆変換器32の電力制御により、有効電力
検出値が指令値と等しい値となったときには、電力偏差
が0となってIdp2の変化もなくなり、電力指令値Pp
の変化に伴う電圧制御は制定する。
When the active power detection value becomes a value equal to the command value by the power control of the inverse converter 32, the power deviation becomes 0 and Idp 2 does not change, and the power command value Pp.
The voltage control that accompanies the change of is established.

【0042】従来の電圧制御では、逆変換器の有効電力
が変化しても順変換器はすぐには動作しない。直流回路
の直流電圧が変化して始めて有効分電流指令値Idp2
現れ、順変換器の制御が開始される。このように、長距
離の送電線による主回路上での遅れと制御回路での遅れ
の後、順変換器から直流コンデンサへの充電電流が流れ
込んでいた。
In the conventional voltage control, the forward converter does not operate immediately even if the active power of the inverse converter changes. Only when the DC voltage of the DC circuit changes, the effective component current command value Idp 2 appears, and the control of the forward converter is started. Thus, after the delay on the main circuit and the delay on the control circuit due to the long-distance transmission line, the charging current from the forward converter to the DC capacitor was flowing.

【0043】しかし、本実施例では電力制御回路の出力
を加算して電圧制御回路の出力とすることによって、順
変換器の有効分電流指令値が直ちに変化するので、順変
換器から直流コンデンサに電流が流れ込み、直流電圧の
変化を高速に抑制できる。この結果、自励式直流送電設
備の送電電力を、高速且つ安定に制御することができ
る。
However, in this embodiment, the active component current command value of the forward converter is immediately changed by adding the output of the power control circuit to the output of the voltage control circuit. A current flows in, and the change in DC voltage can be suppressed at high speed. As a result, the transmission power of the self-excited DC transmission facility can be controlled at high speed and stably.

【0044】次に、本発明の第2の実施例を説明する。
図5に、変換器制御装置の電力制御回路及び電圧制御回
路の構成を示す。同図では、図4の構成に除算器DEV
と第4の加算器AD4が付加されている。
Next, a second embodiment of the present invention will be described.
FIG. 5 shows the configuration of the power control circuit and the voltage control circuit of the converter control device. In the figure, the divider DEV is added to the configuration of FIG.
And a fourth adder AD4 is added.

【0045】除算器DEVは、運転指令装置300から
の電力指令値Ppを入力し、このPpをもう1つの入力
である直流電圧検出値Vfで除算する。第4の加算器A
D4は、除算された信号を第1の演算増幅器AM1の出
力と加算し、指令値Idp1を出力する。指令値Idp1が第
3の加算器AD3で、AM2の出力と加算されて、指令
値Idp2となるのは、図4の場合と同じである。
The divider DEV receives the power command value Pp from the operation command device 300, and divides this Pp by another input voltage detected value Vf. Fourth adder A
D4 adds the divided signal to the output of the first operational amplifier AM1 and outputs the command value Idp 1 . As in the case of FIG. 4, the command value Idp 1 is added to the output of AM 2 by the third adder AD 3 to become the command value Idp 2 .

【0046】この構成によれば、電力指令値Ppまたは
直流電圧Vdの変化が、直ちに電力制御回路3101の
出力Idp1を変化させるので、図4の構成に比べ直流電
圧の制御と電力制御の応答を更に上げることができる。
According to this structure, a change in the power command value Pp or the DC voltage Vd immediately changes the output Idp 1 of the power control circuit 3101. Therefore, the DC voltage control and the power control response are different from those in the structure of FIG. Can be further increased.

【0047】次に、本発明の第3の実施例を説明する。
図6に、変換器制御装置の電圧制御回路の構成を示す。
Next, a third embodiment of the present invention will be described.
FIG. 6 shows the configuration of the voltage control circuit of the converter control device.

【0048】同図では、図4の電圧制御回路3102に
除算器DEVが付加され、運転指令装置300からの電
力指令値Ppを入力し、このPpを直流電圧検出値Vf
で除算した値を、第3の加算器AD3で加算して指令値
Idp2を得ている。
In the figure, a divider DEV is added to the voltage control circuit 3102 of FIG. 4, the power command value Pp from the operation command device 300 is input, and this Pp is used as the DC voltage detection value Vf.
The value obtained by dividing by is added by the third adder AD3 to obtain the command value Idp 2 .

【0049】即ち、電圧制御回路3102の指令値に
は、電力制御回路3101の指令値に代えて、運転指令
装置300からの電力指令値Ppに対応する値を加算
し、これによって直流電圧制御の応答速度を改善してい
る。
That is, instead of the command value of the power control circuit 3101, a value corresponding to the power command value Pp from the operation command device 300 is added to the command value of the voltage control circuit 3102, and the DC voltage control The response speed has been improved.

【0050】これによれば、電力制御手段からの出力を
必要としないので、逆変換器側から順変換器側へ、電力
制御指令値Idp1ないしは有効電力検出値Pfを伝送す
る必要がなくなり、送電線が長距離となる場合にも信号
の伝送遅れによる制御の遅れを生じない。
According to this, since the output from the power control means is not required, it is not necessary to transmit the power control command value Idp 1 or the active power detection value Pf from the inverse converter side to the forward converter side. Even when the power transmission line has a long distance, a control delay due to a signal transmission delay does not occur.

【0051】上述の第1乃至り第3の実施例では、順変
換器で電圧制御、逆変換器で電力制御する場合を説明し
たが、これに限定されるものではない。即ち、順変換器
で電力制御、逆変換器で電圧制御する場合も、順変換器
と逆変換器の制御動作が上記とは逆になるだけである。
従って、運転指令装置300からの潮流方向指令COM
によるスイッチ回路3103、3203の切替を逆にす
るだけで、本発明を上述と同様に適用でき、自励式直流
送電設備の送電電力を高速且つ安定に制御することがで
きる。
In the above-described first to third embodiments, the case where the forward converter controls the voltage and the inverse converter controls the power has been described, but the present invention is not limited to this. That is, even when power control is performed by the forward converter and voltage control is performed by the inverse converter, the control operations of the forward converter and the inverse converter are only opposite to the above.
Therefore, the power flow direction command COM from the operation command device 300
The present invention can be applied in the same manner as described above by simply reversing the switching of the switch circuits 3103 and 3203 by the above, and the transmission power of the self-excited DC power transmission equipment can be controlled at high speed and stably.

【0052】次に、本発明の他の適用例を説明する。上
述の実施例では、潮流反転によって両方向に送電可能な
直流送電設備を適用対象とした。しかし、本発明は潮流
反転を行なわない1方向送電の直流送電設備にも適用可
能である。
Next, another application example of the present invention will be described. In the above-described embodiment, the DC power transmission equipment that can transmit power in both directions by the power flow reversal is applied. However, the present invention can also be applied to DC power transmission equipment for one-way power transmission that does not perform power flow inversion.

【0053】例えば、図1の変換器31、32がそれぞ
れ、順変換器と逆変換器の機能に構成されているとす
る。この場合、制御装置310は電圧制御を、制御装置
320は電力制御を分担するので、各々の専用化が可能
になる。
For example, it is assumed that the converters 31 and 32 shown in FIG. 1 have the functions of a forward converter and an inverse converter, respectively. In this case, the control device 310 shares the voltage control and the control device 320 shares the power control, so that each can be dedicated.

【0054】図7は、第4の実施例で、順変換器専用の
制御装置の構成を示したものである。同図を、図4、図
5の制御装置と比べると、電力制御回路3101とスイ
ッチ回路3103が省略されている。第3の加算器AD
3に入力される指令値Idp1は、逆変換器32の制御装
置320から伝送されてくる。なお、図示を省略した制
御装置320側には、指令値Idp1出力する電力制御回
路3201が設けられ、電圧制御回路3202は省略さ
れる。
FIG. 7 shows the configuration of a controller dedicated to the forward converter in the fourth embodiment. Comparing this figure with the control device of FIGS. 4 and 5, the power control circuit 3101 and the switch circuit 3103 are omitted. Third adder AD
The command value Idp 1 input to 3 is transmitted from the control device 320 of the inverse converter 32. A power control circuit 3201 that outputs the command value Idp 1 is provided on the control device 320 side (not shown), and the voltage control circuit 3202 is omitted.

【0055】このように、一方向送電の場合には、順変
換器側に電圧制御回路、逆変換器側に電力制御回路を設
け、電力制御回路の指令値を加算して電圧制御回路の指
令値とすることで、上記実施例の場合と同様に、直流電
圧の制御と電力制御の応答速度を上げることができる。
As described above, in the case of one-way power transmission, the voltage control circuit is provided on the forward converter side and the power control circuit is provided on the inverse converter side, and the command value of the power control circuit is added to add the command of the voltage control circuit. By setting the value, the response speed of the DC voltage control and the power control can be increased as in the case of the above embodiment.

【0056】この構成による場合、逆変換器側から順変
換器側への信号の伝送遅れがあるが、直流送電線がない
場合や短い場合は伝送遅れは問題にならない。なお、図
6に示した第3の実施例を、一方向送電の順変換器の電
圧制御回路として適用してもよい。これによれば、長距
離送電の場合にも遅れを生じることがなく、直流電圧の
制御と電力制御の応答速度を上げることができる。
In the case of this configuration, there is a signal transmission delay from the inverse converter side to the forward converter side, but the transmission delay is not a problem when there is no DC transmission line or when it is short. The third embodiment shown in FIG. 6 may be applied as a voltage control circuit of a unidirectional power transmission forward converter. According to this, there is no delay even in the case of long-distance power transmission, and the response speed of DC voltage control and power control can be increased.

【0057】上記した一方向送電の場合の制御装置の専
用化は、変換器の制御モード(電圧制御/電力制御)が
運転モード(順変換/逆変換)に関係無く固定化される
場合にも適用可能である。
Dedicated control devices for the above-described one-way power transmission are also applicable to the case where the control mode (voltage control / power control) of the converter is fixed regardless of the operation mode (forward conversion / reverse conversion). Applicable.

【0058】[0058]

【発明の効果】本発明によれば、逆変換器に対する電力
指令の変更が順変換器の電圧制御に直ちに反映されるの
で、直流送電設備の電圧一定制御と電力制御が高速化で
きる効果がある。
According to the present invention, since the change of the power command to the inverse converter is immediately reflected in the voltage control of the forward converter, there is an effect that the constant voltage control and the power control of the DC power transmission equipment can be speeded up. .

【0059】さらに、本発明によれば、電力変換器を制
御する単位制御装置が、電圧制御と電力制御の両方の機
能を任意に選択できる同一構成とされているので、運転
モードや制御モードのいずれの組合せにも対応できる柔
軟なシステム構成を実現できる効果がある。
Further, according to the present invention, since the unit control device for controlling the power converter has the same configuration in which both functions of the voltage control and the power control can be arbitrarily selected, the operation mode and the control mode can be selected. This has the effect of realizing a flexible system configuration that can support any combination.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による自励式直流送電設備の
制御装置の構成図。
FIG. 1 is a configuration diagram of a control device for a self-excited DC power transmission facility according to an embodiment of the present invention.

【図2】直流送電設備の機能を説明する説明図。FIG. 2 is an explanatory diagram illustrating a function of DC power transmission equipment.

【図3】第1の実施例の制御装置の構成図。FIG. 3 is a configuration diagram of a control device according to the first embodiment.

【図4】図3の電力制御手段と電圧制御手段の詳細を示
す構成図。
FIG. 4 is a configuration diagram showing details of a power control unit and a voltage control unit in FIG.

【図5】本発明の第2の実施例の制御装置の構成図。FIG. 5 is a configuration diagram of a control device according to a second embodiment of the present invention.

【図6】本発明の第3の実施例の制御装置の構成図。FIG. 6 is a configuration diagram of a control device according to a third embodiment of the present invention.

【図7】本発明を一方向送電に適用した第4の実施例の
制御装置の構成図。
FIG. 7 is a configuration diagram of a control device of a fourth embodiment in which the present invention is applied to one-way power transmission.

【符号の説明】[Explanation of symbols]

11,12…交流系統、21,22…変換用変圧器、3
1,32…自励式変換装置、40…直流コンデンサ、4
1,42…直流送電線、300…運転指令装置、31
0,320…制御装置、311,321…交流電圧変成
器、312,322…交流電流変成器、313,323
…電力検出回路、315…直流電圧変成器、3101…
電力制御回路、3102…電圧制御回路、3103…ス
イッチ回路、3104…有効分電流(実電流)制御回
路、3105…無効電力制御回路、3106…無効分電
流(虚電流)制御回路、3107…2相/3相変換回
路、3108…PWM制御回路、AD1…第1の加算
器、AD2…第2の加算器、AD3…第3の加算器、A
D4…第4の加算器、AM1…第1の演算増幅器、AM
2…第2の演算増幅器、DEV…除算器、Idp1…電力
制御回路の出力、Idp2…電圧制御回路の出力、COM
…潮流方向指令、Idp…有効分電流(実電流)指令
値、Pp…電力指令値、Pf…電力検出値、Vp…直流
電圧指令値、Vf…直流電圧検出値、Qp…無効電力指
令値、Qf…無効電力検出値、Iqp…無効分電流(虚
電流)指令値。
11, 12 ... AC system, 21, 22 ... Transformer for conversion, 3
1, 32 ... Self-exciting converter, 40 ... DC capacitor, 4
1, 42 ... DC power transmission line, 300 ... Operation command device, 31
0,320 ... Control device, 311, 321 ... AC voltage transformer, 312, 322 ... AC current transformer, 313, 323
... Power detection circuit, 315 ... DC voltage transformer, 3101 ...
Power control circuit, 3102 ... Voltage control circuit, 3103 ... Switch circuit, 3104 ... Active component current (actual current) control circuit, 3105 ... Reactive power control circuit, 3106 ... Reactive component current (imaginary current) control circuit, 3107 ... Two-phase / 3 phase conversion circuit, 3108 ... PWM control circuit, AD1 ... first adder, AD2 ... second adder, AD3 ... third adder, A
D4 ... Fourth adder, AM1 ... First operational amplifier, AM
2 ... 2nd operational amplifier, DEV ... Divider, Idp1 ... Output of power control circuit, Idp2 ... Output of voltage control circuit, COM
... power flow direction command, Idp ... active current (actual current) command value, Pp ... power command value, Pf ... power detection value, Vp ... DC voltage command value, Vf ... DC voltage detection value, Qp ... reactive power command value, Qf ... Reactive power detection value, Iqp ... Reactive current (imaginary current) command value.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 送電側で交流を直流に変換し直流回路を
介して受電側で直流を交流に変換すると共に、送電側ま
たは受電側の一方の側で直流回路の直流電圧を一定に制
御し、他側で送電電力を指令値通りに制御する自励式直
流送電設備の制御方法において、 前記直流電圧の電圧指令値と電圧実測値による電圧偏差
と、前記送電電力の電力指令値または該指令値と電力実
測値による電力偏差に基づいて、前記直流電圧の制御出
力を求めることを特徴とする自励式直流送電設備の制御
方法。
1. A power transmission side converts alternating current into direct current, and a power receiving side converts direct current into alternating current through a direct current circuit, and one side of the power transmitting side or the power receiving side controls the direct current voltage of the direct current circuit to be constant. In the control method of the self-excited DC power transmission equipment that controls the transmission power on the other side according to the command value, the voltage command value of the DC voltage and the voltage deviation due to the voltage measurement value, the power command value of the transmission power or the command value And a control output of the DC voltage based on a power deviation based on an actual power measurement value.
【請求項2】 請求項1において、 前記送電側と受電側が潮流方向指令によって反転される
場合は、これに応じて前記直流電圧の制御側と前記送電
電力の制御側を切替ることを特徴とする自励式直流送電
設備の制御方法。
2. The method according to claim 1, wherein when the power transmitting side and the power receiving side are reversed by a power flow direction command, the control side of the DC voltage and the control side of the transmitted power are switched according to the command. Control method for self-excited DC power transmission equipment.
【請求項3】 請求項1または2において、 前記直流電圧の制御出力は、前記電圧偏差に応じた値
と、前記電力指令値と前記電圧実測値の除算に応じた値
との加算値に基づいて求められることを特徴とする自励
式直流送電設備の制御方法。
3. The control output of the DC voltage according to claim 1 or 2, based on an added value of a value according to the voltage deviation and a value according to division of the power command value and the voltage actual measurement value. A method for controlling a self-excited DC power transmission facility, which is characterized in that
【請求項4】 請求項1または2において、 前記直流電圧の制御出力は、前記電圧偏差に応じた値
と、前記電力偏差に基づいて前記他側で実行される送電
電力の制御出力に応じた値との加算値に基づいて求めら
れることを特徴とする自励式直流送電設備の制御方法。
4. The control output of the DC voltage according to claim 1, wherein the control output of the DC voltage corresponds to a value according to the voltage deviation and a control output of transmission power executed on the other side based on the power deviation. A method for controlling a self-excited DC power transmission facility, which is characterized in that it is obtained based on a value added to the value.
【請求項5】 請求項4において、 前記加算値は、前記電力指令値と前記電圧実測値の除算
に応じた値を含むことを特徴とする自励式直流送電設備
の制御方法。
5. The method of controlling a self-excited DC power transmission facility according to claim 4, wherein the added value includes a value corresponding to a division of the power command value and the voltage actual measurement value.
【請求項6】 請求項1〜5のいずれか1項において、 前記直流電圧の制御出力または前記送電電力の制御出力
は、前記送電側または受電側で実測される電流の有効分
の制御に対応されることを特徴とする自励式直流送電設
備の制御方法。
6. The control output of the DC voltage or the control output of the transmission power corresponds to the control of the effective portion of the current actually measured on the power transmission side or the power reception side according to any one of claims 1 to 5. A method for controlling a self-excited DC power transmission facility, comprising:
【請求項7】 送電側で交流を直流に順変換する第1の
自励式変換器と、電力用コンデンサを含む直流回路と、
受電側で直流を交流に逆変換する第2の自励式変換器を
備える自励式直流送電設備の制御装置において、 前記受電側の送電電力を電力指令値通りとするように、
前記電力指令値とその実測値の電力偏差に応じた電力制
御出力に基づいて、前記第2の自励式変換器を制御する
電力制御手段と、 前記直流回路の直流電圧を一定とするように、前記直流
回路の直流電圧指令値とその実測値による電圧偏差及び
前記電力指令値または前記電力偏差に応じた電圧制御出
力に基づいて、前記第1の自励式変換器を制御する電圧
制御手段と、を備えることを特徴とする自励式直流送電
設備の制御装置。
7. A first self-exciting converter for converting alternating current into direct current on the power transmission side, and a direct current circuit including a power capacitor.
In a control device for a self-excited DC power transmission facility including a second self-excited converter that reversely converts direct current to alternating current on the power receiving side, in order to set the power transmitted on the power receiving side to the power command value,
Power control means for controlling the second self-excited converter based on a power control output corresponding to the power deviation between the power command value and the measured value thereof, and a constant DC voltage of the DC circuit, Voltage control means for controlling the first self-exciting converter based on a DC voltage command value of the DC circuit and a voltage deviation based on a measured value of the DC voltage and the power command value or the power deviation. A control device for a self-excited DC power transmission facility, comprising:
【請求項8】 送電側で交流を直流に変換する順変換器
と、電力用コンデンサを含む直流回路と、受電側で直流
を交流に変換する逆変換器を備える自励式直流送電設備
の制御装置において、 前記逆変換器の送電電力指令値及び前記順変換器の直流
電圧指令値を出力する運転指令装値と、 前記逆変換器の送電電力を電力指令値通りとするよう
に、前記電力指令値とその実測値の電力偏差に応じた電
力制御出力に基づいて、前記逆変換器を制御する電力制
御手段と、 前記直流回路の直流電圧を一定とするように、前記直流
電圧指令値とその実測値による電圧偏差に応じた値と前
記電力指令値に応じた値を加算した電圧制御出力に基づ
いて前記順変換器を制御する電圧制御手段と、を備える
ことを特徴とする自励式直流送電設備の制御装置。
8. A control device for a self-excited DC power transmission facility, comprising a forward converter for converting AC to DC on the power transmitting side, a DC circuit including a power capacitor, and an inverse converter for converting DC to AC on the power receiving side. In the operation command device for outputting the transmission power command value of the inverse converter and the DC voltage command value of the forward converter, and the power command so that the transmission power of the inverse converter is the same as the power command value. A power control means for controlling the inverse converter based on a power control output according to a power deviation between the value and its measured value, and the DC voltage command value and the DC voltage command value so that the DC voltage of the DC circuit is constant. Self-excited DC power transmission, comprising: voltage control means for controlling the forward converter based on a voltage control output obtained by adding a value according to a voltage deviation based on an actual measurement value and a value according to the power command value. Equipment control device.
【請求項9】 請求項8において、 前記加算される値は、前記電力制御手段から前記電力制
御出力を与えられるように構成されてなることを特徴と
する自励式直流送電設備の制御装置。
9. The control device for self-excited DC power transmission equipment according to claim 8, wherein the added value is configured to be provided with the power control output from the power control means.
【請求項10】 交流から直流または直流から交流へ両
方向の電力変換が可能な2台の自励式変換器と、この2
台の変換器を接続する電力用コンデンサを含む直流回路
を備え、前記変換器の一方を電力制御し他方を電圧制御
する直流送電設備の制御装置において、 送電電力指令値、直流電圧指令値及び潮流方向指令値を
出力する運転指令装値と、 前記自励式変換器毎に、前記送電電力指令値とその実測
値の電力偏差に応じて送電電力を指令値通りに制御する
電力制御手段、前記直流電圧指令値とその実測値の電圧
偏差に基づいて前記直流回路の直流電圧を一定に制御す
る電圧制御手段及び前記潮流方向指令に応じて前記電力
制御手段または前記電圧制御手段の一方の出力を選択す
るスイッチ手段を有する単位制御装置と、を備えること
を特徴とする直流送電設備の制御装置。
10. Two self-excited converters capable of converting power from AC to DC or from DC to AC in both directions.
In a control device of a DC power transmission facility that includes a DC circuit including a power capacitor that connects converters of one unit, and controls the power of one of the converters and the voltage of the other, a transmission power command value, a DC voltage command value, and a power flow An operation command device that outputs a directional command value, and for each of the self-exciting converters, a power control unit that controls the transmitted power according to the command value according to the power deviation between the command value of the transmitted power and the measured value thereof, the direct current Voltage control means for controlling the DC voltage of the DC circuit to be constant based on the voltage deviation between the voltage command value and its measured value, and one output of the power control means or the voltage control means is selected according to the power flow direction command. And a unit control device having a switch means for controlling the direct current power transmission equipment.
【請求項11】 請求項10において、 前記潮流方向指令によって前記自励式変換器の一方を順
変換器、他方を逆変換器として運転している場合に、前
記単位制御装置のスイッチ手段は前記順変換器側では前
記電圧制御手段の出力を、前記逆変換器側では前記電力
制御手段の出力を選択するように構成されてなることを
特徴とする自励式直流送電設備の制御装置。
11. The switching means of the unit control device according to claim 10, wherein one of the self-exciting converters is operated as a forward converter and the other is operated as an inverse converter in response to the flow direction command. A control device for a self-excited DC power transmission facility, characterized in that the output of the voltage control means is selected on the converter side and the output of the power control means is selected on the inverse converter side.
【請求項12】 請求項10または11において、 前記電圧制御手段は、前記電圧偏差に応じた値と前記電
力指令値または前記電力偏差に応じた値とを加算する加
算手段を設けてなることを特徴とする自励式直流送電設
備の制御装置。
12. The voltage control means according to claim 10, further comprising an addition means for adding a value according to the voltage deviation and the power command value or a value according to the power deviation. A characteristic control device for self-excited DC power transmission equipment.
JP6119835A 1994-06-01 1994-06-01 Method and equipment for controlling self-excited dc transmission facility Pending JPH07336892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6119835A JPH07336892A (en) 1994-06-01 1994-06-01 Method and equipment for controlling self-excited dc transmission facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6119835A JPH07336892A (en) 1994-06-01 1994-06-01 Method and equipment for controlling self-excited dc transmission facility

Publications (1)

Publication Number Publication Date
JPH07336892A true JPH07336892A (en) 1995-12-22

Family

ID=14771440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6119835A Pending JPH07336892A (en) 1994-06-01 1994-06-01 Method and equipment for controlling self-excited dc transmission facility

Country Status (1)

Country Link
JP (1) JPH07336892A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224376A (en) * 1996-02-16 1997-08-26 Hitachi Ltd Power conversion method and power converter
JP2001028887A (en) * 1999-07-14 2001-01-30 Mitsubishi Electric Corp Power converter
JP2002034159A (en) * 2000-07-14 2002-01-31 Hitachi Ltd Method and device for controlling self-excited dc transmission system
JP2003032895A (en) * 2001-07-23 2003-01-31 Hitachi Ltd Method of measuring loss in tidal current controller, and its use
JP2003092832A (en) * 2001-09-19 2003-03-28 Hitachi Ltd Controller for self-excited converter for dc transmission
JP2010011677A (en) * 2008-06-30 2010-01-14 Toshiba Mitsubishi-Electric Industrial System Corp Power converting apparatus
JP2017143618A (en) * 2016-02-09 2017-08-17 株式会社東芝 Control system and control method for power conversion equipment
JP2019097260A (en) * 2017-11-20 2019-06-20 東芝三菱電機産業システム株式会社 Power conversion device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224376A (en) * 1996-02-16 1997-08-26 Hitachi Ltd Power conversion method and power converter
JP2001028887A (en) * 1999-07-14 2001-01-30 Mitsubishi Electric Corp Power converter
JP2002034159A (en) * 2000-07-14 2002-01-31 Hitachi Ltd Method and device for controlling self-excited dc transmission system
JP2003032895A (en) * 2001-07-23 2003-01-31 Hitachi Ltd Method of measuring loss in tidal current controller, and its use
JP2003092832A (en) * 2001-09-19 2003-03-28 Hitachi Ltd Controller for self-excited converter for dc transmission
JP2010011677A (en) * 2008-06-30 2010-01-14 Toshiba Mitsubishi-Electric Industrial System Corp Power converting apparatus
JP2017143618A (en) * 2016-02-09 2017-08-17 株式会社東芝 Control system and control method for power conversion equipment
JP2019097260A (en) * 2017-11-20 2019-06-20 東芝三菱電機産業システム株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
JP2635725B2 (en) Control device for system DC interconnection equipment
US6560130B2 (en) Control circuit for multiphase inverter apparatus
US4263517A (en) Control method and system for an high voltage direct current system
JPH07336892A (en) Method and equipment for controlling self-excited dc transmission facility
US5623192A (en) Apparatus for carrying out current control for variable speed driver and method for carrying out current control therefor
CA1279096C (en) Dc power transmission system
TWI274465B (en) Control method of voltage source inverter
JP3434746B2 (en) Control device for power converter
KR100294061B1 (en) How to control the power to be transmitted through the main inverter
JP2003037939A (en) Controller for dc power transmission system
CA1304779C (en) Power converter
JPH11318032A (en) Power supply system
US5627734A (en) Method and control arrangement for DC transmission, and a control device
JP3343711B2 (en) Static var compensator
CN110165919B (en) Combined three-phase inverter power supply suitable for multiple load forms
JP2003092832A (en) Controller for self-excited converter for dc transmission
JPH06261585A (en) Inverter device
JP3364588B2 (en) Control device for hybrid DC power transmission equipment
JP3312178B2 (en) Control device for self-excited inverter
JP2635660B2 (en) Control device for system DC interconnection equipment
JP2001028887A (en) Power converter
JPS5943913B2 (en) AC/DC converter operation control method
JP2771948B2 (en) Power converter control device
JPH0393487A (en) Control method and device for cycloconverter
JP2693685B2 (en) Torque control system