WO2019092812A1 - Control device, control method, and program - Google Patents

Control device, control method, and program Download PDF

Info

Publication number
WO2019092812A1
WO2019092812A1 PCT/JP2017/040277 JP2017040277W WO2019092812A1 WO 2019092812 A1 WO2019092812 A1 WO 2019092812A1 JP 2017040277 W JP2017040277 W JP 2017040277W WO 2019092812 A1 WO2019092812 A1 WO 2019092812A1
Authority
WO
WIPO (PCT)
Prior art keywords
current target
target value
axis current
phases
self
Prior art date
Application number
PCT/JP2017/040277
Other languages
French (fr)
Japanese (ja)
Inventor
喜仁 木下
伸也 直井
崇裕 石黒
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2017/040277 priority Critical patent/WO2019092812A1/en
Priority to JP2019551808A priority patent/JP6977056B2/en
Publication of WO2019092812A1 publication Critical patent/WO2019092812A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • Embodiments of the present invention relate to a control device, a control method, and a program.
  • DC power transmission has advantages such as rapid power flow control and suitable for long distance power transmission and cable power transmission.
  • a power converter that converts power from direct current to alternating current or from alternating current to direct current is provided at both ends of the direct current link.
  • an alternating current voltage is output such that arbitrary alternating current power flows from the alternating current system.
  • This alternating voltage can be output arbitrarily.
  • the separately excited converter when converting power from alternating current to direct current, harmonic current causing voltage distortion is generated, or the separately excited converter consumes reactive power to lower the grid voltage. May be For this reason, when using a general separately excited converter, an AC filter for absorbing harmonic current and compensating reactive power is connected to the AC system. If the AC filter fails, voltage distortion of the AC system and voltage drop of the AC system may occur. When the separately excited converter is stopped, the AC filter may generate reactive power, whereby an overvoltage may occur in the AC system.
  • the voltage distortion component is extracted by applying a high-pass filter to a value obtained by applying dq coordinate conversion that converts the fundamental frequency component to a DC component to the voltage of the AC system, thereby extracting the voltage distortion component.
  • a first technique is known in which a value obtained by multiplying the component of the coefficient by a factor is used as a command value of the current controller.
  • the self-excited converter operates to flow harmonic currents that suppress voltage distortion, and can suppress voltage distortion of the grid.
  • a second technology includes two converters, adjusts the phase and outputs a voltage so as to cancel one of the voltage distortions, thereby mutually canceling the voltage distortions and suppressing the occurrence of the voltage distortions. ing.
  • control apparatus which can suppress the harmonic of a predetermined frequency band effectively using a self-excitation converter, and a control method.
  • the control device of the embodiment is a control device of a self-excitation converter connected to an AC system.
  • the control device has a filter operation unit, a coordinate conversion unit, and a converter control unit.
  • the filter operation unit sets the current target value for each of the three phases based on the voltage for each of the three phases of the AC system so as to realize a transfer function based on the RLC component of the AC filter capable of suppressing harmonics in a predetermined frequency band. calculate.
  • the coordinate conversion unit converts the current target values for each of the three phases calculated by the filter operation unit into a first d-axis current target value and a first q-axis current target value.
  • the converter control unit performs the self-excitation converter based on the second d-axis current target value based on the required power and the first d-axis current target value and the first q-axis current target value converted by the coordinate conversion unit. Control.
  • BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the power converter device 100 which concerns on 1st Embodiment. 5 is a flowchart showing an example of the flow of processing executed by a filter operation unit 142. 5 is a flowchart showing an example of the flow of processing executed by an in-accident reactive power output control unit 154 of the voltage compensation control unit 150;
  • FIG. 1 is a diagram showing a first application scene of the power conversion device 100 according to the first embodiment.
  • the power conversion device 100 including a self-excitation converter is connected to the bus 2 of the AC system 1 in parallel with the power conversion device 10 including a separately excited converter.
  • the separately excited converter is a converter that requires an AC voltage of an AC system when turning on / off current.
  • one or more AC filters 20-1, 20-2,..., 20-n are connected to the bus bar 2 (n is an arbitrary natural number). When it does not distinguish which AC filter is used, it is simply referred to as the AC filter 20.
  • the power conversion apparatus 100 After the operation is started in this state, for example, when the AC filter 20-2 fails, the power conversion apparatus 100 operates an active filter of a frequency band corresponding to the AC filter 20-2. Further, power conversion device 100 may perform voltage compensation control corresponding to AC filter 20-2. The function of the power conversion device 100 can be applied not only to the failure of the AC filter 20 but also to the case where the AC filter 20 is temporarily stopped for inspection or the like.
  • FIG. 2 is a diagram showing a second application scene of the power conversion device 100 according to the first embodiment.
  • the connection relationship is the same as that shown in FIG. In this scene, for example, it is determined that the AC filters 20-2 and 20-n are eliminated before the operation is started.
  • power conversion device 100 starts operation with active filters of frequency bands corresponding to AC filters 20-2 and 20-n. If one of the AC filters 20 breaks down after the start of operation, the power conversion apparatus 100 may activate an active filter of a frequency band corresponding to the broken AC filter 20 as in the first use scene.
  • FIG. 3 is a block diagram of the power conversion device 100 according to the first embodiment.
  • Power converter 100 includes a self-excited converter 110 and a controller 120 that controls self-excited converter 110.
  • the self-excited converter 110 mutually converts direct current and alternating current.
  • the AC side of the self-excited converter 110 is connected to the bus 2, and the DC side is connected to a DC system (not shown).
  • the self-excitation converter 110 is a converter using a self-arc-extinguishing element.
  • the self-excited converter 110 has a current interrupting capability, and can be operated regardless of the AC voltage on the AC system side.
  • a self arc-extinguishing element for example, an IGBT (Insulated Gate Bipolar Transistor) or an IEGT (Injection Enhanced Gate Transistor), which is a voltage drive self-arc-extinguishing element, is used.
  • Self-excitation converter 110 performs switching operation based on voltage command values Vcov_a, Vcov_b, and Vcov_c for each of the three phases input from control device 120 to convert direct current and alternating current mutually.
  • system voltages Va, Vb, and Vc for each of the three phases detected by the voltage detector 30 attached to the bus 2 are input to the control device 120.
  • the control device 120 includes, for example, a target value calculation unit 130, a filter unit 140, a voltage compensation control unit 150, and a converter control unit 160. These components are realized, for example, by execution of a program (software) by a hardware processor such as a central processing unit (CPU). In addition, some or all of these components may be hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), etc. Circuit (including circuitry) or may be realized by cooperation of software and hardware.
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • the target value calculation unit 130 calculates the d-axis current target value Idref based on the required power input from the higher-level device (not shown).
  • the d-axis is a virtual coordinate axis representing active power. Further, the q-axis described later is a virtual coordinate axis representing reactive power.
  • the d-axis current target value Idref is an example of a second d-axis current target value.
  • the filter unit 140 includes, for example, a filter operation unit 142, a coordinate conversion unit 144, and HPF (high pass filter) units 146d and 146q.
  • the filter operation unit 142 has a transfer function based on an RLC component of an AC filter capable of suppressing harmonics in a predetermined frequency band based on the grid voltages Va, Vb and Vc for each of the three phases input from the voltage detector 30. As realized, the current target value for each of the three phases is calculated.
  • the harmonic of the predetermined frequency band is, as described with reference to FIG. 1 or FIG. 2, a harmonic of a frequency band suppressed by the broken AC filter 20 or the ac filter 20 to be abolished.
  • the filter calculation unit 142 calculates the current target value for each of the three phases for the self-excitation converter 110 to substitute the function of the AC filter 20.
  • the AC filter 20 whose function is replaced by the self-excited converter 110 is referred to as a virtual filter.
  • the AC filter 20 is often an electric circuit in which a resistor R, an inductance L, and a capacitor C are connected in series (hereinafter, referred to as an RLC series circuit) or an electric circuit in which a plurality of RLC series circuits are connected in parallel.
  • RLC series circuit an electric circuit in which a resistor R, an inductance L, and a capacitor C are connected in series
  • the electric circuit equation of the virtual filter is the size of each of resistance R, inductance L and capacitor C (RLC component) It is represented by Formula (1) using.
  • the transfer function Fil all (s) of the entire virtual filter is expressed by equation (3).
  • Fil 1 (s), Fil 2 (s),... Fil n (s) represent transfer functions of respective RLC DC circuits connected in parallel in the virtual filter.
  • n is an arbitrary natural number, and n may be 1.
  • Filter calculation unit 142 by applying the time domain the inverse of the transfer function Fil all virtual filter (s), and calculates the higher harmonic current i flowing through the virtual filter (t) from the AC voltage V (t). By performing this for each of the three phases, the filter operation unit 142 calculates the current target values Iaf, Ibf, and Icf for each of the three phases based on the grid voltages Va, Vb, and Vc for each of the three phases.
  • the coordinate conversion unit 144 converts the current target values Iaf, Ibf and Icf for each of the three phases calculated by the filter operation unit 142 into a d-axis current target value Idf # and a q-axis current target value Iqf #.
  • the d-axis current target value Idf # is an example of a first d-axis current target value
  • the q-axis current target value Iqf # is an example of a first q-axis current target value.
  • the fundamental frequency component in the AC system is converted to a DC component.
  • the HPF unit 146 d removes low frequency components including direct current components from the d axis current target value Idf #.
  • the HPF unit 146 q removes low frequency components including direct current components from the q-axis current target value Iqf #. As a result, fundamental frequency components in the AC system are removed.
  • the HPF unit 146 d outputs the d-axis current target value Idref #, and the HPF unit 146 q outputs the q-axis current target value Iqref #.
  • These current target values are components for realizing the function of the virtual filter among the current target values of the self-excited converter 110.
  • the voltage compensation control unit 150 includes, for example, a constant voltage control unit 152, a reactive power output control unit 154 in case of an accident, and a constant reactive power control unit 156.
  • the constant voltage control unit 152 calculates the reactive power target value Qv_ref for maintaining the voltage of the AC system constant based on the system voltages Va, Vb and Vc for each of the three phases detected by the voltage detector 30. .
  • the in-accident reactive power output control unit 154 outputs a reactive power target value Qcon_ref for bringing the reactive power closer to a desired value more quickly than the constant voltage control unit 152 when the following predetermined conditions are satisfied.
  • (1) At the time of accident reactive power output control unit 154 selects one of current target values Iaf, Ibf and Icf for each of the three phases output from filter operation unit 142, an average value or an effective value or other statistical values, or Reactive power target value Qcon_ref when all are equal to or higher than the threshold value, and any of grid voltage Va, Vb and Vc, average value, effective value or other statistical value, or all falls below the first reference value
  • the effective value is a value obtained by finding the square of each sum of squares.
  • the first reference value is set based on, for example, a voltage drop that occurs when the AC filter 20 fails. Therefore, these conditions are satisfied, for example, when a failure occurs in the AC filter 20.
  • the system voltage can be raised to a desired value, and the influence of the failure of the AC filter 20 can be reduced.
  • reactive power output control unit 154 reduces any of grid voltage Va, Vb and Vc, average value, effective value and other statistical values or all or more to the second reference value or more, Also when the voltage recovers, the reactive power target value Qcon_ref is output.
  • the second reference value is set on the basis of the voltage drop at which the separately excited converter stops. For example, it is 1st standard value ⁇ 2nd standard value.
  • the term "recovered" means, for example, that the state before the reduction of the system voltage has been reached or expected to be reached after a predetermined time.
  • the reactive power target value Qref obtained by adding the reactive power target value Qv_ref output by the constant voltage control unit 152 and the reactive power target value Qcon_ref output by the reactive power output control unit 154 is a constant reactive power control unit It is input to 156.
  • Constant reactive power control unit 156 calculates and outputs q-axis current target value Iqref for bringing reactive power in bus 2 closer to reactive power target value Qref.
  • the constant voltage control unit 152 and the constant reactive power control unit 156 perform feedback control such as PID control, for example.
  • the d-axis current target value Idref output by the target value calculation unit 130 is added to the d-axis current target value Idref # output by the HPF unit 146 d, and is converted to the final d-axis current target value Id *.
  • Is input to The q-axis current target value Iqref # output by the HPF unit 146q is added to the q-axis current target value Iqref output by the constant reactive power control unit 156, and converted as a final q-axis current target value Iq *. It is input to 160.
  • Converter control unit 160 sets voltage command values Vcov_a, Vcov_b for each of three phases to be applied to self-exciting converter 110 based on input final d-axis current target value Id * and final q-axis current target value Iq *.
  • Vcov_c is calculated and output to the self-excited converter 110.
  • the filter operation unit 142 calculates Fil k (s) based on the RLC component of the virtual filter k that needs to be realized, and obtains Fil all (s).
  • FIG. 4 is a flowchart showing an example of the flow of processing executed by the filter operation unit 142.
  • the filter operation unit 142 determines whether an instruction to add a virtual filter has been received (step S100).
  • the instruction to add the virtual filter may be received via, for example, an input unit (mouse, keyboard, touch panel, etc.) (not shown) of the control device 120, or may be received from another device through communication.
  • the filter operation unit 142 acquires the transfer function of the virtual filter k related to the addition instruction (step S102).
  • k is a variable for identifying a virtual filter.
  • the filter operation unit 142 may obtain the transfer function of the virtual filter k by obtaining the RLC component of the virtual filter and performing the calculation of Equation (2), or directly obtaining the parameters of the transfer function. Alternatively, the information on the transfer function of the virtual filter k stored in advance in the storage device may be read out.
  • the filter operation unit 142 recalculates the transfer function Fil all (s) of the entire virtual filter by reflecting the transfer function of the virtual filter k acquired in step S102 (step S104). As a result of the recalculation, the transfer function Fil all (s) of the entire virtual filter reflects the transfer function of the virtual filters 1 to k (see equation (3)). The filter operation unit 142 increments the variable by 1 for the next calculation (step S106).
  • the filter operation unit 142 executes the filter operation using the transfer function Fil all (s) of the entire virtual filter (step S108). The filter operation unit 142 repeatedly executes such processing.
  • FIG. 5 is a flow chart showing an example of the flow of processing executed by the reactive power output control unit 154 in case of a fault of the voltage compensation control unit 150.
  • the in-accident reactive power output control unit 154 determines whether the first condition is satisfied (step S200).
  • the first condition is any one of the current target values Iaf, Ibf, and Icf for each of the three phases output by the filter operation unit 142, an average value, an effective value, or any other statistical value, or all of them. Is equal to or higher than the threshold value, and any of the system voltages Va, Vb, and Vc, the average value, the effective value or any other statistical value, or all is lowered by the first reference value or more. If it is determined that the first condition is satisfied, the reactive power output control unit 154 outputs the reactive power target value Qcon_ref (step S204).
  • the in-accident reactive power output control unit 154 determines whether the second condition is satisfied (step S202).
  • the second condition is that, as described above, any of the system voltages Va, Vb and Vc, the average value, the effective value and other statistical values, or all of them decrease by the second reference value or more, and then the system voltage Has recovered. Also in the case where it is determined that the second condition is satisfied, the in-accident reactive power output control unit 154 outputs the reactive power target value Qcon_ref (step S204).
  • a transfer function based on the RLC component of the AC filter capable of suppressing harmonics in a predetermined frequency band is realized to calculate the current target value for each of the three phases based on the voltage for each of the three phases of the AC system, and the calculated target current value for each of the three phases as the 1st d axis current target value and the 1 q axis current.
  • the self-excitation converter 110 can be used to effectively suppress harmonics in a predetermined frequency band.
  • one or more self-excited converters 110 are connected to a power system, and a power conversion device 10 including an externally excited converter and an AC filter 20 are connected to the power system. Applies to scenes that are not
  • FIG. 6 is a block diagram of a power conversion device 100A including a control device 120A according to the second embodiment.
  • the control device 120A has a configuration in which the voltage compensation control unit 150 is omitted from the control device 120 according to the first embodiment.
  • the value output by the HPF unit 146 q is input to the converter control unit 160 as the final q-axis current target value Iq *.
  • the filter operation unit 142A in the second embodiment performs the filter operation based on the RLC characteristic of the grid to which the self-excitation converter 110 is connected.
  • the filter operation unit 142A calculates the harmonic current i (t) flowing through the virtual filter from the AC voltage V (t) by applying the reciprocal of the transfer function Fil grid (s) of the virtual filter to the time domain. By performing this for each of the three phases, filter operation unit 142A calculates current target values Iaf, Ibf, and Icf for each of three phases based on grid voltages Va, Vb, and Vc for each of the three phases. Where m is the order of the harmonics.
  • the transfer function Fil grid (s) of the virtual filter is obtained as follows. First, impedance information of transmission lines, transformers and generators of the power system 1 is obtained, and an analysis model of the power system is constructed on the instantaneous value analysis software of the power system. At the connection point (grid) of the self-excitation converter of this model, the harmonic current in each order is injected and the generated harmonic voltage is calculated. The harmonic current, the harmonic voltage, and the impedance characteristic of the system have the relationship of the equation (4), and the transfer function Fil grid (s) of the virtual filter is calculated from the injected harmonic current and the generated harmonic voltage. Can.
  • control device 120A According to the control device 120A according to the second embodiment described above and the control method executed in this, the same effects as those of the first embodiment can be obtained.
  • the voltage compensation control unit 150 may be provided as in the first embodiment.
  • the reactive power output control unit 154 of the voltage compensation control unit 150 outputs the reactive power set in advance when the harmonic current of the specific order becomes equal to or higher than the threshold and the system voltage decreases. You may do so.
  • FIG. 7 is a diagram showing an example of a hardware configuration of the control device 120 or 120A (hereinafter, representatively referred to as control device 120) of each embodiment.
  • the control device 120 includes a communication controller 120-1, a CPU 120-2, a RAM (Random Access Memory) 120-3 used as a working memory, and a ROM (Read Only Memory) 120 for storing a boot program and the like. 4.
  • a storage device 120-5 such as a flash memory or a hard disk drive (HDD), a drive device 120-6, etc. are mutually connected by an internal bus or a dedicated communication line.
  • the communication controller 120-1 communicates with other devices.
  • the storage device 120-5 stores a program 120-5a executed by the CPU 120-2.
  • This program is expanded on the RAM 120-3 by a DMA (Direct Memory Access) controller (not shown) or the like and executed by the CPU 120-2. Thereby, a part or all of the target value calculation unit 130, the filter unit 140, the voltage compensation control unit 150, and the converter control unit 160 is realized.
  • DMA Direct Memory Access
  • a control device for a self-excited converter connected to an alternating current system comprising: A storage device for storing a program; And a hardware processor, The hardware processor executes the program to In order to realize a transfer function based on the RLC component of an AC filter capable of suppressing harmonics in a predetermined frequency band, current target values for each of the three phases are calculated based on voltages for each of the three phases of the AC system, Converting the current target values for each of the three phases calculated by the filter operation unit into a first d-axis current target value and a first q-axis current target value;
  • the self-excited converter is configured to be controlled based on a second d-axis current target value based on a required power, and a first d-axis current target value and a first q-axis current target value converted by the conversion unit. Yes, Control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)

Abstract

The control device according to an embodiment is a control device for a self-commutated converter connected to an AC system. The control device has a filter calculation unit, a coordinate transformation unit, and a converter control unit. The filter calculation unit calculates, on the basis of the voltage of each of the three phases of the AC system, a current target value for each of the three phases so as to obtain a transfer function based on the RLC components of an AC filter capable of suppressing the harmonics of a predetermined frequency band. The coordinate transformation unit transforms the current target value for each of the three phases calculated by the filter calculation unit to a first d-axis current target value and a first q-axis current target value. The converter control unit controls the self-commutated converter on the basis of a second d-axis current target value based on requested power and the first d-axis and q-axis current target values transformed by the coordinate transformation unit.

Description

制御装置、制御方法、およびプログラムControl device, control method, and program
 本発明の実施形態は、制御装置、制御方法、およびプログラムに関する。 Embodiments of the present invention relate to a control device, a control method, and a program.
 直流送電の導入が進められている。直流送電は、迅速な潮流制御が可能であり、長距離送電やケーブル送電に適しているなどの利点がある。直流送電において、直流リンクの両端には、直流から交流に、または交流から直流に電力を変換する電力変換装置が設けられる。 Introduction of DC power transmission is in progress. DC power transmission has advantages such as rapid power flow control and suitable for long distance power transmission and cable power transmission. In DC power transmission, a power converter that converts power from direct current to alternating current or from alternating current to direct current is provided at both ends of the direct current link.
 従来、直流送電に利用される電力変換装置には、スイッチング素子にサイリスタを適用した他励式変換器が多く用いられていた。近年では、制御性に優れること、設備の小型化が可能なことから自励式変換器の導入が進められている。 Conventionally, a separately excited converter in which a thyristor is applied to a switching element has often been used in a power conversion device used for DC power transmission. In recent years, the introduction of a self-excited converter has been promoted because of its excellent controllability and the possibility of downsizing of equipment.
 自励式変換器では、交流系統からの交流電力を直流電力に変換する際に、交流系統から任意の交流電力を流すような交流電圧を出力する。この交流電圧は任意に出力可能である。 In the self-excitation converter, when converting alternating current power from an alternating current system into direct current power, an alternating current voltage is output such that arbitrary alternating current power flows from the alternating current system. This alternating voltage can be output arbitrarily.
 一方、他励式変換器では、交流から直流へ電力を変換する際に、電圧歪みの原因となる高調波電流が発生したり、他励式変換器が無効電力を消費することで系統電圧が低下したりする場合がある。このため、一般的な他励式変換器を用いる際には、高調波電流を吸収し且つ無効電力を補償するための交流フィルタが、交流系統に接続される。交流フィルタが故障した場合、交流系統の電圧歪みと、交流系統の電圧低下が発生する可能性がある。他励式変換器が停止した場合、交流フィルタが無効電力を供給することにより交流系統に過電圧が発生する可能性がある。 On the other hand, in the separately excited converter, when converting power from alternating current to direct current, harmonic current causing voltage distortion is generated, or the separately excited converter consumes reactive power to lower the grid voltage. May be For this reason, when using a general separately excited converter, an AC filter for absorbing harmonic current and compensating reactive power is connected to the AC system. If the AC filter fails, voltage distortion of the AC system and voltage drop of the AC system may occur. When the separately excited converter is stopped, the AC filter may generate reactive power, whereby an overvoltage may occur in the AC system.
 これらに関連し、交流系統の電圧に対して、基本周波数の成分を直流成分に変換するdq座標変換を適用した値に、ハイパスフィルタを適用することで、電圧歪みの成分を抽出し、電圧歪みの成分に係数を乗算した値を電流制御器の指令値とする第1の技術が知られている。第1の技術では、自励式変換器は、電圧歪みを抑制する高調波電流を流すように動作し、系統の電圧歪を抑制することができる。 Related to these, the voltage distortion component is extracted by applying a high-pass filter to a value obtained by applying dq coordinate conversion that converts the fundamental frequency component to a DC component to the voltage of the AC system, thereby extracting the voltage distortion component. A first technique is known in which a value obtained by multiplying the component of the coefficient by a factor is used as a command value of the current controller. In the first technique, the self-excited converter operates to flow harmonic currents that suppress voltage distortion, and can suppress voltage distortion of the grid.
 二台の変換器を備え、一方の電圧歪みを打消すように位相を調整して電圧を出力することで、電圧歪みを互いに打消して電圧歪みの発生を抑制する第2の技術が知られている。 A second technology is known that includes two converters, adjusts the phase and outputs a voltage so as to cancel one of the voltage distortions, thereby mutually canceling the voltage distortions and suppressing the occurrence of the voltage distortions. ing.
 第1の技術では、全ての周波数帯の電圧歪みを対象として処理を行っているため、特定の周波数、或いは特定の次数の高調波を効果的に抑制することができない場合がある。第2の技術では、同一の電圧歪みを生じさせる電力変換装置が隣接している必要があり、適用場面が限定的である。 In the first technique, processing is performed on voltage distortions of all frequency bands, and therefore, it may not be possible to effectively suppress a specific frequency or a harmonic of a specific order. In the second technology, power conversion devices that generate the same voltage distortion need to be adjacent, and the application scene is limited.
特開2015-204684号公報JP, 2015-204684, A
 本発明が解決しようとする課題は、自励式変換器を用いて所定周波数帯の高調波を効果的に抑制することができる制御装置、および制御方法を提供することである。 Problem to be solved by the invention is providing the control apparatus which can suppress the harmonic of a predetermined frequency band effectively using a self-excitation converter, and a control method.
 実施形態の制御装置は、交流系統に接続される自励式変換器の制御装置である。制御装置は、フィルタ演算部と、座標変換部と、変換器制御部と、を持つ。フィルタ演算部は、所定周波数帯の高調波を抑制可能な交流フィルタのRLC成分に基づく伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出する。座標変換部は、前記フィルタ演算部により算出された前記三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換する。変換器制御部は、要求パワーに基づく第2d軸電流目標値と、前記座標変換部により変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、前記自励式変換器を制御する。 The control device of the embodiment is a control device of a self-excitation converter connected to an AC system. The control device has a filter operation unit, a coordinate conversion unit, and a converter control unit. The filter operation unit sets the current target value for each of the three phases based on the voltage for each of the three phases of the AC system so as to realize a transfer function based on the RLC component of the AC filter capable of suppressing harmonics in a predetermined frequency band. calculate. The coordinate conversion unit converts the current target values for each of the three phases calculated by the filter operation unit into a first d-axis current target value and a first q-axis current target value. The converter control unit performs the self-excitation converter based on the second d-axis current target value based on the required power and the first d-axis current target value and the first q-axis current target value converted by the coordinate conversion unit. Control.
第1の実施形態に係る電力変換装置100の第1の適用場面を示す図。The figure which shows the 1st application scene of the power converter device 100 which concerns on 1st Embodiment. 第1の実施形態に係る電力変換装置100の第2の適用場面を示す図。The figure which shows the 2nd application scene of the power converter device 100 which concerns on 1st Embodiment. 第1実施形態に係る電力変換装置100の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the power converter device 100 which concerns on 1st Embodiment. フィルタ演算部142により実行される処理の流れの一例を示すフローチャート。5 is a flowchart showing an example of the flow of processing executed by a filter operation unit 142. 電圧補償制御部150の事故時無効電力出力制御部154により実行される処理の流れの一例を示すフローチャート。5 is a flowchart showing an example of the flow of processing executed by an in-accident reactive power output control unit 154 of the voltage compensation control unit 150; 第2の実施形態に係る制御装置120Aを含む電力変換装置100Aの構成図。The block diagram of power converter 100A containing control device 120A concerning a 2nd embodiment. 各実施形態の制御装置120または120Aのハードウェア構成の一例を示す図。The figure which shows an example of the hardware constitutions of control apparatus 120 or 120A of each embodiment.
 以下、実施形態の制御装置、制御方法、およびプログラムを、図面を参照して説明する。図面において、三相それぞれの電力線を区別して示さず、単線で表現している。また、三相のそれぞれを符号a、b、およびcで表現する。 Hereinafter, a control device, a control method, and a program of the embodiment will be described with reference to the drawings. In the drawings, the power lines of the three phases are not shown separately but are represented by single lines. Also, each of the three phases is represented by the symbols a, b and c.
 (第1の実施形態)
 [適用場面]
 まず、図1および図2を参照し、制御装置を含む電力変換装置の適用場面について説明する。なお、図1および図2において、各電力変換装置の直流側について図示を省略している。図1は、第1の実施形態に係る電力変換装置100の第1の適用場面を示す図である。図示するように、自励式変換器を備える電力変換装置100は、他励式変換器を備える電力変換装置10と並列に、交流系統1の母線2に接続される。他励式変換器とは、電流をオンオフする際に交流系統の交流電圧を必要とする変換器である。母線2には、更に、一以上の交流フィルタ20-1、20-2、…、20-nが接続される(nは任意の自然数)。いずれの交流フィルタであるか区別しない場合、単に交流フィルタ20と称する。この状態で運用が開始された後、例えば、交流フィルタ20-2が故障した場合、電力変換装置100は、交流フィルタ20-2に対応する周波数帯のアクティブフィルタを作動させる。また、電力変換装置100は、交流フィルタ20-2に対応する電圧補償制御を行ってもよい。電力変換装置100の機能は、交流フィルタ20の故障時だけでなく、点検などで交流フィルタ20を一時停止させる場合にも適用できる。
First Embodiment
[Application scene]
First, with reference to FIG. 1 and FIG. 2, the application scene of the power converter device containing a control apparatus is demonstrated. In addition, in FIG. 1 and FIG. 2, illustration is abbreviate | omitted about the direct current | flow side of each power converter device. FIG. 1 is a diagram showing a first application scene of the power conversion device 100 according to the first embodiment. As illustrated, the power conversion device 100 including a self-excitation converter is connected to the bus 2 of the AC system 1 in parallel with the power conversion device 10 including a separately excited converter. The separately excited converter is a converter that requires an AC voltage of an AC system when turning on / off current. Further, one or more AC filters 20-1, 20-2,..., 20-n are connected to the bus bar 2 (n is an arbitrary natural number). When it does not distinguish which AC filter is used, it is simply referred to as the AC filter 20. After the operation is started in this state, for example, when the AC filter 20-2 fails, the power conversion apparatus 100 operates an active filter of a frequency band corresponding to the AC filter 20-2. Further, power conversion device 100 may perform voltage compensation control corresponding to AC filter 20-2. The function of the power conversion device 100 can be applied not only to the failure of the AC filter 20 but also to the case where the AC filter 20 is temporarily stopped for inspection or the like.
 図2は、第1の実施形態に係る電力変換装置100の第2の適用場面を示す図である。接続関係は図1に示すものと同様である。この場面では、運用が開始される前に、例えば、交流フィルタ20-2および20-nが廃止されることが決定されている。この場合、電力変換装置100は、交流フィルタ20-2および20-nに対応する周波数帯のアクティブフィルタを作動させた状態で運用を開始する。運用開始後にいずれかの交流フィルタ20が故障した場合、第1の使用場面と同様、電力変換装置100は、故障した交流フィルタ20に対応する周波数帯のアクティブフィルタを作動させてよい。 FIG. 2 is a diagram showing a second application scene of the power conversion device 100 according to the first embodiment. The connection relationship is the same as that shown in FIG. In this scene, for example, it is determined that the AC filters 20-2 and 20-n are eliminated before the operation is started. In this case, power conversion device 100 starts operation with active filters of frequency bands corresponding to AC filters 20-2 and 20-n. If one of the AC filters 20 breaks down after the start of operation, the power conversion apparatus 100 may activate an active filter of a frequency band corresponding to the broken AC filter 20 as in the first use scene.
 [構成]
 図3は、第1実施形態に係る電力変換装置100の構成図である。電力変換装置100は、自励式変換器110と、自励式変換器110を制御する制御装置120とを備える。
[Constitution]
FIG. 3 is a block diagram of the power conversion device 100 according to the first embodiment. Power converter 100 includes a self-excited converter 110 and a controller 120 that controls self-excited converter 110.
 自励式変換器110は、直流と交流を相互に変換する。自励式変換器110の交流側は母線2に接続され、直流側は図示しない直流系統に接続される。自励式変換器110は、自己消弧型素子を用いた変換器である。自励式変換器110は、電流遮断能力を持ち、交流系統側の交流電圧に拘わらず運転可能である。自己消弧型素子として、例えば、電圧駆動自己消弧型素子であるIGBT(Insulated Gate Bipolar Transistor)やIEGT(Injection Enhanced Gate Transistor)などが用いられる。自励式変換器110は、制御装置120から入力される三相ごとの電圧指令値Vcov_a、Vcov_b、およびVcov_cに基づいてスイッチング動作を行い、直流と交流を相互に変換する。 The self-excited converter 110 mutually converts direct current and alternating current. The AC side of the self-excited converter 110 is connected to the bus 2, and the DC side is connected to a DC system (not shown). The self-excitation converter 110 is a converter using a self-arc-extinguishing element. The self-excited converter 110 has a current interrupting capability, and can be operated regardless of the AC voltage on the AC system side. As a self arc-extinguishing element, for example, an IGBT (Insulated Gate Bipolar Transistor) or an IEGT (Injection Enhanced Gate Transistor), which is a voltage drive self-arc-extinguishing element, is used. Self-excitation converter 110 performs switching operation based on voltage command values Vcov_a, Vcov_b, and Vcov_c for each of the three phases input from control device 120 to convert direct current and alternating current mutually.
 制御装置120には、例えば、母線2に取り付けられた電圧検出器30により検出された三相ごとの系統電圧Va、Vb、およびVcが入力される。 For example, system voltages Va, Vb, and Vc for each of the three phases detected by the voltage detector 30 attached to the bus 2 are input to the control device 120.
 制御装置120は、例えば、目標値算出部130と、フィルタ部140と、電圧補償制御部150と、変換器制御部160とを備える。これらの構成要素は、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。 The control device 120 includes, for example, a target value calculation unit 130, a filter unit 140, a voltage compensation control unit 150, and a converter control unit 160. These components are realized, for example, by execution of a program (software) by a hardware processor such as a central processing unit (CPU). In addition, some or all of these components may be hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), etc. Circuit (including circuitry) or may be realized by cooperation of software and hardware.
 目標値算出部130は、上位装置(不図示)から入力される要求パワーに基づいて、d軸電流目標値Idrefを算出する。d軸とは、有効電力を表す仮想的な座標軸である。また、後述するq軸とは、無効電力を表す仮想的な座標軸である。d軸電流目標値Idrefは、第2d軸電流目標値の一例である。 The target value calculation unit 130 calculates the d-axis current target value Idref based on the required power input from the higher-level device (not shown). The d-axis is a virtual coordinate axis representing active power. Further, the q-axis described later is a virtual coordinate axis representing reactive power. The d-axis current target value Idref is an example of a second d-axis current target value.
 フィルタ部140は、例えば、フィルタ演算部142と、座標変換部144と、HPF(ハイパスフィルタ)部146dおよび146qとを備える。 The filter unit 140 includes, for example, a filter operation unit 142, a coordinate conversion unit 144, and HPF (high pass filter) units 146d and 146q.
 フィルタ演算部142は、電圧検出器30から入力される三相ごとの系統電圧Va、Vb、およびVcに基づいて、所定周波数帯の高調波を抑制可能な交流フィルタのRLC成分に基づく伝達関数を実現するように、三相ごとの電流目標値を算出する。所定周波数帯の高調波とは、図1または図2で説明したように、故障した交流フィルタ20、または廃止される交流フィルタ20が抑制していた周波数帯の高調波である。フィルタ演算部142は、自励式変換器110が、これらの交流フィルタ20の機能を代替するための、三相ごとの電流目標値を算出する。以下、自励式変換器110が機能を代替する交流フィルタ20を仮想フィルタと称する。 The filter operation unit 142 has a transfer function based on an RLC component of an AC filter capable of suppressing harmonics in a predetermined frequency band based on the grid voltages Va, Vb and Vc for each of the three phases input from the voltage detector 30. As realized, the current target value for each of the three phases is calculated. The harmonic of the predetermined frequency band is, as described with reference to FIG. 1 or FIG. 2, a harmonic of a frequency band suppressed by the broken AC filter 20 or the ac filter 20 to be abolished. The filter calculation unit 142 calculates the current target value for each of the three phases for the self-excitation converter 110 to substitute the function of the AC filter 20. Hereinafter, the AC filter 20 whose function is replaced by the self-excited converter 110 is referred to as a virtual filter.
 ここでは、三相のうち一つの相に着目して説明する。交流フィルタ20は、抵抗RとインダクタンスLとコンデンサCとを直列接続した電気回路(以下、RLC直列回路と称する)、或いは複数のRLC直列回路を並列に接続した電気回路であることが多い。そこで、仮想フィルタがRLC直列回路である(或いはこれに近似される回路である)と仮定すると、仮想フィルタの電気回路方程式は、抵抗RとインダクタンスLとコンデンサCのそれぞれの大きさ(RLC成分)を用いて、式(1)で表される。 Here, it demonstrates paying attention to one phase among three phases. The AC filter 20 is often an electric circuit in which a resistor R, an inductance L, and a capacitor C are connected in series (hereinafter, referred to as an RLC series circuit) or an electric circuit in which a plurality of RLC series circuits are connected in parallel. Then, assuming that the virtual filter is an RLC series circuit (or a circuit approximated to this), the electric circuit equation of the virtual filter is the size of each of resistance R, inductance L and capacitor C (RLC component) It is represented by Formula (1) using.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)を、ラプラス演算子sを用いてラプラス変換すると、式(2)で示すように、RLC直列回路と同様の特定をもつ伝達関数Fil(s)が得られる。すなわち、Fil(s)=(R+Ls+1/Cs)である。
Figure JPOXMLDOC01-appb-M000002
Laplace transform of Equation (1) using the Laplace operator s yields a transfer function Fil (s) having the same specification as the RLC serial circuit, as shown in Equation (2). That is, it is Fil (s) = (R + Ls + 1 / Cs).
Figure JPOXMLDOC01-appb-M000002
 更に、仮想フィルタが複数のRLC直列回路を並列に接続した回路であると仮定すると、仮想フィルタ全体の伝達関数Filall(s)は式(3)で表される。式中、Fil(s)、Fil(s)、…Fil(s)は、仮想フィルタにおいて並列に接続されるRLC直流回路のそれぞれの伝達関数を表す。nは任意の自然数であり、n=1であってもよい。 Furthermore, assuming that the virtual filter is a circuit in which a plurality of RLC series circuits are connected in parallel, the transfer function Fil all (s) of the entire virtual filter is expressed by equation (3). In the formula, Fil 1 (s), Fil 2 (s),... Fil n (s) represent transfer functions of respective RLC DC circuits connected in parallel in the virtual filter. n is an arbitrary natural number, and n may be 1.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 フィルタ演算部142は、仮想フィルタの伝達関数Filall(s)の逆数を時間領域に適用することで、交流電圧V(t)から仮想フィルタを流れる高調波電流i(t)を算出する。これを三相それぞれについて行うことで、フィルタ演算部142は、三相ごとの系統電圧Va、Vb、およびVcに基づいて、三相ごとの電流目標値Iaf、Ibf、およびIcfを算出する。 Filter calculation unit 142, by applying the time domain the inverse of the transfer function Fil all virtual filter (s), and calculates the higher harmonic current i flowing through the virtual filter (t) from the AC voltage V (t). By performing this for each of the three phases, the filter operation unit 142 calculates the current target values Iaf, Ibf, and Icf for each of the three phases based on the grid voltages Va, Vb, and Vc for each of the three phases.
 座標変換部144は、フィルタ演算部142により算出された三相ごとの電流目標値Iaf、Ibf、およびIcfを、d軸電流目標値Idf#およびq軸電流目標値Iqf#に変換する。座標変換部144の変換手法に特段の制約はなく、座標変換部144は、例えば公知の手法により上記の変換を行う。d軸電流目標値Idf#は、第1d軸電流目標値の一例であり、q軸電流目標値Iqf#は、第1q軸電流目標値の一例である。この過程で、交流系統における基本周波数成分は、直流成分に変換される。 The coordinate conversion unit 144 converts the current target values Iaf, Ibf and Icf for each of the three phases calculated by the filter operation unit 142 into a d-axis current target value Idf # and a q-axis current target value Iqf #. There is no particular limitation on the conversion method of the coordinate conversion unit 144, and the coordinate conversion unit 144 performs the above conversion by, for example, a known method. The d-axis current target value Idf # is an example of a first d-axis current target value, and the q-axis current target value Iqf # is an example of a first q-axis current target value. In this process, the fundamental frequency component in the AC system is converted to a DC component.
 HPF部146dは、d軸電流目標値Idf#から、直流成分を含む低周波成分を除去する。HPF部146qは、q軸電流目標値Iqf#から、直流成分を含む低周波成分を除去する。これらの結果、交流系統における基本周波数成分が除去される。HPF部146dは、d軸電流目標値Idref#を出力し、HPF部146qは、q軸電流目標値Iqref#を出力する。これらの電流目標値は、自励式変換器110の電流目標値のうち、仮想フィルタの機能を実現するための成分である。 The HPF unit 146 d removes low frequency components including direct current components from the d axis current target value Idf #. The HPF unit 146 q removes low frequency components including direct current components from the q-axis current target value Iqf #. As a result, fundamental frequency components in the AC system are removed. The HPF unit 146 d outputs the d-axis current target value Idref #, and the HPF unit 146 q outputs the q-axis current target value Iqref #. These current target values are components for realizing the function of the virtual filter among the current target values of the self-excited converter 110.
 電圧補償制御部150は、例えば、定電圧制御部152と、事故時無効電力出力制御部154と、定無効電力制御部156とを備える。 The voltage compensation control unit 150 includes, for example, a constant voltage control unit 152, a reactive power output control unit 154 in case of an accident, and a constant reactive power control unit 156.
 定電圧制御部152は、電圧検出器30により検出された三相ごとの系統電圧Va、Vb、およびVcに基づいて、交流系統の電圧を一定に維持するための無効電力目標値Qv_refを算出する。 The constant voltage control unit 152 calculates the reactive power target value Qv_ref for maintaining the voltage of the AC system constant based on the system voltages Va, Vb and Vc for each of the three phases detected by the voltage detector 30. .
 事故時無効電力出力制御部154は、以下のような所定の条件を満たす場合に、定電圧制御部152よりも速やかに無効電力を所望の値に近づけるための無効電力目標値Qcon_refを出力する。 The in-accident reactive power output control unit 154 outputs a reactive power target value Qcon_ref for bringing the reactive power closer to a desired value more quickly than the constant voltage control unit 152 when the following predetermined conditions are satisfied.
 (1)事故時無効電力出力制御部154は、フィルタ演算部142により出力される三相ごとの電流目標値Iaf、Ibf、およびIcfのうちいずれか、平均値または実効値その他の統計値、或いは全てが閾値以上であり、且つ、系統電圧Va、Vb、およびVcのうちいずれか、平均値または実効値その他の統計値、或いは全てが第1基準値以上低下した場合に、無効電力目標値Qcon_refを出力する。実効値とは、それぞれの二乗和の平方を求めた値である。第1基準値は、例えば、交流フィルタ20に故障が生じた場合に生じる電圧低下を基準として設定される。従って、これらの条件を満たすのは、例えば、交流フィルタ20に故障が生じた場合である。上記の制御の結果、系統電圧を所望の値まで上昇させ、交流フィルタ20の故障による影響を低減することができる。 (1) At the time of accident reactive power output control unit 154 selects one of current target values Iaf, Ibf and Icf for each of the three phases output from filter operation unit 142, an average value or an effective value or other statistical values, or Reactive power target value Qcon_ref when all are equal to or higher than the threshold value, and any of grid voltage Va, Vb and Vc, average value, effective value or other statistical value, or all falls below the first reference value Output The effective value is a value obtained by finding the square of each sum of squares. The first reference value is set based on, for example, a voltage drop that occurs when the AC filter 20 fails. Therefore, these conditions are satisfied, for example, when a failure occurs in the AC filter 20. As a result of the above control, the system voltage can be raised to a desired value, and the influence of the failure of the AC filter 20 can be reduced.
 (2)事故時無効電力出力制御部154は、系統電圧Va、Vb、およびVcのうちいずれか、平均値または実効値その他の統計値、或いは全てが第2基準値以上低下し、その後に系統電圧が回復した場合にも、無効電力目標値Qcon_refを出力する。第2基準値は、他励式変換器が停止してしまう電圧低下を基準として設定される。例えば、第1基準値<第2基準値である。「回復した」とは、例えば、系統電圧の低下前の状態まで到達した、或いは所定時間後に到達することが予想されることをいう。上記の制御の結果、停止した他励式変換器が消費していた無効電力を自励式変換器110により消費することができるため、系統電圧を所望の値まで低下させ、他励式変換器の停止による影響を低減することができる。 (2) At the time of accident reactive power output control unit 154 reduces any of grid voltage Va, Vb and Vc, average value, effective value and other statistical values or all or more to the second reference value or more, Also when the voltage recovers, the reactive power target value Qcon_ref is output. The second reference value is set on the basis of the voltage drop at which the separately excited converter stops. For example, it is 1st standard value <2nd standard value. The term "recovered" means, for example, that the state before the reduction of the system voltage has been reached or expected to be reached after a predetermined time. As a result of the above control, since the reactive power consumed by the stopped separately excited converter can be consumed by the self-excited converter 110, the system voltage is reduced to a desired value to stop the separately excited converter. The impact can be reduced.
 定電圧制御部152により出力される無効電力目標値Qv_refと、事故時無効電力出力制御部154により出力される無効電力目標値Qcon_refとが加算された無効電力目標値Qrefは、定無効電力制御部156に入力される。定無効電力制御部156は、母線2における無効電力を無効電力目標値Qrefに近づけるためのq軸電流目標値Iqrefを算出し、出力する。なお、定電圧制御部152や定無効電力制御部156は、例えば、PID制御などのフィードバック制御を行う。 The reactive power target value Qref obtained by adding the reactive power target value Qv_ref output by the constant voltage control unit 152 and the reactive power target value Qcon_ref output by the reactive power output control unit 154 is a constant reactive power control unit It is input to 156. Constant reactive power control unit 156 calculates and outputs q-axis current target value Iqref for bringing reactive power in bus 2 closer to reactive power target value Qref. The constant voltage control unit 152 and the constant reactive power control unit 156 perform feedback control such as PID control, for example.
 目標値算出部130により出力されるd軸電流目標値Idrefは、HPF部146dにより出力されるd軸電流目標値Idref#と加算されて、最終d軸電流目標値Id*として変換器制御部160に入力される。HPF部146qにより出力されるq軸電流目標値Iqref#は、定無効電力制御部156により出力されるq軸電流目標値Iqrefと加算されて、最終q軸電流目標値Iq*として変換器制御部160に入力される。変換器制御部160は、入力された最終d軸電流目標値Id*および最終q軸電流目標値Iq*に基づいて、自励式変換器110に与える三相ごとの電圧指令値Vcov_a、Vcov_b、およびVcov_cを計算し、自励式変換器110に出力する。 The d-axis current target value Idref output by the target value calculation unit 130 is added to the d-axis current target value Idref # output by the HPF unit 146 d, and is converted to the final d-axis current target value Id *. Is input to The q-axis current target value Iqref # output by the HPF unit 146q is added to the q-axis current target value Iqref output by the constant reactive power control unit 156, and converted as a final q-axis current target value Iq *. It is input to 160. Converter control unit 160 sets voltage command values Vcov_a, Vcov_b for each of three phases to be applied to self-exciting converter 110 based on input final d-axis current target value Id * and final q-axis current target value Iq *. Vcov_c is calculated and output to the self-excited converter 110.
 [処理フロー等]
 再度、フィルタ演算部142の機能について説明する。交流フィルタ20(仮想フィルタ)のRLC成分に関する情報は、予め制御装置120の記憶装置に記憶されている。フィルタ演算部142は、実現する必要がある仮想フィルタkのRLC成分に基づいてFil(s)を計算し、Filall(s)を求める。
[Processing flow etc.]
The function of the filter operation unit 142 will be described again. Information on the RLC component of the AC filter 20 (virtual filter) is stored in advance in the storage device of the control device 120. The filter operation unit 142 calculates Fil k (s) based on the RLC component of the virtual filter k that needs to be realized, and obtains Fil all (s).
 図4は、フィルタ演算部142により実行される処理の流れの一例を示すフローチャートである。まず、フィルタ演算部142は、仮想フィルタ追加の指示を受け付けたか否かを判定する(ステップS100)。仮想フィルタ追加の指示は、例えば、制御装置120の図示しない入力部(マウス、キーボード、タッチパネルなど)を介して受け付けられてもよいし、通信によって他装置から受け付けられてもよい。 FIG. 4 is a flowchart showing an example of the flow of processing executed by the filter operation unit 142. First, the filter operation unit 142 determines whether an instruction to add a virtual filter has been received (step S100). The instruction to add the virtual filter may be received via, for example, an input unit (mouse, keyboard, touch panel, etc.) (not shown) of the control device 120, or may be received from another device through communication.
 仮想フィルタ追加の指示が受け付けられた場合、フィルタ演算部142は、追加指示に係る仮想フィルタkの伝達関数を取得する(ステップS102)。kは、仮想フィルタを識別するための変数である。フィルタ演算部142は、仮想フィルタのRLC成分を取得して式(2)の計算を行うことで仮想フィルタkの伝達関数を取得してもよいし、伝達関数のパラメータを直接的に取得してもよいし、予め記憶装置に記憶されている仮想フィルタkの伝達関数の情報を読み出してもよい。 When an instruction to add a virtual filter is received, the filter operation unit 142 acquires the transfer function of the virtual filter k related to the addition instruction (step S102). k is a variable for identifying a virtual filter. The filter operation unit 142 may obtain the transfer function of the virtual filter k by obtaining the RLC component of the virtual filter and performing the calculation of Equation (2), or directly obtaining the parameters of the transfer function. Alternatively, the information on the transfer function of the virtual filter k stored in advance in the storage device may be read out.
 次に、フィルタ演算部142は、ステップS102で取得した仮想フィルタkの伝達関数を反映させて、仮想フィルタ全体の伝達関数Filall(s)を再計算する(ステップS104)。再計算の結果、仮想フィルタ全体の伝達関数Filall(s)は、仮想フィルタ1~kの伝達関数を反映したものとなる(式(3)参照)。フィルタ演算部142は、次回の計算のために変数を1インクリメントする(ステップS106)。 Next, the filter operation unit 142 recalculates the transfer function Fil all (s) of the entire virtual filter by reflecting the transfer function of the virtual filter k acquired in step S102 (step S104). As a result of the recalculation, the transfer function Fil all (s) of the entire virtual filter reflects the transfer function of the virtual filters 1 to k (see equation (3)). The filter operation unit 142 increments the variable by 1 for the next calculation (step S106).
 そして、フィルタ演算部142は、仮想フィルタ全体の伝達関数Filall(s)を用いてフィルタ演算を実行する(ステップS108)。フィルタ演算部142は、係る処理を繰り返し実行する。 Then, the filter operation unit 142 executes the filter operation using the transfer function Fil all (s) of the entire virtual filter (step S108). The filter operation unit 142 repeatedly executes such processing.
 図5は、電圧補償制御部150の事故時無効電力出力制御部154により実行される処理の流れの一例を示すフローチャートである。まず、事故時無効電力出力制御部154は、第1の条件を満たすか否かを判定する(ステップS200)。第1の条件とは、前述したように、フィルタ演算部142により出力される三相ごとの電流目標値Iaf、Ibf、およびIcfのうちいずれか、平均値または実効値その他の統計値、或いは全てが閾値以上であり、且つ、系統電圧Va、Vb、およびVcのうちいずれか、平均値または実効値その他の統計値、或いは全てが第1基準値以上低下したことである。第1の条件を満たすと判定した場合、事故時無効電力出力制御部154は、無効電力目標値Qcon_refを出力する(ステップS204)。 FIG. 5 is a flow chart showing an example of the flow of processing executed by the reactive power output control unit 154 in case of a fault of the voltage compensation control unit 150. First, the in-accident reactive power output control unit 154 determines whether the first condition is satisfied (step S200). As described above, the first condition is any one of the current target values Iaf, Ibf, and Icf for each of the three phases output by the filter operation unit 142, an average value, an effective value, or any other statistical value, or all of them. Is equal to or higher than the threshold value, and any of the system voltages Va, Vb, and Vc, the average value, the effective value or any other statistical value, or all is lowered by the first reference value or more. If it is determined that the first condition is satisfied, the reactive power output control unit 154 outputs the reactive power target value Qcon_ref (step S204).
 また、事故時無効電力出力制御部154は、第2の条件を満たすか否かを判定する(ステップS202)。第2の条件とは、前述したように、系統電圧Va、Vb、およびVcのうちいずれか、平均値または実効値その他の統計値、或いは全てが第2基準値以上低下し、その後に系統電圧が回復したことである。第2の条件を満たすと判定した場合も、事故時無効電力出力制御部154は、無効電力目標値Qcon_refを出力する(ステップS204)。 Further, the in-accident reactive power output control unit 154 determines whether the second condition is satisfied (step S202). The second condition is that, as described above, any of the system voltages Va, Vb and Vc, the average value, the effective value and other statistical values, or all of them decrease by the second reference value or more, and then the system voltage Has recovered. Also in the case where it is determined that the second condition is satisfied, the in-accident reactive power output control unit 154 outputs the reactive power target value Qcon_ref (step S204).
 以上説明した第1の実施形態に係る制御装置120、および、制御装置120によって実行される制御方法によれば、所定周波数帯の高調波を抑制可能な交流フィルタのRLC成分に基づく伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出し、算出された三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換し、要求パワーに基づく第2d軸電流目標値と、変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、自励式変換器110を制御することにより、自励式変換器110を用いて所定周波数帯の高調波を効果的に抑制することができる。 According to the control device 120 according to the first embodiment described above and the control method executed by the control device 120, a transfer function based on the RLC component of the AC filter capable of suppressing harmonics in a predetermined frequency band is realized To calculate the current target value for each of the three phases based on the voltage for each of the three phases of the AC system, and the calculated target current value for each of the three phases as the 1st d axis current target value and the 1 q axis current By converting to the target value and controlling the self-excited converter 110 based on the second d-axis current target value based on the required power and the converted first d-axis current target value and the first q-axis current target value, The self-excitation converter 110 can be used to effectively suppress harmonics in a predetermined frequency band.
 (第2の実施形態)
 以下、第2の実施形態について説明する。第2の実施形態に係る電力変換装置100Aは、一以上の自励式変換器110が電力系統に接続され、他励式変換器を含む電力変換装置10や交流フィルタ20が当該電力系統には接続されていない場面に適用される。
Second Embodiment
The second embodiment will be described below. In the power conversion device 100A according to the second embodiment, one or more self-excited converters 110 are connected to a power system, and a power conversion device 10 including an externally excited converter and an AC filter 20 are connected to the power system. Applies to scenes that are not
 図6は、第2の実施形態に係る制御装置120Aを含む電力変換装置100Aの構成図である。図示するように、制御装置120Aは、第1の実施形態に係る制御装置120から、電圧補償制御部150を省略した構成となっている。第2の実施形態において、HPF部146qが出力した値は、最終q軸電流目標値Iq*として変換器制御部160に入力される。 FIG. 6 is a block diagram of a power conversion device 100A including a control device 120A according to the second embodiment. As illustrated, the control device 120A has a configuration in which the voltage compensation control unit 150 is omitted from the control device 120 according to the first embodiment. In the second embodiment, the value output by the HPF unit 146 q is input to the converter control unit 160 as the final q-axis current target value Iq *.
 第2の実施形態におけるフィルタ演算部142Aは、自励式変換器110が接続されたグリッドのRLC特性に基づいて、フィルタ演算を行う。フィルタ演算部142Aは、仮想フィルタの伝達関数Filgrid(s)の逆数を時間領域に適用することで、交流電圧V(t)から仮想フィルタを流れる高調波電流i(t)を算出する。これを三相それぞれについて行うことで、フィルタ演算部142Aは、三相ごとの系統電圧Va、Vb、およびVcに基づいて、三相ごとの電流目標値Iaf、Ibf、およびIcfを算出する。式中、mは高調波の次数である。 The filter operation unit 142A in the second embodiment performs the filter operation based on the RLC characteristic of the grid to which the self-excitation converter 110 is connected. The filter operation unit 142A calculates the harmonic current i (t) flowing through the virtual filter from the AC voltage V (t) by applying the reciprocal of the transfer function Fil grid (s) of the virtual filter to the time domain. By performing this for each of the three phases, filter operation unit 142A calculates current target values Iaf, Ibf, and Icf for each of three phases based on grid voltages Va, Vb, and Vc for each of the three phases. Where m is the order of the harmonics.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、仮想フィルタの伝達関数Filgrid(s)は、以下のように求められる。まず、電力系統1の送電線や変圧器や発電機のインピーダンス情報を入手し、電力系統の瞬時値解析ソフト上に、電力系統の解析モデルを構築する。このモデルの自励式変換器の連系点(グリッド)で、各次数における高調波電流を注入して発生する高調波電圧を算出する。この高調波電流、高調波電圧と系統のインピーダンス特性には式(4)の関係があり、注入した高調波電流と発生した高調波電圧から仮想フィルタの伝達関数Filgrid(s)を算出することができる。 Here, the transfer function Fil grid (s) of the virtual filter is obtained as follows. First, impedance information of transmission lines, transformers and generators of the power system 1 is obtained, and an analysis model of the power system is constructed on the instantaneous value analysis software of the power system. At the connection point (grid) of the self-excitation converter of this model, the harmonic current in each order is injected and the generated harmonic voltage is calculated. The harmonic current, the harmonic voltage, and the impedance characteristic of the system have the relationship of the equation (4), and the transfer function Fil grid (s) of the virtual filter is calculated from the injected harmonic current and the generated harmonic voltage. Can.
 以上説明した第2の実施形態に係る制御装置120A、および、これにおいて実行される制御方法によれば、第1の実施形態と同様の効果を奏することができる。 According to the control device 120A according to the second embodiment described above and the control method executed in this, the same effects as those of the first embodiment can be obtained.
 なお、第2の実施形態においても、第1の実施形態と同様に電圧補償制御部150を設けてもよい。この場合、電圧補償制御部150の事故時無効電力出力制御部154は、特定の次数の高調波電流が閾値以上となり、且つ系統電圧が低下した場合には、予め設定された無効電力を出力するようにしてもよい。 Also in the second embodiment, the voltage compensation control unit 150 may be provided as in the first embodiment. In this case, the reactive power output control unit 154 of the voltage compensation control unit 150 outputs the reactive power set in advance when the harmonic current of the specific order becomes equal to or higher than the threshold and the system voltage decreases. You may do so.
 [ハードウェア構成]
 図7は、各実施形態の制御装置120または120A(以下、代表して制御装置120と称する)のハードウェア構成の一例を示す図である。図示するように、制御装置120は、通信コントローラ120-1、CPU120-2、ワーキングメモリとして使用されるRAM(Random Access Memory)120-3、ブートプログラムなどを格納するROM(Read Only Memory)120-4、フラッシュメモリやHDD(Hard Disk Drive)などの記憶装置120-5、ドライブ装置120-6などが、内部バスあるいは専用通信線によって相互に接続された構成となっている。通信コントローラ120-1は、他装置との通信を行う。記憶装置120-5には、CPU120-2が実行するプログラム120-5aが格納されている。このプログラムは、DMA(Direct Memory Access)コントローラ(不図示)などによってRAM120-3に展開されて、CPU120-2によって実行される。これによって、目標値算出部130、フィルタ部140、電圧補償制御部150、および変換器制御部160のうち一部または全部が実現される。
[Hardware configuration]
FIG. 7 is a diagram showing an example of a hardware configuration of the control device 120 or 120A (hereinafter, representatively referred to as control device 120) of each embodiment. As illustrated, the control device 120 includes a communication controller 120-1, a CPU 120-2, a RAM (Random Access Memory) 120-3 used as a working memory, and a ROM (Read Only Memory) 120 for storing a boot program and the like. 4. A storage device 120-5 such as a flash memory or a hard disk drive (HDD), a drive device 120-6, etc. are mutually connected by an internal bus or a dedicated communication line. The communication controller 120-1 communicates with other devices. The storage device 120-5 stores a program 120-5a executed by the CPU 120-2. This program is expanded on the RAM 120-3 by a DMA (Direct Memory Access) controller (not shown) or the like and executed by the CPU 120-2. Thereby, a part or all of the target value calculation unit 130, the filter unit 140, the voltage compensation control unit 150, and the converter control unit 160 is realized.
 上記実施形態は、以下のように表現することができる。
 交流系統に接続される自励式変換器の制御装置であって、
 プログラムを記憶する記憶装置と、
 ハードウェアプロセッサと、を備え、
 前記ハードウェアプロセッサは、前記プログラムを実行することにより、
 所定周波数帯の高調波を抑制可能な交流フィルタのRLC成分に基づく伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出し、
 前記フィルタ演算部により算出された前記三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換し、
 要求パワーに基づく第2d軸電流目標値と、前記変換部により変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、前記自励式変換器を制御するように構成されている、
 制御装置。
The above embodiment can be expressed as follows.
A control device for a self-excited converter connected to an alternating current system, the control device comprising:
A storage device for storing a program;
And a hardware processor,
The hardware processor executes the program to
In order to realize a transfer function based on the RLC component of an AC filter capable of suppressing harmonics in a predetermined frequency band, current target values for each of the three phases are calculated based on voltages for each of the three phases of the AC system,
Converting the current target values for each of the three phases calculated by the filter operation unit into a first d-axis current target value and a first q-axis current target value;
The self-excited converter is configured to be controlled based on a second d-axis current target value based on a required power, and a first d-axis current target value and a first q-axis current target value converted by the conversion unit. Yes,
Control device.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.

Claims (9)

  1.  交流系統に接続される自励式変換器の制御装置であって、
     所定周波数帯の高調波を抑制可能な交流フィルタのRLC成分に基づく伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出するフィルタ演算部と、
     前記フィルタ演算部により算出された前記三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換する座標変換部と、
     要求パワーに基づく第2d軸電流目標値と、前記座標変換部により変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、前記自励式変換器を制御する変換器制御部と、
     を備える制御装置。
    A control device for a self-excited converter connected to an alternating current system, the control device comprising:
    A filter operation unit that calculates current target values for each of three phases based on voltages for each of the three phases of the AC system so as to realize a transfer function based on the RLC component of the AC filter capable of suppressing harmonics in a predetermined frequency band When,
    A coordinate conversion unit for converting the current target values for each of the three phases calculated by the filter operation unit into a first d-axis current target value and a first q-axis current target value;
    A converter control unit that controls the self-excited converter based on the second d-axis current target value based on the required power and the first d-axis current target value and the first q-axis current target value converted by the coordinate conversion unit. When,
    Control device comprising:
  2.  所定の条件を満たす場合に、予め設定された無効電力を前記自励式変換器に出力させる電圧補償制御部を更に備える、
     請求項1記載の制御装置。
    And a voltage compensation control unit that causes the self-excitation converter to output a preset reactive power when a predetermined condition is satisfied.
    The control device according to claim 1.
  3.  前記所定の条件は、前記フィルタ演算部により算出された前記三相ごとの電流目標値のいずれか、平均値または実効値その他の統計値、或いは全てが閾値以上であり、且つ、前記三相ごとの系統電圧のうちいずれか、平均値または実効値その他の統計値、或いは全てが第1基準値以上低下したことである、
     請求項2記載の制御装置。
    The predetermined condition is any one of the current target values for each of the three phases calculated by the filter operation unit, an average value, an effective value, and other statistical values, or all of them are equal to or more than a threshold value. Of any of the system voltage, average value, effective value and other statistical values, or all that have fallen by more than the first reference value,
    The control device according to claim 2.
  4.  前記所定の条件は、前記フィルタ演算部により算出された前記三相ごとの電流目標値のいずれか、平均値または実効値その他の統計値、或いは全てが第2基準値以上低下し、その後に系統電圧が回復したことである、
     請求項2または3記載の制御装置。
    The predetermined condition is that any of the current target values for each of the three phases calculated by the filter operation unit, the average value, the effective value, and other statistical values, or all of them decrease by the second reference value or more. The voltage is restored,
    The control device according to claim 2 or 3.
  5.  交流系統に接続される自励式変換器の制御装置であって、
     電力系統に接続された機器のインピーダンスモデルを用いて作成された電力系統の解析モデルに対して、前記電力系統の所定次数の高調波を注入することで取得される前記電力系統の次数ごとの伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出するフィルタ演算部と、
     前記フィルタ演算部により算出された前記三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換する座標変換部と、
     要求パワーに基づく第2d軸電流目標値と、前記座標変換部により変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、前記自励式変換器を制御する変換器制御部と、
     を備える制御装置。
    A control device for a self-excited converter connected to an alternating current system, the control device comprising:
    Transmission of each order of the power system acquired by injecting harmonics of a predetermined order of the power system with respect to an analysis model of the power system created using an impedance model of a device connected to the power system A filter operation unit that calculates current target values for each of the three phases based on voltages for each of the three phases of the AC system so as to realize a function;
    A coordinate conversion unit for converting the current target values for each of the three phases calculated by the filter operation unit into a first d-axis current target value and a first q-axis current target value;
    A converter control unit that controls the self-excited converter based on the second d-axis current target value based on the required power and the first d-axis current target value and the first q-axis current target value converted by the coordinate conversion unit. When,
    Control device comprising:
  6.  交流系統に接続される自励式変換器の制御装置が、
     所定周波数帯の高調波を抑制可能な交流フィルタのRLC成分に基づく伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出し、
     前記算出された前記三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換し、
     要求パワーに基づく第2d軸電流目標値と、前記変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、前記自励式変換器を制御する、
     制御方法。
    The control device of the self-excited converter connected to the AC system is
    In order to realize a transfer function based on the RLC component of an AC filter capable of suppressing harmonics in a predetermined frequency band, current target values for each of the three phases are calculated based on voltages for each of the three phases of the AC system,
    Converting the calculated current target values for each of the three phases into a first d-axis current target value and a first q-axis current target value;
    Controlling the self-excited converter based on a second d-axis current target value based on a required power and the converted first d-axis current target value and first q-axis current target value;
    Control method.
  7.  交流系統に接続される自励式変換器の制御装置が、
     電力系統に接続された機器のインピーダンスモデルを用いて作成された電力系統の解析モデルに対して、前記電力系統の所定次数の高調波を注入することで取得される前記電力系統の次数ごとの伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出し、
     前記算出された前記三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換し、
     要求パワーに基づく第2d軸電流目標値と、前記変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、前記自励式変換器を制御する、
     制御方法。
    The control device of the self-excited converter connected to the AC system is
    Transmission of each order of the power system acquired by injecting harmonics of a predetermined order of the power system with respect to an analysis model of the power system created using an impedance model of a device connected to the power system In order to realize the function, the current target value for each of the three phases is calculated based on the voltage for each of the three phases of the AC system,
    Converting the calculated current target values for each of the three phases into a first d-axis current target value and a first q-axis current target value;
    Controlling the self-excited converter based on a second d-axis current target value based on a required power and the converted first d-axis current target value and first q-axis current target value;
    Control method.
  8.  交流系統に接続される自励式変換器の制御装置であるコンピュータに、
     所定周波数帯の高調波を抑制可能な交流フィルタのRLC成分に基づく伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出させ、
     前記算出させた前記三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換させ、
     要求パワーに基づく第2d軸電流目標値と、前記変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、前記自励式変換器を制御させる、
     プログラム。
    In a computer that is a control device of a self-excited converter connected to an AC system,
    In order to realize a transfer function based on an RLC component of an AC filter capable of suppressing harmonics in a predetermined frequency band, current target values for each of the three phases are calculated based on voltages for each of the three phases of the AC system,
    Converting the calculated current target values for each of the three phases into a first d-axis current target value and a first q-axis current target value,
    The self-excited converter is controlled based on a second d-axis current target value based on a required power and the converted first d-axis current target value and first q-axis current target value.
    program.
  9.  交流系統に接続される自励式変換器の制御装置であるコンピュータに、
     電力系統に接続された機器のインピーダンスモデルを用いて作成された電力系統の解析モデルに対して、前記電力系統の所定次数の高調波を注入することで取得される前記電力系統の次数ごとの伝達関数を実現するように、前記交流系統の三相ごとの電圧に基づいて三相ごとの電流目標値を算出させ、
     前記算出させた前記三相ごとの電流目標値を、第1d軸電流目標値および第1q軸電流目標値に変換させ、
     要求パワーに基づく第2d軸電流目標値と、前記変換された第1d軸電流目標値および第1q軸電流目標値とに基づいて、前記自励式変換器を制御させる、
     プログラム。
    In a computer that is a control device of a self-excited converter connected to an AC system,
    Transmission of each order of the power system acquired by injecting harmonics of a predetermined order of the power system with respect to an analysis model of the power system created using an impedance model of a device connected to the power system In order to realize the function, the current target value for each of the three phases is calculated based on the voltage for each of the three phases of the AC system,
    Converting the calculated current target values for each of the three phases into a first d-axis current target value and a first q-axis current target value,
    The self-excited converter is controlled based on a second d-axis current target value based on a required power and the converted first d-axis current target value and first q-axis current target value.
    program.
PCT/JP2017/040277 2017-11-08 2017-11-08 Control device, control method, and program WO2019092812A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/040277 WO2019092812A1 (en) 2017-11-08 2017-11-08 Control device, control method, and program
JP2019551808A JP6977056B2 (en) 2017-11-08 2017-11-08 Controls, control methods, and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040277 WO2019092812A1 (en) 2017-11-08 2017-11-08 Control device, control method, and program

Publications (1)

Publication Number Publication Date
WO2019092812A1 true WO2019092812A1 (en) 2019-05-16

Family

ID=66438786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040277 WO2019092812A1 (en) 2017-11-08 2017-11-08 Control device, control method, and program

Country Status (2)

Country Link
JP (1) JP6977056B2 (en)
WO (1) WO2019092812A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224332A (en) * 1996-02-15 1997-08-26 Shinko Electric Co Ltd Power converter
JPH1132435A (en) * 1997-07-08 1999-02-02 Mitsubishi Electric Corp Power converter
JP2003092832A (en) * 2001-09-19 2003-03-28 Hitachi Ltd Controller for self-excited converter for dc transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224332A (en) * 1996-02-15 1997-08-26 Shinko Electric Co Ltd Power converter
JPH1132435A (en) * 1997-07-08 1999-02-02 Mitsubishi Electric Corp Power converter
JP2003092832A (en) * 2001-09-19 2003-03-28 Hitachi Ltd Controller for self-excited converter for dc transmission

Also Published As

Publication number Publication date
JPWO2019092812A1 (en) 2020-04-02
JP6977056B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
EP2784925B1 (en) Power conversion device
JP5542609B2 (en) Reactive power compensator
JP5872494B2 (en) Power converter for vehicle
JP4760001B2 (en) Multiphase current supply circuit, driving device, compressor, and air conditioner
JP2008029151A (en) Inverter device
US9197139B2 (en) Rectifier charge rate controller
EP3007297B1 (en) Multilevel converter for reactive power compensation
Tang et al. Enhancement of voltage quality in a passive network supplied by a VSC-HVDC transmission under disturbances
Arikan et al. A new approach to limit fault current with series–parallel resonance strategy
Yang et al. Wideband dissipativity enhancement for grid-following VSC utilizing capacitor voltage feedforward
WO2019092812A1 (en) Control device, control method, and program
JP4324056B2 (en) Reactive power compensator
JP2017103973A (en) Voltage compensation device
JP5904883B2 (en) Transformer multiple power converter
JP2012075292A (en) Reactive power compensation device and method of controlling the same
KR102416374B1 (en) Apparatus for controlling dc link voltage in power cell of medium voltage inverter
KR101043891B1 (en) Method for controlling instantaneous power using l.p.f.
JP4320228B2 (en) Control device for self-excited converter
JP5551185B2 (en) Method of operating a converter circuit and apparatus for performing the method
Ouroua et al. Analysis of fault events in MVDC architecture
Wang et al. Reliability analysis of excitation control modes of a synchronous condenser during grid-integration at the speed-falling stage
JP6421150B2 (en) Test power supply
KR100532059B1 (en) Apparatus for generating voltage sag and swell
JP6747756B2 (en) Power conversion system
Eren et al. Arm cortex M4 microprocessors based±100 kVAR energy quality regulator for reactive power/neutral current compensation, load balancing and harmonic mitigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931299

Country of ref document: EP

Kind code of ref document: A1