JP2003092832A - Controller for self-excited converter for dc transmission - Google Patents

Controller for self-excited converter for dc transmission

Info

Publication number
JP2003092832A
JP2003092832A JP2001284689A JP2001284689A JP2003092832A JP 2003092832 A JP2003092832 A JP 2003092832A JP 2001284689 A JP2001284689 A JP 2001284689A JP 2001284689 A JP2001284689 A JP 2001284689A JP 2003092832 A JP2003092832 A JP 2003092832A
Authority
JP
Japan
Prior art keywords
self
phase
converter
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001284689A
Other languages
Japanese (ja)
Other versions
JP4373040B2 (en
Inventor
Hiroo Konishi
博雄 小西
Chiyouei Takahashi
長衛 高橋
Hideto Kishibe
英人 岸部
Hiromichi Sato
博道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2001284689A priority Critical patent/JP4373040B2/en
Publication of JP2003092832A publication Critical patent/JP2003092832A/en
Application granted granted Critical
Publication of JP4373040B2 publication Critical patent/JP4373040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of low-order higher harmonics, with a control circuit for a self-excited converter for a DC transmission system. SOLUTION: In a DC transmission system, control circuits 110 and 120 for two self-excited converters 41 and 42 for converting AC into DC or vice versa are constituted of vector control systems for converting three-phase AC into the two-phase DC components of active components and reactive components, and they are connected with each other via a DC circuit. The system is equipped with AC current detection means 111 and 112 which detect the AC of the self-excited converter separately for each phase, a higher harmonic control signal making means 117 which detects higher harmonic components that the user wants to reduce from the detected current separately for each phase and multiplies the detection signal by gain separately for each phase, and an addition means which adds a higher harmonic control signal to higher harmonic signals Va, Vb, and Vc separately for each phase to serve as the original form of the AC output voltage waveform of the self-excited converter separately for each phase. This makes pulses by a pulse generating circuit 119, based on the added signal, and controls the self-excited converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は自励式変換器で構成
される直流送電システムの制御装置に係り、特に自励式
変換器から交流系統に流出する高調波、または交流系統
にもともと残存する高調波を低減するための高調波抑制
機能を備えた制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a DC power transmission system including a self-excited converter, and more particularly to a harmonic that flows from the self-excited converter to an AC system or a harmonic that originally remains in the AC system. The present invention relates to a control device having a harmonic suppression function for reducing the noise.

【0002】[0002]

【従来の技術】変換器を構成するスイッチング素子がI
GBT(Insulated Gate Turn−offBipolar Transisto
r)等の自己消弧素子で構成される自励式変換器は、そ
れ自身で流れる電流を遮断する能力を持っているので、
交流系統の影響を余り受けることなく有効電力と無効電
力が独立、かつ高速に制御できる。このため直流送電シ
ステムへの適用が検討されている。
2. Description of the Related Art A switching element forming a converter is I
GBT (Insulated Gate Turn-off Bipolar Transisto)
Since a self-excited converter composed of a self-extinguishing element such as r) has the ability to cut off the current flowing by itself,
Active power and reactive power can be controlled independently and at high speed without being affected by the AC system. Therefore, its application to a DC power transmission system is under consideration.

【0003】自励式変換器は自己消弧素子を用いた三相
ブリッジで構成され、一般に変換器の低次の発生高調波
を小さくするためにパルス数を多くして使用している。
しかし、パルス数を多くすると変換器のスイッチング損
失が増加して変換効率が悪くなる問題がある。一方、パ
ルス数を少なくすると低次の発生高調波が大きくなり、
交流フィルタ容量が大きくなるのでシステムコストが高
くなる問題がある。
The self-excited converter is composed of a three-phase bridge using a self-extinguishing element, and is generally used with a large number of pulses in order to reduce the low-order generated harmonics of the converter.
However, if the number of pulses is increased, there is a problem that the switching loss of the converter increases and the conversion efficiency deteriorates. On the other hand, when the number of pulses is reduced, the low-order generated harmonics increase,
Since the capacity of the AC filter becomes large, there is a problem that the system cost becomes high.

【0004】[0004]

【発明が解決しようとする課題】変換器の損失を少なく
するために、一台当たりの自励式変換器のパルス数を少
なくし、自励式変換器を多重接続して等価なパルス数を
大きくする方法が考えられている。これは出力電圧位相
の異なった自励式変換器を多重接続することにより、各
自励式変換器間で発生高調波を打ち消し、変換所全体と
しての高調波を低減する方法である。しかし、多重接続
するために変換用変圧器の移相をずらす必要があるた
め、変圧器の構造が複雑となり、自励式変換器のユニッ
ト数の増加に伴うコストアップや、制御・保護が複雑と
なりシステムの信頼性が低下すると言った問題がある。
In order to reduce the loss of the converter, the number of pulses of the self-excited converter per unit is decreased, and the number of pulses of the self-excited converter is multiple-connected to increase the equivalent number of pulses. A method is being considered. This is a method in which self-exciting converters having different output voltage phases are connected in a multiple manner to cancel harmonics generated between the self-exciting converters and reduce harmonics in the entire converter station. However, it is necessary to shift the phase shift of the conversion transformer in order to make multiple connections, which complicates the structure of the transformer, increases the cost associated with the increase in the number of self-excited converter units, and complicates control and protection. There is a problem that the reliability of the system decreases.

【0005】一方、交流電動機制御などに用いられる自
励式変換器では、負荷電流から検出された高調波成分に
基づいて自励式変換器の制御信号を補正するものが知ら
れている(たとえば、特開平11−225477号)。
しかし、直流送電用の自励式変換器の場合、このような
1軸制御では高速の制御ができないので、適用が困難で
ある。
On the other hand, as a self-exciting converter used for AC motor control or the like, there is known a self-exciting converter that corrects a control signal of the self-exciting converter based on a harmonic component detected from a load current (for example, a special feature). Kaihei 11-225477).
However, in the case of a self-exciting converter for DC power transmission, it is difficult to apply such a single-axis control because high-speed control cannot be performed.

【0006】本発明の目的は、従来技術の問題点に鑑
み、自励式変換器における低次高調波を抑制することに
よって、変換所の交流フィルタ容量を小さくできるよう
にした直流連系システムの自励式変換器の制御装置を提
供することにある。
In view of the problems of the prior art, an object of the present invention is to provide a direct current interconnection system which can reduce the AC filter capacity of a conversion station by suppressing low-order harmonics in a self-excited converter. It is to provide a control device for an excitable converter.

【0007】[0007]

【課題を解決するための手段】本発明は、2軸制御の自
励式変換器にアクティブフィルタ機能を持たせ、同じ自
励式変換器パルス数でも低次高調波の発生を抑制するこ
とによって、上記目的を達成するものである。
According to the present invention, a two-axis control self-exciting converter is provided with an active filter function to suppress the generation of low-order harmonics even with the same number of self-exciting converter pulses. It achieves the purpose.

【0008】すなわち、前記自励式変換器の制御装置は
三相交流を有効成分と無効成分の二相直流成分に変換す
るベクトル制御系で構成すると共に、前記自励式変換器
の交流側各相より検出した電流から、減らしたい高調波
成分を各相毎に検出して低次高調波の発生を抑制するア
クティブフィルタ機能を、前記制御装置の出力電圧指令
値を補正するように設けたことを特徴とする。
That is, the control device for the self-excited converter comprises a vector control system for converting a three-phase alternating current into a two-phase direct current component of an effective component and an ineffective component, From the detected current, the active filter function of detecting the harmonic component to be reduced for each phase and suppressing the generation of low-order harmonics is provided so as to correct the output voltage command value of the control device. And

【0009】より具体的には、交流を直流、及び直流を
交流に変換する二つの自励式変換器が直流回路を介して
互いに接続される直流送電用自励式変換器の制御装置に
おいて、前記自励式変換器の制御装置は三相交流を有効
成分と無効成分の二相直流成分に変換するベクトル制御
系で構成すると共に、前記自励式変換器の交流側電流を
各相毎に検出する交流電流検出器、その各相より検出し
た電流から減らしたい高調波成分を各相毎に検出し、そ
の検出信号を各相毎にゲイン倍する高調波抑制信号作成
回路、前記自励式変換器の交流出力電圧波形の原型とな
る各相毎の出力電圧指令値に前記高調波抑制信号作成回
路の出力信号を各相毎に加算する加算手段、及びこの加
算された信号を基にパルスを作成し前記自励式変換器を
制御するパルス発生回路を設けたことを特徴とする。
More specifically, in a control device of a self-excited converter for DC power transmission, two self-excited converters for converting alternating current to direct current and direct current to alternating current are connected to each other through a direct current circuit. The control device of the excitation converter is composed of a vector control system for converting three-phase alternating current into two-phase direct current components of an active component and an ineffective component, and an alternating current for detecting the alternating current of the self-excited converter for each phase. Detector, harmonic suppression signal creation circuit that detects the harmonic component that you want to reduce from the current detected from each phase for each phase and multiplies the detected signal by gain for each phase, AC output of the self-excited converter Adding means for adding the output signal of the harmonic suppression signal creating circuit for each phase to the output voltage command value for each phase which is the prototype of the voltage waveform, and a pulse is created based on the added signal Pulse generation to control the excitation transducer Characterized in that a circuit.

【0010】また、少なくとも前記自励式変換器の一方
側には上記の交流電流検出器に代えて、自励式変換器の
交流電流と負荷電流を含む交流系統側の電流を各相毎に
検出する第二の交流電流検出器を設け、これにより検出
された電流を各相毎に前記高調波抑制信号作成回路の高
調波検出手段に入力する構成としたことを特徴とする。
Further, instead of the above-mentioned AC current detector on at least one side of the self-excited converter, the AC system side current including the AC current and the load current of the self-excited converter is detected for each phase. A second alternating current detector is provided, and the current detected by this is input to the harmonic detecting means of the harmonic suppression signal generating circuit for each phase.

【0011】ここで、減らしたい高調波成分の前記高調
波検出手段は、交流電流に含まれる1つの次数の高調波
をバンドパスフィルタにより検出する方法、いくつかの
次数の高調波をバンドパスフィルタで検出する方法、基
本波を除くすべての高調波成分を検出する方法を含む。
Here, the harmonic detecting means for the harmonic component to be reduced is a method of detecting a harmonic of one order contained in an alternating current by a bandpass filter, and a harmonic of several orders is detected by a bandpass filter. And the method of detecting all harmonic components except the fundamental wave.

【0012】本発明によれば、直流送電用の自励式変換
器から発生する高調波、さらには負荷を含む交流系統に
残存する高調波を抑制することができる。
According to the present invention, it is possible to suppress harmonics generated from the self-exciting converter for DC power transmission, and further harmonics remaining in the AC system including the load.

【0013】[0013]

【発明の実施の形態】図1に、本発明の対象とする自励
式直流連系システムの構成例を示す。図の符号に従って
説明すると、1,2は交流系統、21,22は交流系統
の背後のインピーダンスを表すインピーダンス、31,
32は系統連系用の変換用変圧器、41,42は直流を
交流、または交流を直流に変換する自己消弧機能を持っ
たスイッチング素子を三相ブリッジ結線して構成される
電圧形の自励式変換器、51,52は直流電圧を平滑す
るための直流コンデンサ、60は直流送電線のインピー
ダンスを示す。この直流送電線は異周波連系システムや
非同期連系システムのBTB(Back−To−Back)シス
テムにはない。
1 shows an example of the configuration of a self-excited DC interconnection system to which the present invention is applied. Describing according to the reference numerals in the figure, 1 and 2 are alternating current systems, 21 and 22 are impedances representing the impedance behind the alternating current system, 31 and
Reference numeral 32 is a conversion transformer for system interconnection, and 41 and 42 are voltage type self-constituted switching elements having a self-extinguishing function for converting direct current to alternating current or alternating current to direct current. Excitation converters, 51 and 52 are DC capacitors for smoothing DC voltage, and 60 is impedance of DC transmission line. This DC transmission line does not exist in the BTB (Back-To-Back) system of the different frequency interconnection system or the asynchronous interconnection system.

【0014】71,72は自励式変換器から発生する高
次高調波を吸収させる交流フィルタ、100は直流連系
システムの運転を指令する運転指令回路、110は自励
式変換器41の制御回路、111は交流系統から自励式
変換器41に流れる電流を検出する交流電流検出器、1
12は自励式変換器41にかかる電圧を検出する交流電
圧検出器、113は検出された交流電流と交流電圧から
自励式変換器41に流れる有効電力と無効電力を計算
し、出力する有効・無効電力検出器、114は自励式変
換器の直流出力側の直流コンデンサで平滑された直流電
圧を検出する直流電圧検出器、120は自励式変換器4
2の制御回路、121は交流系統から自励式変換器42
に流れる電流を検出する交流電流検出器、122は自励
式変換器42にかかる電圧を検出する交流電圧検出器、
123は検出された交流電流と交流電圧から自励式変換
器42に流れる有効電力を無効電力を計算し出力する有
効・無効電力検出器、124は自励式変換器の直流出力
側の直流コンデンサで平滑された直流電圧を検出する直
流電圧検出器を示す。
Reference numerals 71 and 72 are AC filters for absorbing high-order harmonics generated from the self-excited converter, 100 is an operation command circuit for instructing the operation of the DC interconnection system, 110 is a control circuit for the self-excited converter 41, 111 is an alternating current detector for detecting the current flowing from the alternating current system to the self-excited converter 41, 1
12 is an AC voltage detector that detects the voltage applied to the self-excited converter 41, and 113 is an effective / invalid output that calculates and outputs active power and reactive power that flow to the self-excited converter 41 from the detected AC current and AC voltage. A power detector, 114 is a DC voltage detector for detecting a DC voltage smoothed by a DC capacitor on the DC output side of the self-exciting converter, and 120 is the self-exciting converter 4.
2 is a control circuit, 121 is an AC system to a self-exciting converter 42
AC current detector that detects the current flowing through the device, 122 is an AC voltage detector that detects the voltage applied to the self-exciting converter 42,
Reference numeral 123 is an active / reactive power detector that calculates and outputs active power that flows into the self-excited converter 42 from the detected AC current and AC voltage, and 124 is a DC capacitor on the DC output side of the self-excited converter. 3 shows a DC voltage detector that detects the generated DC voltage.

【0015】図2に、アクティブフィルタ機能を持つ自
励式変換器の制御装置の詳細回路を示す。一般に制御回
路は潮流反転を行うため、交流を直流に変換する順変換
器も、直流を交流に変換する逆変換器も同じ回路で構成
され、順変換器運転か、逆変換器運転かの運転状態に応
じて運転指令値を切り替えることによって、順変換器運
転と逆変換器運転の運転モードの切り替えを行う。この
ため、図1の自励式変換器41と42の制御回路110
及び120には、同一の制御回路が設けられている。
FIG. 2 shows a detailed circuit of a control device for a self-excited converter having an active filter function. In general, the control circuit performs power flow inversion, so the forward converter that converts alternating current to direct current and the inverse converter that converts direct current to alternating current are also configured with the same circuit, and operation of forward converter operation or inverse converter operation is performed. The operation mode is switched between the forward converter operation and the inverse converter operation by switching the operation command value according to the state. Therefore, the control circuit 110 of the self-excited converters 41 and 42 of FIG.
And 120 are provided with the same control circuit.

【0016】図2の符号に従って説明すると、115は
自励式変換器の出力電圧指令値(変調波)Va,Vb,
Vcを作成する出力電圧指令値作成回路、116は加算
回路、117は自励式変換器に流れる交流電流を検出す
る交流電流検出器111(121)を入力とし、各相毎
に交流電流に含まれる低減させたい高調波成分を検出す
るバンドパスフィルタを含む高調波抑制信号作成回路
で、この出力は加算回路116で自励式変換器の出力電
圧指令値に加算される。正確には出力電圧指令値に検出
された高調波成分を逆位相で加える、即ち引き算する。
Describing according to the reference numerals of FIG. 2, 115 is an output voltage command value (modulated wave) Va, Vb of the self-excited converter.
An output voltage command value creating circuit for creating Vc, 116 is an adding circuit, 117 is an AC current detector 111 (121) for detecting an AC current flowing in a self-exciting converter, and is included in the AC current for each phase. In the harmonic suppression signal generation circuit including a bandpass filter that detects the harmonic component to be reduced, this output is added to the output voltage command value of the self-excited converter by the addition circuit 116. To be exact, the detected harmonic component is added to the output voltage command value in the opposite phase, that is, subtracted.

【0017】119は加算回路の出力信号(自励式変換
器の新しい電圧指令値、すなわち新しい変調波)からP
WMパルスを作成するPWMパルス発生回路である。P
WMパルス発生回路のCARRは、新しい変調波と比較
することによってパルスを作ることになるキャリア周波
数、例えば三角波信号である。
Reference numeral 119 denotes P from the output signal of the adder circuit (new voltage command value of the self-excited converter, that is, new modulation wave).
It is a PWM pulse generation circuit that creates a WM pulse. P
The CARR of the WM pulse generation circuit is the carrier frequency, eg a triangular wave signal, that will produce a pulse by comparison with the new modulated wave.

【0018】このように、本実施例では高調波成分を低
減するアクティブフィルタを、出力電圧指令値作成回路
115の出力側、つまり制御回路110(120)の主
ループに設けているので、自励式変換器の発生する高調
波を確実に抑制することができる。
As described above, in this embodiment, since the active filter for reducing the harmonic component is provided on the output side of the output voltage command value generating circuit 115, that is, in the main loop of the control circuit 110 (120), it is self-excited. The harmonics generated by the converter can be surely suppressed.

【0019】図3に出力電圧指令値作成回路の詳細を示
す。自励式変換器の制御装置は高速制御が要求されるの
で、一般にdq変換により三相交流を有効成分と無効成
分の二相直流分に変換し、非干渉ベクトル制御系で構成
される。
FIG. 3 shows details of the output voltage command value generating circuit. Since the control device of the self-exciting converter requires high-speed control, it is generally configured by a non-interference vector control system by converting the three-phase AC into the two-phase DC component of the effective component and the ineffective component by dq conversion.

【0020】図3を符号に従って説明すると、出力電圧
指令値作成回路115は、有効成分制御回路と無効成分
制御回路から自励式変換器の三相出力電圧指令値(変調
波信号)Va、Vb、Vcを作成する。1150aは有
効電力指令値Ppと有効・無効電力検出回路の出力の一
つである有効電力検出値Pfとの偏差を求める第一の加
算回路、1150bはこの偏差を演算増幅する第一の演
算増幅回路で、1150aと1150bとで自励式変換
器の有効電力を指令値に制御する有効電力制御回路を構
成する。
Referring to FIG. 3 in accordance with the reference numerals, the output voltage command value generating circuit 115 includes a three-phase output voltage command value (modulated wave signal) Va, Vb of the self-excited converter from the effective component control circuit and the ineffective component control circuit. Create Vc. Reference numeral 1150a is a first adder circuit for obtaining a deviation between the active power command value Pp and the active power detection value Pf which is one of the outputs of the active / reactive power detection circuit. 1150b is a first operational amplification for operational amplification of this deviation. In the circuit, 1150a and 1150b constitute an active power control circuit that controls the active power of the self-excited converter to a command value.

【0021】1151aは直流送電システムの直流電圧
指令値Vdpと前記直流電圧検出器からの検出値Vdfとの
偏差を求める第二の加算回路、1151bはこの偏差を
演算増幅する第二の演算増幅回路で、1151aと11
51bとで自励式変換器の直流出力電圧を指令値の一定
値に制御する直流電圧制御回路を構成する。
Reference numeral 1151a is a second addition circuit for obtaining a deviation between the direct current voltage command value Vdp of the direct current transmission system and the detection value Vdf from the direct current voltage detector, and 1151b is a second operational amplifier circuit for performing operational amplification of this deviation. Then 1151a and 11
51b constitutes a DC voltage control circuit for controlling the DC output voltage of the self-excited converter to a constant command value.

【0022】1152は自励式変換器の有効電力制御を
行うか、直流電圧制御を行うかを選択する信号選択回路
で、一般に交流を直流に変換する順変換器側では直流送
電システムの直流電圧を指令値に制御する直流電圧制御
が選択され、直流を交流に変換する逆変換器側では負荷
に供給する電力を指令値に制御する有効電力制御回路が
選択される。従って、順変換器側では直流電圧制御回路
が信号選択回路1152で選択されるように直流電圧指
令値と有効電力指令値を与え、逆変換器側では有効電力
制御回路が選択されるように各々の指令値を与える。
Reference numeral 1152 is a signal selection circuit for selecting whether to perform active power control of the self-excited converter or DC voltage control. Generally, on the side of the forward converter that converts AC to DC, the DC voltage of the DC transmission system is changed. The DC voltage control for controlling to the command value is selected, and the active power control circuit for controlling the power supplied to the load to the command value is selected on the inverse converter side for converting DC to AC. Therefore, the DC voltage control circuit and the active power command value are given on the forward converter side so that the DC voltage control circuit is selected by the signal selection circuit 1152, and the active power control circuit is selected on the inverse converter side. Give the command value of.

【0023】なお、説明は省略するが、順変換器側で有
効電力制御を行わせ、逆変換器側で直流電圧制御を行わ
せて潮流送電システムを運転こともできる。また制御系
の構成として、直流電圧制御回路のリミッタとして有効
電力制御回路を構成することもでき、動作は変わらな
い。
Although not described, the forward power transmission system can be operated by performing active power control on the forward converter side and DC voltage control on the inverse converter side. Further, as the control system, the active power control circuit can be configured as a limiter of the DC voltage control circuit, and the operation does not change.

【0024】1153aは信号選択回路の選択された制
御回路の出力信号を有効電流指令値Idpとして、Idpと
交流電流検出器によって検出された三相交流電流検出値
を二相変換して得られた有効電流検出値Idfとの偏差を
求める第三の加算回路、1153bはこの偏差を演算増
幅する第三の演算増幅回路で、1153aと1153b
とで有効電流制御回路を構成する。
Reference numeral 1153a is obtained by converting the output signal of the control circuit selected by the signal selection circuit into the effective current command value Idp and converting the Idp and the three-phase alternating current detected value detected by the alternating current detector into two phases. A third adder circuit for obtaining a deviation from the active current detection value Idf, 1153b is a third operational amplifier circuit for carrying out operational amplification of this deviation, 1153a and 1153b.
And constitute an active current control circuit.

【0025】1154は有効電流制御回路の出力と交流
電圧検出器によって検出された三相交流電圧検出値を二
相変換して得られた有効電圧検出値Edfと無効電流検出
値Iqf、または無効電流指令値に変換用変圧器のインピ
ーダンスXtを掛けた信号を加算する第4の加算回路
で、1150aから1154の回路で有効分制御回路が
構成され、この加算回路の出力が有効分電圧指令値とな
る。無効電流検出値Iqfまたは無効電流指令値に変換用
変圧器のインピーダンスXtを掛けた信号を加算するこ
とによって、無効成分制御回路との非干渉制御を行って
いる。
Reference numeral 1154 denotes an active voltage detection value Edf and a reactive current detection value Iqf or a reactive current obtained by converting the output of the active current control circuit and the three-phase AC voltage detection value detected by the AC voltage detector into two phases. In the fourth adder circuit for adding the signal obtained by multiplying the command value by the impedance Xt of the conversion transformer, the effective component control circuit is configured by the circuits 1150a to 1154, and the output of this adder circuit is the effective component voltage command value. Become. Non-interference control with the reactive component control circuit is performed by adding a signal obtained by multiplying the reactive current detection value Iqf or the reactive current command value by the impedance Xt of the conversion transformer.

【0026】次に無効分制御回路を説明する。1155
aは無効電力指令値Qpと有効・無効電力検出回路の出
力の一つである無効電力検出値Qfとの偏差を求める第
五の加算回路、1155bはこの偏差を演算増幅する第
五の演算増幅回路で、1155aと1155bとで自励
式変換器の無効電力を指令値に制御する無効電力制御回
路を構成する。
Next, the invalidity control circuit will be described. 1155
a is a fifth addition circuit for obtaining a deviation between the reactive power command value Qp and the reactive power detection value Qf which is one of the outputs of the active / reactive power detection circuit, and 1155b is a fifth operational amplification for performing operational amplification of this deviation. In the circuit, 1155a and 1155b constitute a reactive power control circuit that controls the reactive power of the self-excited converter to a command value.

【0027】1156aは無効電力制御回路の出力信号
を無効電流指令値Iqpとして、Iqpと前記交流電流検出
器によって検出された三相交流電流検出値を二相変換し
て得られた無効電流検出値Iqfとの偏差を求める第六の
加算回路、1156bはこの偏差を演算増幅する第六の
演算増幅回路で、1156aと1156bとで無効電流
制御回路を構成する。
Reference numeral 1156a designates the output signal of the reactive power control circuit as the reactive current command value Iqp, and the reactive current detection value obtained by converting the Iqp and the three-phase alternating current detection value detected by the alternating current detector into two phases. A sixth adder circuit 1156b for obtaining a deviation from Iqf is a sixth operational amplifier circuit for carrying out operation amplification of this deviation, and 1156a and 1156b constitute a reactive current control circuit.

【0028】1157は無効電流制御回路の出力と交流
電圧検出器によって検出された三相交流電圧検出値を二
相変換して得られた無効電圧検出値Eqfと有効電流検出
値Idf、または有効電流指令値に変換用変圧器のインピ
ーダンスXtを掛けた信号を加算する第七の加算回路
で、1155aから1157の回路で無効分制御回路が
構成され、この加算回路の出力が無効分電圧指令値とな
る。
Reference numeral 1157 denotes a reactive voltage detection value Eqf and an active current detection value Idf obtained by converting the output of the reactive current control circuit and the three-phase AC voltage detection value detected by the AC voltage detector into two phases, or an active current. A seventh addition circuit that adds a signal obtained by multiplying the command value by the impedance Xt of the converting transformer, and a reactive component control circuit is configured by the circuits 1155a to 1157. The output of this addition circuit is the reactive component voltage command value. Become.

【0029】有効電流検出値Idfまたは有効電流指令値
に変換用変圧器のインピーダンスXtを掛けた信号を加
算することによって、有効成分制御回路との非干渉制御
を行っている。1158は有効分電圧指令値と無効分電
圧指令値を逆dq変換し、更に二相/三相変換すること
によって自励式変換器の三相出力電圧指令値(変調波信
号)Va、Vb、Vcが作られる。この信号に高調波抑
制信号作成回路117で作られた各相毎の高調波抑制信
号が加算されて新たな変調波が作られ、PWMパルス発
生回路119で自励式変換器の制御パルスPap,Pa
n,…Pcnが作られる。これらのパルスは自励式変換
器41、または42に導かれる。
Non-interference control with the active component control circuit is performed by adding a signal obtained by multiplying the active current detection value Idf or the active current command value by the impedance Xt of the conversion transformer. Reference numeral 1158 denotes a three-phase output voltage command value (modulation wave signal) Va, Vb, Vc of the self-excited converter by inverse dq converting the effective voltage command value and the reactive voltage command value and further performing two-phase / three-phase conversion. Is made. The harmonic suppression signal for each phase generated by the harmonic suppression signal generation circuit 117 is added to this signal to generate a new modulated wave, and the PWM pulse generation circuit 119 generates control pulses Pap, Pa for the self-excited converter.
n ... Pcn is created. These pulses are guided to the self-excited converter 41 or 42.

【0030】図4に、高調波抑制信号作成回路117の
具体的な例を示す。図4の回路は一相分を示し、同じ回
路が各相毎に備わっている。1170は交流電流検出器
の各相毎の交流電流検出値を入力とし、交流電流検出値
に含まれる高調波のうちで減らしたい次数の高調波を検
出するバンドパスフィルタである。検出された交流電流
に含まれる高調波成分はバンドパスフィルタに備わった
増幅器によって定数倍され、加算回路116に導かれて
変調波に逆位相で加算され、新しい変調波が作られる。
FIG. 4 shows a concrete example of the harmonic suppression signal generation circuit 117. The circuit of FIG. 4 shows one phase, and the same circuit is provided for each phase. Reference numeral 1170 denotes a bandpass filter that receives an AC current detection value for each phase of the AC current detector as an input and detects a harmonic of a desired order to be reduced among the harmonics included in the AC current detection value. A harmonic component included in the detected alternating current is multiplied by a constant by an amplifier provided in the bandpass filter, is guided to the adder circuit 116, and is added to the modulated wave in the opposite phase to create a new modulated wave.

【0031】この新しい変調波とキャリア信号(三角波)
とが比較されてPWMパルスが作られる。自励式変換器
ではこのPWMパルスにより、新しい変調波に基づいた
交流出力電圧波形が作られるので、出力電圧波形にはバ
ンドパスフィルタで検出された高調波が抑制された出力
電圧波形を得ることができる。当然のことであるが、減
らしたい交流電流の高調波次数はキャリア信号の周波数
の次数よりも低いことが必要である。
This new modulation wave and carrier signal (triangular wave)
And are compared to create a PWM pulse. In the self-excited converter, this PWM pulse creates an AC output voltage waveform based on a new modulation wave, so that an output voltage waveform in which the harmonics detected by the bandpass filter are suppressed can be obtained in the output voltage waveform. it can. As a matter of course, it is necessary that the harmonic order of the alternating current to be reduced is lower than the order of the frequency of the carrier signal.

【0032】本発明により直流送電システムの自励式変
換器にアクティブフィルタ機能を持たせることによっ
て、同じ自励式変換器パルス数でも低次高調波の発生を
少なくすることができるので、変換所の交流フィルタ容
量を小さくでき、変換所のコスト低減を図ることができ
る。
By providing the self-exciting converter of the DC transmission system with the active filter function according to the present invention, it is possible to reduce the generation of low-order harmonics even with the same number of pulses of the self-exciting converter. The filter capacity can be reduced, and the cost of the conversion station can be reduced.

【0033】図5に、高調波抑制信号作成回路の他の例
を示す。この高調波抑制信号作成回路は、減らしたい高
調波が幾つか有る場合の一相分を示し、同じ回路が各相
毎に備わっている。1174は減らしたい高調波の一つ
の高調波成分を交流電流から検出する第一のバンドパス
フィルタ、1175は第二のバンドパスフィルタ、11
7nは第n番目のバンドパスフィルタ、1176は検出
された高調波成分を加算する加算回路で、この出力が図
2の加算回路116に導かれて変調波に逆位相で加算さ
れ、新しい変調波が作られる。
FIG. 5 shows another example of the harmonic suppression signal generating circuit. This harmonic suppression signal generation circuit shows one phase when there are some harmonics to be reduced, and the same circuit is provided for each phase. Reference numeral 1174 is a first bandpass filter for detecting one harmonic component of a harmonic to be reduced from an alternating current, 1175 is a second bandpass filter, 11
7n is an n-th band pass filter, and 1176 is an adder circuit for adding the detected harmonic components. This output is guided to the adder circuit 116 of FIG. Is made.

【0034】この新しい変調波とキャリア信号(三角波)
とが比較されてPWMパルスが作られる。自励式変換器
ではこのPWMパルスにより、新しい変調波に基づいた
交流出力電圧波形が作られるので、出力電圧波形にはバ
ンドパスフィルタで検出された高調波が抑制された出力
電圧波形を得ることができる。
This new modulated wave and carrier signal (triangular wave)
And are compared to create a PWM pulse. In the self-excited converter, this PWM pulse creates an AC output voltage waveform based on a new modulation wave, so that an output voltage waveform in which the harmonics detected by the bandpass filter are suppressed can be obtained in the output voltage waveform. it can.

【0035】図6に、高調波抑制信号作成回路のさらに
他の例を示す。この高調波抑制信号作成回路は、基本波
を除くすべての高調波を抑制するための一相分を示し、
同じ回路が各相毎に備わっている。1171は基本波を
中心周波数とするバンドパスフィルタ、1172は交流
電流湯検出値から基本波のバンドパスフィルタの検出信
号を差し引く加算回路で、加算回路の出力信号には基本
波を除く交流電流に含まれる高調波成分が検出される。
この信号は定数掛け算回路1173でゲイン倍され、図
2の加算回路116に導かれる。
FIG. 6 shows still another example of the harmonic suppression signal generating circuit. This harmonic suppression signal generation circuit shows one phase for suppressing all harmonics except the fundamental wave,
The same circuit is provided for each phase. Reference numeral 1171 denotes a bandpass filter whose center frequency is the fundamental wave, and 1172 is an adder circuit for subtracting the detection signal of the fundamental wave bandpass filter from the detected value of the alternating current hot water, and the output signal of the addition circuit is an alternating current excluding the fundamental wave. The contained harmonic components are detected.
This signal is gain-multiplied by the constant multiplication circuit 1173 and is guided to the addition circuit 116 in FIG.

【0036】この高調波抑制信号作成回路117で作ら
れた高調波抑制信号は、変調波に逆位相で加算されて新
しい変調波となり、これとキャリア信号(三角波)とが比
較されてPWMパルスが作られる。自励式変換器ではこ
のPWMパルスにより、新しい変調波に基づいた交流出
力電圧波形が作られるので、出力電圧波形には検出され
た高調波が抑制された出力電圧波形を得ることができ
る。この場合、抑制できる交流電流の高調波次数はキャ
リア信号の周波数よりも低い高調波となる。
The harmonic suppression signal created by the harmonic suppression signal creation circuit 117 is added to the modulation wave in the opposite phase to form a new modulation wave, which is compared with the carrier signal (triangular wave) to generate a PWM pulse. Made In the self-excited converter, this PWM pulse creates an AC output voltage waveform based on a new modulation wave, so that an output voltage waveform in which detected harmonics are suppressed can be obtained in the output voltage waveform. In this case, the harmonic order of the alternating current that can be suppressed is a lower harmonic than the frequency of the carrier signal.

【0037】本発明の他の実施例を図7に示す。この実
施例では自励式直流送電システムの自励式変換器から発
生する高調波を減らすのみでなく、交流系統に残存す
る、及び近傍の負荷から発生する高調波をも自励式変換
器で抑制することができる。ここでは、負荷から発生す
る高調波を含めて抑制することを説明するために、自励
式変換器42の側に本発明を適用した例を示している。
もちろん相手端も同じ構成を取ることによって、交流系
統に残存する高調波を抑制できる。
Another embodiment of the present invention is shown in FIG. In this embodiment, not only the harmonics generated from the self-excited converter of the self-excited DC power transmission system are reduced, but also the harmonics remaining in the AC system and generated from nearby loads are suppressed by the self-excited converter. You can Here, an example in which the present invention is applied to the side of the self-excited converter 42 is shown in order to explain suppression of harmonics generated from the load.
Of course, if the other end also has the same configuration, the harmonics remaining in the AC system can be suppressed.

【0038】図7において、これまでと同じ符号のもの
は同じ機能を表しているので、異なった新しいものにつ
いて説明する。82は高調波の発生がある負荷、125
は負荷82や自励式変換器の接続された交流母線の系統
側の交流電流を検出する第二の交流電流検出器を示す。
In FIG. 7, the same reference numerals as those used so far represent the same functions, and therefore a different new one will be described. 82 is a load in which harmonics are generated, 125
Indicates a second AC current detector for detecting the AC current on the system side of the AC bus to which the load 82 and the self-excited converter are connected.

【0039】図8に制御回路を示す。118は高調波抑
制信号作成回路117と同様に構成され、第二の流電流
検出器の出力Iacを入力とする。高調波抑制信号作成回
路118の具体的な回路は図4から図6に示したものと
同様で良い。高調波抑制信号作成回路118で作られた
高調波抑制信号は、図2の制御回路出力115で作られ
た変調波に加算回路116を介して逆位相で加算されて
新しい変調波となり、PWMパルス発生回路119におい
てキャリア信号(三角波)と比較され、PWMパルスが
作られる。自励式変換器42ではこのPWMパルスによ
り、交流出力電圧波形が作られるので、検出された高調
波が抑制された出力電圧波形が出力される。
FIG. 8 shows the control circuit. Reference numeral 118 is configured similarly to the harmonic suppression signal generation circuit 117, and receives the output Iac of the second current detector as an input. The specific circuit of the harmonic suppression signal generation circuit 118 may be the same as that shown in FIGS. 4 to 6. The harmonic suppression signal created by the harmonic suppression signal creation circuit 118 is added in reverse phase to the modulated wave created by the control circuit output 115 of FIG. The generation circuit 119 compares the carrier signal (triangular wave) and generates a PWM pulse. In the self-exciting converter 42, an AC output voltage waveform is created by this PWM pulse, so an output voltage waveform in which the detected harmonics are suppressed is output.

【0040】これにより、自励式変換器から発生する高
調波、及び負荷を含む交流系統に残存する高調波を抑制
することができる。
As a result, the harmonics generated from the self-excited converter and the harmonics remaining in the AC system including the load can be suppressed.

【0041】[0041]

【発明の効果】本発明によれば、直流送電用自励式変換
器の制御装置にアクティブフィルタ機能を持たせること
によって、同じ自励式変換器パルス数でも低次高調波の
発生を抑制するので、変換所の交流フィルタ容量を小さ
くでき、変換所のコスト低減を図ることができる効果が
ある。
According to the present invention, since the control device of the self-exciting converter for DC power transmission has an active filter function, the generation of low-order harmonics is suppressed even with the same number of pulses of the self-exciting converter. The AC filter capacity of the conversion station can be reduced, and the cost of the conversion station can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による自励式変換器を備えた
自励式直流連系システムの構成図。
FIG. 1 is a configuration diagram of a self-excited DC interconnection system including a self-excited converter according to an embodiment of the present invention.

【図2】本発明の一実施例によるアクティブフィルタ機
能を持った自励式変換器の制御回路の構成図。
FIG. 2 is a configuration diagram of a control circuit of a self-excited converter having an active filter function according to an embodiment of the present invention.

【図3】自励式変換器の制御回路の詳細を示す構成図。FIG. 3 is a configuration diagram showing details of a control circuit of a self-excited converter.

【図4】高調波抑制信号作成回路の一実施例を示す構成
図。
FIG. 4 is a configuration diagram showing an embodiment of a harmonic wave suppression signal generation circuit.

【図5】高調波抑制信号作成回路の他の実施例を示す構
成図。
FIG. 5 is a configuration diagram showing another embodiment of a harmonic suppression signal generation circuit.

【図6】高調波抑制信号作成回路の更に他の実施例を示
す構成図。
FIG. 6 is a configuration diagram showing still another embodiment of a harmonic wave suppression signal generation circuit.

【図7】本発明の他の実施例による自励式変換器を備え
た自励式直流連系システムの構成図。
FIG. 7 is a configuration diagram of a self-excited DC interconnection system including a self-excited converter according to another embodiment of the present invention.

【図8】本発明の他の実施例によるアクティブフィルタ
機能を持った自励式変換器の制御回路の構成図。
FIG. 8 is a configuration diagram of a control circuit of a self-excited converter having an active filter function according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2…交流系統、21,22…交流系統の背後のイン
ピーダンス、31,32…連系用(変換用)変圧器、4
1,42…電圧形自励式変換器、51,52…直流コン
デンサ、60…直流送電線インピーダンス、71,72
…交流フィルタ、81…負荷、100…運転指令回路、
110…変換器41の制御回路、111…交流電流検出
器、112…交流電圧検出器、113…有効・無効電力
検出器、114…直流電圧検出器、120…変換器42
の制御回路、121…交流電流検出器、122…交流電
圧検出器、123…有効・無効電力検出器、124…直
流電圧検出器、125…交流電流検出器、115…出力
電圧指令値作成回路、116…加算回路、117,11
8…高調波抑制信号作成回路、119…PWMパルス発
生回路、1150a…第一の加算回路、1150b…第
一の演算増幅回路、1151a…第2の加算回路、11
51b…第二の演算増幅回路、1152…信号選択回
路、1153a…第三の加算回路、1153b…第三の
演算増幅回路、1154…第4の加算回路、1155a
…第五の加算回路、1155b…第五の演算回路、11
56a…第六の加算回路、1156b…第六の演算増幅
回路、1157…第七の加算回路、1158…二相/三
相変換回路、1170…バンドパスフィルタ、1171
…基本波のバンドパスフィルタ、1173…定数掛け算
回路、1174…第一のバンドパスフィルタ、1175
…第二のバンドパスフィルタ、117n…第n番目のバ
ンドパスフィルタ、1176…加算回路。
1, 2 ... AC system, 21, 22 ... Impedance behind AC system, 31, 32 ... Transformer for connection (conversion), 4
1, 42 ... Voltage type self-exciting converter, 51, 52 ... DC capacitor, 60 ... DC transmission line impedance, 71, 72
... AC filter, 81 ... Load, 100 ... Operation command circuit,
110 ... Control circuit of converter 41, 111 ... AC current detector, 112 ... AC voltage detector, 113 ... Active / reactive power detector, 114 ... DC voltage detector, 120 ... Converter 42
Control circuit, 121 ... AC current detector, 122 ... AC voltage detector, 123 ... Active / reactive power detector, 124 ... DC voltage detector, 125 ... AC current detector, 115 ... Output voltage command value creating circuit, 116 ... Adder circuits 117 and 11
8 ... Harmonic suppression signal generation circuit, 119 ... PWM pulse generation circuit, 1150a ... First addition circuit, 1150b ... First operational amplifier circuit, 1151a ... Second addition circuit, 11
51b ... Second operational amplifier circuit, 1152 ... Signal selection circuit, 1153a ... Third adder circuit, 1153b ... Third operational amplifier circuit, 1154 ... Fourth adder circuit, 1155a
... fifth addition circuit, 1155b ... fifth arithmetic circuit, 11
56a ... Sixth addition circuit, 1156b ... Sixth operational amplifier circuit, 1157 ... Seventh addition circuit, 1158 ... Two-phase / three-phase conversion circuit, 1170 ... Band pass filter, 1171
... fundamental wave band-pass filter, 1173 ... constant multiplication circuit, 1174 ... first band-pass filter, 1175
Second bandpass filter, 117n ... Nth bandpass filter, 1176 ... Adder circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 長衛 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社内 (72)発明者 岸部 英人 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社内 (72)発明者 佐藤 博道 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社内 Fターム(参考) 5G066 CA04 EA03 5H007 AA08 BB02 CA03 CC12 DA04 DA05 DB02 DC02 DC05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nagahashi Takahashi             2-2-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture             Tohoku Electric Power Co., Inc. (72) Inventor Hideto Kishibe             2-2-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture             Tohoku Electric Power Co., Inc. (72) Inventor Hiromichi Sato             2-2-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture             Tohoku Electric Power Co., Inc. F-term (reference) 5G066 CA04 EA03                 5H007 AA08 BB02 CA03 CC12 DA04                       DA05 DB02 DC02 DC05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 交流を直流、及び直流を交流に変換する
二つの自励式変換器が直流回路を介して互いに接続され
る直流送電用自励式変換器の制御装置において、 前記自励式変換器の制御装置は、三相交流を有効成分と
無効成分の二相直流成分に変換するベクトル制御系で構
成すると共に、前記自励式変換器の交流側各相より検出
した電流から、減らしたい高調波成分を各相毎に検出し
て低次高調波の発生を抑制するアクティブフィルタ機能
を、前記制御装置の出力電圧指令値を補正するように設
けたことを特徴とする直流送電用自励式変換器の制御装
置。
1. A controller of a self-excited converter for DC power transmission, wherein two self-excited converters for converting AC to DC and DC to AC are connected to each other via a DC circuit. The control device is composed of a vector control system that converts a three-phase alternating current into a two-phase direct current component of an effective component and an ineffective component, and from the current detected from each phase on the alternating current side of the self-exciting converter, a harmonic component to be reduced Of an active filter function for suppressing the generation of low-order harmonics by detecting for each phase, and is provided to correct the output voltage command value of the control device Control device.
【請求項2】 交流を直流、及び直流を交流に変換する
二つの自励式変換器が直流回路を介して互いに接続され
る直流送電用自励式変換器の制御装置において、 前記自励式変換器の制御装置は、三相交流を有効成分と
無効成分の二相直流成分に変換するベクトル制御系で構
成すると共に、前記自励式変換器の交流側電流を各相毎
に検出する交流電流検出器、その各相より検出した電流
から減らしたい高調波成分を各相毎に検出し、その検出
信号を各相毎にゲイン倍する高調波抑制信号作成回路、
前記自励式変換器の交流出力電圧波形の原型となる各相
毎の出力電圧指令値に前記高調波抑制信号作成回路の出
力信号を各相毎に加算する加算手段、この加算された信
号を基にパルスを作成し前記自励式変換器を制御するパ
ルス発生回路を設けたことを特徴とする直流送電用自励
式変換器の制御装置。
2. A controller of a self-excited converter for DC power transmission, wherein two self-excited converters for converting alternating current to direct current and to convert direct current to alternating current are connected to each other via a direct current circuit. The control device is composed of a vector control system for converting a three-phase alternating current into a two-phase direct current component of an effective component and an ineffective component, and an alternating current detector for detecting the alternating current of the self-excited converter for each phase, A harmonic suppression signal creation circuit that detects the harmonic component that you want to reduce from the current detected from each phase for each phase, and multiplies the detected signal by gain for each phase,
Adding means for adding the output signal of the harmonic suppression signal generating circuit for each phase to the output voltage command value for each phase which is the prototype of the AC output voltage waveform of the self-exciting converter, and based on the added signal A control device for a self-excited converter for DC power transmission, comprising a pulse generation circuit for generating a pulse to control the self-excited converter.
【請求項3】 交流を直流、及び直流を交流に変換する
二つの自励式変換器が直流回路を介して互いに接続され
る直流送電用自励式変換器の制御装置において、 前記自励式変換器の制御装置は、三相交流を有効成分と
無効成分の二相直流成分に変換するベクトル制御系で構
成すると共に、前記自励式変換器の交流側電流を各相毎
に検出する第一の交流電流検出器および/または自励式
変換器の交流側電流と負荷電流を含む交流系統側の電流
を各相毎に検出する第二の交流電流検出器、各相より検
出した電流から減らしたい高調波成分を各相毎に検出
し、その検出信号を各相毎にゲイン倍する高調波抑制信
号作成回路、前記自励式変換器の交流出力電圧波形の原
型となる各相毎の出力電圧指令値に前記高調波抑制信号
作成回路の出力信号を各相毎に加算する加算手段、及び
この加算された信号を基にパルスを作成し前記自励式変
換器を制御するパルス発生回路を設けたことを特徴とす
る直流送電用自励式変換器の制御装置。
3. A controller of a self-exciting converter for direct current transmission, wherein two self-exciting converters for converting alternating current to direct current and to convert direct current to alternating current are connected to each other via a direct current circuit. The control device is composed of a vector control system for converting a three-phase alternating current into a two-phase direct current component of an effective component and an ineffective component, and a first alternating current for detecting the alternating current of the self-excited converter for each phase. A second AC current detector that detects the current on the AC system side including the AC side current and load current of the detector and / or the self-exciting converter for each phase, and the harmonic component that you want to reduce from the current detected from each phase Is detected for each phase, a harmonic suppression signal creation circuit that multiplies the detected signal by gain for each phase, the output voltage command value for each phase that is the prototype of the AC output voltage waveform of the self-exciting converter Output signal of harmonic suppression signal generation circuit for each phase The addition means for adding, and the summed signal to create a pulse based on the self-commutated converter control apparatus of a DC power transmission self-commutated converter, characterized in that a pulse generating circuit for controlling.
【請求項4】 請求項3において、 一方の自励式変換器の側に前記第一の交流電流検出器、
他方の自励式変換器の側に前記第二の交流電流検出器を
設けることを特徴とする直流送電用自励式変換器の制御
装置。
4. The first alternating current detector according to claim 3, wherein one of the self-excited converters is provided with the first alternating current detector,
A controller for a self-excited converter for DC power transmission, characterized in that the second AC current detector is provided on the side of the other self-excited converter.
【請求項5】 請求項2、3または4において、 前記高調波抑制信号作成回路の高調波検出は、交流電流
に含まれる一つの高調波次数をバンドパスフィルタによ
り検出することを特徴とする直流送電用自励式変換器の
制御装置。
5. The direct current according to claim 2, 3 or 4, wherein in the harmonic detection of the harmonic suppression signal generating circuit, one harmonic order included in an alternating current is detected by a bandpass filter. Control device for self-exciting converter for power transmission.
【請求項6】 請求項2、3または4において、 前記高調波抑制信号作成回路の高調波検出は、交流電流
に含まれる幾つかの高調波次数を幾つかのバンドパスフ
ィルタにより検出して検出された信号を加算することを
特徴とする直流送電用自励式変換器の制御装置。
6. The harmonic detection of the harmonic suppression signal generation circuit according to claim 2, 3 or 4, wherein some harmonic orders included in an alternating current are detected by some bandpass filters. A control device for a self-exciting converter for DC power transmission, characterized in that the added signals are added.
【請求項7】 請求項2、3または4において、 前記高調波抑制信号作成回路の高調波検出は、交流電流
に含まれる基本波を除くすべての高調波成分を検出する
ことを特徴とする直流送電用自励式変換器の制御装置。
7. The DC according to claim 2, 3 or 4, wherein the harmonic detection of the harmonic suppression signal generating circuit detects all harmonic components except a fundamental wave included in an AC current. Control device for self-exciting converter for power transmission.
JP2001284689A 2001-09-19 2001-09-19 Control device for self-excited converter for DC power transmission Expired - Fee Related JP4373040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284689A JP4373040B2 (en) 2001-09-19 2001-09-19 Control device for self-excited converter for DC power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284689A JP4373040B2 (en) 2001-09-19 2001-09-19 Control device for self-excited converter for DC power transmission

Publications (2)

Publication Number Publication Date
JP2003092832A true JP2003092832A (en) 2003-03-28
JP4373040B2 JP4373040B2 (en) 2009-11-25

Family

ID=19107963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284689A Expired - Fee Related JP4373040B2 (en) 2001-09-19 2001-09-19 Control device for self-excited converter for DC power transmission

Country Status (1)

Country Link
JP (1) JP4373040B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507463A (en) * 2005-09-09 2009-02-19 シーメンス アクチエンゲゼルシヤフト Equipment for electrical energy transmission
JP2009507462A (en) * 2005-09-09 2009-02-19 シーメンス アクチエンゲゼルシヤフト Equipment for electrical energy transmission
JP2009507457A (en) * 2005-09-03 2009-02-19 ボッシュ レックスロート アクチエンゲゼルシャフト Active power supply filter
CN103050972A (en) * 2012-08-27 2013-04-17 山西合创电力科技有限公司 Micro power grid and large power grid high-voltage intelligent flexible transmission serial connection compensation device and control method thereof
KR20180032971A (en) * 2016-09-23 2018-04-02 한국전력공사 Apparatus and method for eliminating harmonics of hvdc system
WO2019092812A1 (en) * 2017-11-08 2019-05-16 株式会社東芝 Control device, control method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444552B2 (en) 2019-03-29 2022-09-13 Tohoku University Electric power converting device, and electricity generating system
JP2022125500A (en) 2021-02-17 2022-08-29 富士電機株式会社 power conversion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150931A (en) * 1980-04-23 1981-11-21 Mitsubishi Electric Corp Converter operating system
JPH07336892A (en) * 1994-06-01 1995-12-22 Hitachi Ltd Method and equipment for controlling self-excited dc transmission facility
JPH1132435A (en) * 1997-07-08 1999-02-02 Mitsubishi Electric Corp Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150931A (en) * 1980-04-23 1981-11-21 Mitsubishi Electric Corp Converter operating system
JPH07336892A (en) * 1994-06-01 1995-12-22 Hitachi Ltd Method and equipment for controlling self-excited dc transmission facility
JPH1132435A (en) * 1997-07-08 1999-02-02 Mitsubishi Electric Corp Power converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507457A (en) * 2005-09-03 2009-02-19 ボッシュ レックスロート アクチエンゲゼルシャフト Active power supply filter
JP2009507463A (en) * 2005-09-09 2009-02-19 シーメンス アクチエンゲゼルシヤフト Equipment for electrical energy transmission
JP2009507462A (en) * 2005-09-09 2009-02-19 シーメンス アクチエンゲゼルシヤフト Equipment for electrical energy transmission
CN103050972A (en) * 2012-08-27 2013-04-17 山西合创电力科技有限公司 Micro power grid and large power grid high-voltage intelligent flexible transmission serial connection compensation device and control method thereof
KR20180032971A (en) * 2016-09-23 2018-04-02 한국전력공사 Apparatus and method for eliminating harmonics of hvdc system
KR102563995B1 (en) * 2016-09-23 2023-08-07 한국전력공사 Apparatus and method for eliminating harmonics of hvdc system
WO2019092812A1 (en) * 2017-11-08 2019-05-16 株式会社東芝 Control device, control method, and program

Also Published As

Publication number Publication date
JP4373040B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
KR970005569B1 (en) Inverter control apparatus
KR100934311B1 (en) Inverter device
JPS6137864B2 (en)
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
JPH0834695B2 (en) Power conversion method, power conversion apparatus, and rolling system using the power conversion apparatus
JP2005033895A (en) Power converter
JP2003092832A (en) Controller for self-excited converter for dc transmission
JPH1141812A (en) Controller of power system self-excited converter
JP2888068B2 (en) Control method of parallel multiple inverter and device thereof
JPH09238472A (en) Pwm control equipment
US8629579B2 (en) Active switching ripple filter
JP2002010686A (en) Control unit for ac motor
JPH0681514B2 (en) Power converter and control method thereof
JP4479292B2 (en) AC / AC power converter controller
JP3233097B2 (en) Power converter and control method thereof
JP3296065B2 (en) Control circuit of PWM converter
JP3323759B2 (en) Pulse width modulation converter device
JP4247835B2 (en) Power converter
JP3923756B2 (en) Multiple connected self-excited converter controller.
JP3312178B2 (en) Control device for self-excited inverter
JPS5819169A (en) Controlling method for pwm control converter
JPH0375893B2 (en)
JPH10164845A (en) Pwm rectifier
JP3341047B2 (en) Multi-level power converter
RU2074494C1 (en) Stabilizer control method for three-phase sinusoidal voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4373040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees