JP3364588B2 - Control device for hybrid DC power transmission equipment - Google Patents

Control device for hybrid DC power transmission equipment

Info

Publication number
JP3364588B2
JP3364588B2 JP14054798A JP14054798A JP3364588B2 JP 3364588 B2 JP3364588 B2 JP 3364588B2 JP 14054798 A JP14054798 A JP 14054798A JP 14054798 A JP14054798 A JP 14054798A JP 3364588 B2 JP3364588 B2 JP 3364588B2
Authority
JP
Japan
Prior art keywords
voltage
value
excited converter
self
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14054798A
Other languages
Japanese (ja)
Other versions
JPH11332096A (en
Inventor
博雄 小西
敏之 林
清 竹中
昌洋 高崎
直樹 宜保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP14054798A priority Critical patent/JP3364588B2/en
Publication of JPH11332096A publication Critical patent/JPH11332096A/en
Application granted granted Critical
Publication of JP3364588B2 publication Critical patent/JP3364588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、交流を直流に変換
して送電し、負荷地において再び交流に変換する直流送
電設備の制御装置、特に、直流送電設備が他励式変換器
と自励式変換器を組合わせて構成されるハイブリッド式
直流送電設備の制御装置に係り、他励式変換器側におい
て交流系統事故が発生した時に運転継続を可能とする自
励式変換器の制御技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a DC power transmission facility that converts AC into DC for power transmission, and then converts the AC into AC again at a load place, and more particularly, the DC power transmission facility includes a separately excited converter and a self-excited converter. The present invention relates to a control device for a hybrid type DC power transmission facility configured by combining power converters, and relates to a control technology for a self-excited converter that enables continuous operation when an AC system accident occurs on the separately excited converter side.

【0002】[0002]

【従来の技術】交流系統の影響を受けることなく電力変
換が行え、進みから遅れまでの無効電力を任意にかつ高
速に制御できる自励式変換器を直流送電に適用するため
の開発が進められている。自励式変換器の適用形態を考
えると、適用メリットが活かせる逆変換器に自励式変換
器を使用し、順変換器には従来の他励式変換器を使用す
る他励式変換器と自励式変換器を組み合わせて構成され
るハイブリッド式直流送電システムが今後有望と考えら
れる。この場合、自励式変換器は主回路構成から直流回
路の電圧を一定に保つ定電圧制御運転とし、他励式変換
器は送電電力を指定の値に保つ定電流制御(定電力制
御)運転される。しかし、この運転方式をとった場合、
順変換器側の交流系統で事故が発生し、交流電圧が低下
して順変換器の直流電圧が定格値以上出せなくなると、
逆変換器側の直流電圧が順変換器側の電圧より高くなる
ので、順変換器から逆変換器に電流を流し込めなくな
り、直流送電が停止する。一方、直流電圧一定制御を行
っている逆変換器では順変換器からの電力の流入がなく
なるので、潮流電圧が低下しようとする。このため交流
側へ変換する電力を減らして直流電圧の低下を防止し、
直流電圧を一定に保つ動作をする。このように、順変換
器側の交流系統事故により直流送電が停止する場合があ
ることは、ハイブリッド式直流送電システムを実用化す
る上で障害となる。
2. Description of the Related Art A self-excited converter that can perform power conversion without being affected by an AC system and can control reactive power from advance to delay arbitrarily and at high speed is being developed for DC transmission. There is. Considering the application form of the self-excited converter, the self-excited converter is used for the inverse converter and the conventional separately-excited converter is used for the forward converter in order to take advantage of the application advantages. Hybrid type DC power transmission system, which is configured by combining devices, is considered promising in the future. In this case, the self-excited converter is operated by constant voltage control from the main circuit configuration to keep the voltage of the DC circuit constant, and the separately excited converter is operated by constant current control (constant power control) to keep the transmitted power at a specified value. . However, if this driving method is adopted,
If an accident occurs in the AC system on the forward converter side and the AC voltage drops and the DC voltage of the forward converter cannot exceed the rated value,
Since the DC voltage on the reverse converter side becomes higher than the voltage on the forward converter side, current cannot flow from the forward converter to the reverse converter, and DC power transmission stops. On the other hand, in the inverse converter performing the constant DC voltage control, the inflow of electric power from the forward converter is eliminated, so that the tidal current voltage tends to decrease. Therefore, the power converted to the AC side is reduced to prevent the DC voltage from dropping,
Operates to keep the DC voltage constant. As described above, the DC transmission may be stopped due to the AC system accident on the forward converter side, which is an obstacle to the practical application of the hybrid DC transmission system.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、他励
式変換器側の交流系統事故時にも停止することなく、直
流送電が行える自励式変換器と他励式変換器を組合わせ
て構成されるハイブリッド式直流送電設備の制御装置を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to combine a self-excited converter and a separately-excited converter capable of transmitting DC power without stopping even when an AC system accident occurs on the separately-excited converter side. Another object of the present invention is to provide a control device for hybrid type DC power transmission equipment.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、ハイブリッド式直流送電設備の制御装置において、
自励式変換器の制御装置は、直流送電線の電流が規定値
より小さくなったことを検出する第1の比較手段と、他
励式変換器の入力交流電圧が規定値以下になったことを
検出する第2の比較手段と、第1の比較手段の出力と第
2の比較手段の出力との論理積を出力するアンド手段
と、直流送電線の電流に基づいて自励式変換器の電圧設
定値を作成する設定値作成手段と、アンド手段の出力に
基づいて設定値作成手段の出力値または定格直流電圧設
定値の何れかを入力直流電圧設定値に選択する信号選択
手段とを有し、直流送電線に流れる電流が規定値以下に
なり、同時に他励式変換器の入力交流電圧が規定値以下
となったとき、自励式変換器の入力直流電圧設定値を定
格直流電圧設定値より低い電圧にする。また、ハイブリ
ッド式直流送電設備の制御装置において、自励式変換器
の制御装置は、直流送電線の電流が規定値より小さくな
ったことを検出する第1の比較手段と、他励式変換器の
入力交流電圧が規定値以下になったことを検出する第2
の比較手段と、第1の比較手段の出力と第2の比較手段
の出力との論理積を出力するアンド手段と、アンド手段
の出力に基づいて定格直流電圧設定値または該定格直流
電圧設定値より低い一定値の何れかを入力直流電圧設定
値に選択する信号選択手段とを有し、直流送電線に流れ
る電流が規定値以下になり、同時に他励式変換器の交流
電圧が規定値以下となったとき、自励式変換器の入力直
流電圧設定値を前記定格直流電圧設定値より低い一定値
に設定する。
In order to solve the above-mentioned problems, in a control device for hybrid type DC power transmission equipment,
The control device of the self-excited converter detects the first comparing means for detecting that the current of the DC transmission line is smaller than a specified value, and the input AC voltage of the separately excited converter is below a specified value. And a AND means for outputting a logical product of the output of the first comparing means and the output of the second comparing means, and the voltage set value of the self-excited converter based on the current of the DC transmission line. And a signal selecting means for selecting either the output value of the setting value creating means or the rated DC voltage setting value as the input DC voltage setting value based on the output of the AND means. When the current flowing through the transmission line falls below the specified value and at the same time the input AC voltage of the separately excited converter falls below the specified value, set the input DC voltage set value of the self-excited converter to a voltage lower than the rated DC voltage set value. To do. Further, in the control device for the hybrid type DC power transmission equipment, the control device for the self-excited converter includes a first comparison means for detecting that the current of the DC transmission line is smaller than a specified value, and an input for the separately excited converter. The second that detects that the AC voltage has dropped below a specified value
And the AND means for outputting the logical product of the output of the first comparing means and the output of the second comparing means, and the rated DC voltage set value or the rated DC voltage set value based on the output of the AND means. With a signal selecting means for selecting any one of the lower constant values as the input DC voltage set value, the current flowing in the DC transmission line becomes a specified value or less, and at the same time, the AC voltage of the separately excited converter is set to a specified value or less. Then, the input DC voltage set value of the self-excited converter is set to a constant value lower than the rated DC voltage set value.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明を適用した制御装置を
備えた他励式変換器と自励式変換器から構成されるハイ
ブリッド式直流送電設備の一実施形態を示す。図の番号
にしたがって説明すると、1は他励式変換器により構成
される順変換器、2は自励式変換器により構成される逆
変換器、11、21は交流系統、12、22は変換器の
つながる交流母線、13、23は遮断器、14、24は
変換用変圧器、15は直流電流を平滑するための直流リ
アクトル、25は直流コンデンサ、30aは直流送電線
本線、30bは帰路線を示す。周波数変換や非同期連系
の場合は送電線がない場合もある。16は他励式変換器
1の制御装置、17は他励式変換器1の交流系統側の電
圧を検出する交流電圧変成器であり、検出された出力を
V1で示す。18は順変換器側の直流電流を検出する第
1の直流電流変成器であり、検出された出力をIdで示
す。26は逆変換器の直流送電線側の電流を検出する第
2の直流電流変成器であり、検出された出力をIiで示
す。27は逆変換器の直流送電線の電圧を検出する直流
電圧変成器であり、検出された出力をVcで示す。28
は逆変換器の交流側の電圧を検出する交流電圧変成器で
あり、検出された出力をV2で示す。29は交流電流変
成器であり、検出された出力をI2で示す。207はP
Q検出器であり、交流電圧検出値V2と交流電流検出値
I2から計算された出力を有効電力P2、無効電力Q2
で示す。30は逆変換器である自励式変換器2の制御装
置を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a hybrid DC power transmission facility including a separately-excited converter and a self-excited converter provided with a control device to which the present invention is applied. Describing according to the numbers in the figure, 1 is a forward converter composed of a separately excited converter, 2 is an inverse converter composed of a self-excited converter, 11, 21 are AC systems, 12 and 22 are converters. Connected AC busbars, 13 and 23 are circuit breakers, 14 and 24 are conversion transformers, 15 is a DC reactor for smoothing DC current, 25 is a DC capacitor, 30a is a DC transmission line main line, and 30b is a return route. . In the case of frequency conversion or asynchronous interconnection, there may be no transmission line. Reference numeral 16 is a control device for the separately excited converter 1, and 17 is an AC voltage transformer for detecting the voltage of the separately excited converter 1 on the AC system side, and the detected output is indicated by V1. Reference numeral 18 denotes a first DC current transformer that detects a DC current on the forward converter side, and the detected output is indicated by Id. Reference numeral 26 is a second DC current transformer for detecting the current on the DC transmission line side of the inverse converter, and the detected output is indicated by Ii. A DC voltage transformer 27 detects the voltage of the DC transmission line of the inverse converter, and the detected output is indicated by Vc. 28
Is an AC voltage transformer that detects the voltage on the AC side of the inverse converter, and the detected output is indicated by V2. Reference numeral 29 is an AC current transformer, and the detected output is indicated by I2. 207 is P
The Q detector is an output calculated from the AC voltage detection value V2 and the AC current detection value I2 as active power P2 and reactive power Q2.
Indicate. Reference numeral 30 denotes a control device of the self-excited converter 2 which is an inverse converter.

【0006】次に、制御装置を説明する。101は電流
設定値Idpと直流電流検出値Idを入力として、Id
がIdpに等しくなるように他励式変換器1の直流出力
電圧を制御する定電流制御回路であり、一般には送電電
力指令値Ppを直流電圧Vdで割った値が電流設定値と
して与えられる。即ち、
Next, the control device will be described. 101 receives the current setting value Idp and the DC current detection value Id as inputs,
Is a constant current control circuit for controlling the DC output voltage of the separately excited converter 1 so as to be equal to Idp. Generally, a value obtained by dividing the transmission power command value Pp by the DC voltage Vd is given as the current setting value. That is,

【数式1】Idp=Pp/Vd 102は定電流制御回路101の出力に応じて位相制御
されたゲートパルスを出力する位相制御回路であり、ゲ
ートパルスは他励式変換器1に導かれる。200は直流
電流Iiを入力として直流電圧設定値Vpを作成する設
定値作成回路であり、詳細は後述する。201は直流電
圧設定値Vpと直流電圧検出値Vcを入力として、Vc
がVpに等しくなるように自励式変換器2の直流電圧を
制御する直流電圧制御回路、202は送電電力指令値P
pと、交流電圧検出値V2と交流電流検出値I2から計
算された有効電力P2を入力として、P2がPpに等し
くなるように自励式変換器2の直流電圧を制御する有効
電力制御回路、203は無効電力指令値Qpと、交流電
圧検出値V2と交流電流検出値I2から計算された無効
電力Q2を入力として、Q2がQpに等しくなるように
自励式変換器2の直流電圧を制御する無効電力制御回路
であり、この出力が無効分電流の指令値となる。204
は直流電圧制御回路201と有効電力制御回路のうちの
適切な出力を選択する信号選択回路であり、この出力が
有効分電流の指令値となる。205は検出された交流電
流I2を入力として有効分と無効分に分け、各々が有効
分電流指令値と無効分電流指令値に等しくなるように制
御される非干渉電流制御回路であり、この回路には非干
渉電流制御回路205の出力を2軸/3軸変換及び3相
信号への逆変換回路を含むものとする。206は非干渉
電流制御回路205の出力からPWMのオンオフゲート
パルスを作成するPWMパルス作成回路であり、作成さ
れたパルスは自励式変換器2に導かれる。
## EQU1 ## Idp = Pp / Vd 102 is a phase control circuit that outputs a gate pulse whose phase is controlled according to the output of the constant current control circuit 101, and the gate pulse is guided to the separately excited converter 1. Reference numeral 200 denotes a set value creation circuit that creates a DC voltage set value Vp by using the DC current Ii as an input, and the details will be described later. 201 receives the DC voltage set value Vp and the DC voltage detection value Vc as input, and
Is a DC voltage control circuit for controlling the DC voltage of the self-exciting converter 2 so that V becomes equal to Vp, 202 is a transmission power command value P
203. p, and the active power control circuit for controlling the DC voltage of the self-excited converter 2 so that P2 becomes equal to Pp by inputting the active power P2 calculated from the AC voltage detection value V2 and the AC current detection value I2. Is the reactive power command value Qp and the reactive power Q2 calculated from the AC voltage detection value V2 and the AC current detection value I2, and controls the DC voltage of the self-excited converter 2 so that Q2 becomes equal to Qp. This is a power control circuit, and this output becomes the command value of the reactive current. 204
Is a signal selection circuit that selects an appropriate output from the DC voltage control circuit 201 and the active power control circuit, and this output becomes the command value of the active component current. Reference numeral 205 denotes a non-interference current control circuit which receives the detected alternating current I2 as an input and divides it into an active component and a reactive component, and controls each to be equal to the active component current command value and the reactive component current command value. 2 includes a 2-axis / 3-axis conversion of the output of the non-interference current control circuit 205 and an inverse conversion circuit into a 3-phase signal. Reference numeral 206 denotes a PWM pulse creation circuit that creates a PWM on / off gate pulse from the output of the non-interference current control circuit 205, and the created pulse is guided to the self-excited converter 2.

【0007】図2に、設定値作成回路200の入出力特
性例を示す。この入出力特性は、逆変換器側の直流電流
Iiを入力として、
FIG. 2 shows an example of input / output characteristics of the set value generating circuit 200. This input / output characteristic has a direct current Ii on the inverse converter side as an input,

【数式2】 Ii<Ii2: Vp=Vp2(AVR2) Ii2<Ii<Ii1: Vp=F(Ii) Ii1<Ii: Vp=Vp1(AVR1) Ii3<Ii: 定電力制御(APR)特性 となっている。 ここに、F(Ii):Iiを変数とした関数を表す。[Formula 2] Ii <Ii2: Vp = Vp2 (AVR2) Ii2 <Ii <Ii1: Vp = F (Ii) Ii1 <Ii: Vp = Vp1 (AVR1) Ii3 <Ii: Constant power control (APR) characteristic Has become. Here, a function having F (Ii): Ii as a variable is shown.

【0008】図1の自励式変換器2の制御装置のブロッ
クの説明を続けると、210は自励式変換器2の直流コ
ンデンサ25の直流送電線側の直流電流を検出する第2
の直流電流変成器26の検出出力であるIiを入力とし
て、Iiの大きさが規定値以下となったとき”1”とな
り、その他は”0”の信号を出力する第1の比較回路、
211は他励式変換器1の交流系統の交流電圧変成器1
7の検出出力であるV1を入力として、V1の大きさが
規定値以下となったとき”1”となり、その他は”0”
の信号を出力する第2の比較回路、212はアンド回路
であり、第1の比較回路と第2の比較回路2つの出力が
共に”1”のときのみ”1”を出力し、その他のとき
は”0”を出力する。213はスイッチ回路であり、ア
ンド回路212の出力をスイッチングの入力条件とし、
該出力が”0”のとき、定格直流電圧設定値Vp1を選
択し、”1”のとき、設定値作成回路200を選択して
直流電圧制御回路201の設定値Vpとなる。
Continuing with the description of the block of the control device for the self-excited converter 2 in FIG. 1, reference numeral 210 is a second part for detecting the DC current on the DC transmission line side of the DC capacitor 25 of the self-excited converter 2.
The first comparison circuit which inputs "Ii" which is the detection output of the DC current transformer 26, outputs "1" when the magnitude of Ii is less than or equal to a specified value, and outputs "0" otherwise.
Reference numeral 211 denotes an AC voltage transformer 1 of the AC system of the separately excited converter 1.
When V1 which is the detection output of 7 is input, it becomes "1" when the magnitude of V1 becomes less than the specified value, and "0" otherwise.
Is an AND circuit, which outputs "1" only when both outputs of the first comparison circuit and the second comparison circuit are "1", and other times Outputs "0". A switch circuit 213 uses the output of the AND circuit 212 as an input condition for switching,
When the output is "0", the rated DC voltage set value Vp1 is selected, and when the output is "1", the set value creation circuit 200 is selected to become the set value Vp of the DC voltage control circuit 201.

【0009】今、他励式変換器1の交流系統で事故が発
生し、自励式変換器2の直流電圧よりも低くなったとす
ると、第2の比較回路211の出力が”1”となり、ま
た、直流電流が流れなくなるので、第1の比較回路の出
力が”1”となり、アンド回路の出力が”1”となる。
このため、スイッチ回路213は設定値作成回路200
の出力を出力する。設定値作成回路200では入力のI
iの大きさに応じて図2に示した特性に従った電圧設定
Vpが出力され、この値が直流電圧制御回路201の設
定値となり、直流コンデンサ電圧Vcが設定値Vpと等
しくなるようにフィードバック制御される。自励式変換
器2の電圧設定値が下げられ、直流電流が流れると、第
1の比較回路210の出力が”0”となり、アンド回路
212の出力が”0”となるので、スイッチ回路213
が切り替わることになる。このため、第1の比較回路2
10の”1”から”0”へのリセットは、交流電圧の回
復を表す第2の比較回路211のリセット時に設定時間
をもたせてリセットするのがよい。事故が除去され、交
流電圧が回復すると、第2の比較回路211の出力が”
0”となり、アンド回路の出力が設定時間の後”0”と
なるので、スイッチ回路213の出力が定格電圧設定値
Vp1に切り替わり、通常の定格運転に戻る。ここで、
図2のVp1は定格直流電圧設定値と同じ値としている
が、異なった値としてもIiとV1の値によりスイッチ
回路213により固定のVp1に切り替わるので、悪影
響は起こらない。また、図2中にAPR特性を示すが、
この特性は有効電力制御回路202により決まる直流電
圧−電流特性であり、設定値作成回路200に持たせる
べき特性ではない。
Now, if an accident occurs in the AC system of the separately excited converter 1 and the voltage becomes lower than the DC voltage of the self-excited converter 2, the output of the second comparison circuit 211 becomes "1", and Since no direct current flows, the output of the first comparison circuit becomes "1" and the output of the AND circuit becomes "1".
Therefore, the switch circuit 213 uses the set value generation circuit 200.
Output the output of. In the setting value generation circuit 200, the input I
The voltage setting Vp according to the characteristic shown in FIG. 2 is output according to the magnitude of i, and this value becomes the setting value of the DC voltage control circuit 201, and feedback is performed so that the DC capacitor voltage Vc becomes equal to the setting value Vp. Controlled. When the voltage set value of the self-excited converter 2 is lowered and a direct current flows, the output of the first comparison circuit 210 becomes "0" and the output of the AND circuit 212 becomes "0". Therefore, the switch circuit 213
Will be switched. Therefore, the first comparison circuit 2
The resetting of 10 from "1" to "0" is preferably performed with a set time when the second comparison circuit 211 representing the recovery of the AC voltage is reset. When the accident is removed and the AC voltage is restored, the output of the second comparison circuit 211 becomes "
Since the output of the AND circuit becomes "0" after the set time, the output of the switch circuit 213 switches to the rated voltage set value Vp1 and returns to the normal rated operation.
Although Vp1 in FIG. 2 is set to the same value as the rated DC voltage setting value, even if different values are set, the switch circuit 213 switches to a fixed Vp1 depending on the values of Ii and V1, so that no adverse effect occurs. In addition, the APR characteristics are shown in FIG.
This characteristic is a DC voltage-current characteristic determined by the active power control circuit 202, and is not a characteristic that the set value generation circuit 200 should have.

【0010】このときの順変換器と逆変換器を合わせた
2つの変換器の直流電流Idに対する直流電圧Vd特性
を図3に示す。通常運転時、逆変換器(自励式変換器
2:INV)は定電圧制御AVR1の制御にあり、順変
換器(他励式変換器1:REC)は定電流制御にあり、
実線に示す。各変換器の動作は2つの曲線の交点oにあ
る。 順変換器側の交流系統で事故が発生し、交流電圧
が低下すると、RECの制御は細線に示すように最小制
御角運転となり、逆変換器は破線に示すように図2の特
性に切り替わる。このときの各変換器の動作点はo’と
なる。即ち、他励式変換器側の直流電圧が逆変換器側の
電圧より小さくなっても、直流電流Iiに応じて自励式
変換器2の直流電圧が下げられるので、従来のように直
流電流が流れなくなって送電が停止することはなく、運
転を継続して行うことができる。
FIG. 3 shows the DC voltage Vd characteristics with respect to the DC current Id of the two converters including the forward converter and the inverse converter at this time. During normal operation, the inverse converter (self-excited converter 2: INV) is under the control of the constant voltage control AVR1, and the forward converter (separately excited converter 1: REC) is under the constant current control,
Shown by the solid line. The operation of each transducer is at the intersection o of the two curves. When an accident occurs in the AC system on the forward converter side and the AC voltage drops, the control of REC becomes the minimum control angle operation as shown by the thin line, and the inverse converter switches to the characteristic of FIG. 2 as shown by the broken line. The operating point of each converter at this time is o '. That is, even if the DC voltage on the side of the separately excited converter becomes smaller than the voltage on the side of the inverse converter, the DC voltage of the self-excited converter 2 is lowered according to the DC current Ii. It is possible to continue the operation without stopping the power transmission when it runs out.

【0011】図4は、本発明の他の実施形態を示す。図
1と同じ番号のものは同じ機能を示す。図1では自励式
変換器2の制御回路30の直流電圧制御回路201の設
定値Vpを直流電流Iiにより作成しているが、本実施
形態では、Iiによらず、一定値のVpx1とVpx2
としている。この設定値の切替のみをIiと他励式変換
器側の交流電圧V1の大きさで行う。今、Vpx1を定
格直流電圧設定値に等しくとり、Vpx2を自励式変換
器2が出せる最小の直流電圧設定値に選び、アンド回路
212の出力が”0”のときVpx1、”1”のときV
px2を選択するようにスイッチ回路213をセットす
るものとする。このときの各変換器の動作を図5に示
す。実線に通常の定格運転時の動作を示し、2つの曲線
の交点が動作点oを表しており、順変換器(REC)は
定電流制御、逆変換器(INV)は定電圧制御で運転さ
れる。他励式変換器1の順変換器の交流系統で事故が発
生し、電圧が低下すると、順変換器は最小制御角運転と
なり、逆変換器はV1が低下し、Iiが流れなくなるの
で、スイッチ回路213によりVpx2に切り替わる。
順変換器の動作は破線に示すようになり、動作点はo’
となる。即ち、他励式変換器側の直流電圧が逆変換器側
の電圧より小さくなっても、直流電流Iiに応じて自励
式変換器2の直流電圧が下げられるので、従来のように
直流電流が流れなくなって送電が停止することはなく、
運転を継続して行うことができる。事故が除去される
と、交流電圧V1が回復するので、第2の比較回路の出
力が”0”となり、スイッチ回路によりVpx1に切り
替わり、通常の定格運転に戻る。この場合、第2の比較
回路の出力が”0”となった時点から設定時間をおいて
スイッチ回路213によりVpx1に切り替わるように
するのが実際的である。
FIG. 4 shows another embodiment of the present invention. The same numbers as in FIG. 1 indicate the same functions. In FIG. 1, the set value Vp of the DC voltage control circuit 201 of the control circuit 30 of the self-excited converter 2 is created by the DC current Ii. However, in the present embodiment, Vpx1 and Vpx2 which are constant values do not depend on Ii.
I am trying. Only the switching of this set value is performed by Ii and the magnitude of the AC voltage V1 on the separately excited converter side. Now, take Vpx1 equal to the rated DC voltage setting value, select Vpx2 as the minimum DC voltage setting value that the self-exciting converter 2 can output, and Vpx1 when the output of the AND circuit 212 is "0", and V when it is "1".
It is assumed that the switch circuit 213 is set so as to select px2. The operation of each converter at this time is shown in FIG. The solid line shows the operation during normal rated operation, and the intersection of the two curves represents the operating point o. The forward converter (REC) is operated under constant current control and the inverse converter (INV) is operated under constant voltage control. It When an accident occurs in the AC system of the forward converter of the separately excited converter 1 and the voltage drops, the forward converter enters the minimum control angle operation, and the inverse converter V1 drops and Ii stops flowing, so the switch circuit 213 switches to Vpx2.
The operation of the forward converter is as shown by the broken line, and the operating point is o '
Becomes That is, even if the DC voltage on the side of the separately excited converter becomes smaller than the voltage on the side of the inverse converter, the DC voltage of the self-excited converter 2 is lowered according to the DC current Ii. There is no loss of power transmission,
The operation can be continued. When the accident is removed, the AC voltage V1 is recovered, so the output of the second comparison circuit becomes "0", and the switch circuit switches to Vpx1 to return to normal rated operation. In this case, it is practical that the switch circuit 213 switches to Vpx1 after a set time from when the output of the second comparison circuit becomes "0".

【0012】図6は、本発明のもう一つの他の実施形態
を示す。本実施形態では、自励式変換器2の電圧設定値
Vpを直流電流値Iiによって作成する構成である。図
1と同じ番号のものは同じ機能を表すので、異なったも
ののみ説明すると、220は第2の設定値作成回路であ
り、図1の設定値作成回路200の図2に示した直流電
流−電圧特性と特性は同様であるが、電圧設定値Vpの
戻しをV1のリセット信号によって戻す動作をする。即
ち、直流電流Iiの低下に基づいてVpがVp2に下げ
られると、Ii2が流れることになるが、このIiに応
動してVpが図2の特性に従って高い値に変化すると、
再び直流電流が流れなくなる。このため、Vp2からの
戻りは交流電圧V1の回復を待って戻すようにしてい
る。従って、動作は図1の場合と同様となる。本実施形
態によっても前述同様、他励式変換器側の直流電圧が逆
変換器側の電圧より小さくなっても、直流電流Iiに応
じて自励式変換器2の直流電圧が下げられるので、従来
のように直流電流が流れなくなって送電が停止すること
はなく、運転を継続して行うことができる。
FIG. 6 shows another embodiment of the present invention. In the present embodiment, the voltage setting value Vp of the self-exciting converter 2 is created by the DC current value Ii. Since those having the same numbers as those in FIG. 1 represent the same function, only different elements will be described. Reference numeral 220 denotes a second setting value generating circuit, which is the DC current − of the setting value generating circuit 200 shown in FIG. The voltage characteristic is similar to that of the voltage characteristic, but the voltage setting value Vp is returned by the reset signal of V1. That is, when Vp is lowered to Vp2 based on the decrease in the direct current Ii, Ii2 flows, but when Vp changes to a high value according to the characteristic of FIG. 2 in response to this Ii,
DC current stops flowing again. For this reason, the return from Vp2 is made after waiting for the recovery of the AC voltage V1. Therefore, the operation is similar to that of FIG. According to the present embodiment, as described above, even if the DC voltage on the side of the separately excited converter becomes smaller than the voltage on the side of the inverse converter, the DC voltage of the self-excited converter 2 is lowered according to the DC current Ii. Thus, the DC current does not stop flowing and the power transmission is not stopped, and the operation can be continued.

【0013】なお、図1、図4、図6に示す実施形態に
おいて、自励式変換器2の直流電流Ii、他励式変換器
1の交流電圧V1は何らかの外乱によって一瞬の間だけ
それぞれの規定値以下になる場合がある。このような場
合に自励式変換器2の直流電圧設定値Vpを変更してい
てはハイブリッド式直流送電設備として誤動作するケー
スがある。この誤動作を避けるために、各実施形態とも
自励式変換器2の直流電圧設定値Vpの変更を自励式変
換器2の直流電流Ii、他励式変換器1の交流電圧V1
が予め設定された時間以上規定値以下を継続している場
合に行うようにしてもよい。
In the embodiments shown in FIGS. 1, 4, and 6, the DC current Ii of the self-excited converter 2 and the AC voltage V1 of the separately excited converter 1 are set to their respective prescribed values only for a moment due to some disturbance. The following may occur. In such a case, if the DC voltage set value Vp of the self-excited converter 2 is changed, the hybrid DC power transmission equipment may malfunction. In order to avoid this malfunction, in each of the embodiments, the change of the DC voltage setting value Vp of the self-excited converter 2 is performed by changing the DC current Ii of the self-excited converter 2 and the AC voltage V1 of the separately excited converter 1.
May be performed when the value has continued for a preset time or longer and a prescribed value or lower.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
自励式変換器の制御装置に簡単な制御回路を設けること
より、順変換器側の交流系統事故時にも、停止すること
なく直流送電の運転継続が行える自励式変換器と他励式
変換器を組合わせて構成されるハイブリッド式直流送電
設備を実現することができる。また、自励式変換器の直
流電流、他励式変換器の交流電圧が予め設定された時間
以上規定値以下を継続している場合に、自励式変換器の
直流電圧設定値を変更することにより、ハイブリッド式
直流送電設備としての誤動作を防止し、安定した動作を
行うことができる。
As described above, according to the present invention,
By installing a simple control circuit in the control device for the self-excited converter, a self-excited converter and a separately excited converter that can continue operation of DC transmission without stopping even if an AC system accident occurs on the forward converter side are combined. It is possible to realize a hybrid type DC power transmission facility configured together. Further, when the DC current of the self-excited converter and the AC voltage of the separately excited converter continue to be equal to or less than a specified value for a preset time or more, by changing the DC voltage set value of the self-excited converter, It is possible to prevent a malfunction as a hybrid type DC power transmission facility and perform a stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した制御装置を備えた他励式変換
器と自励式変換器から構成されるハイブリッド式直流送
電設備の一実施形態
FIG. 1 is an embodiment of a hybrid DC power transmission facility including a separately-excited converter and a self-excited converter including a control device to which the present invention is applied.

【図2】本発明の自励式変換器の直流電流に対する直流
電圧特性を示す図
FIG. 2 is a diagram showing a DC voltage characteristic of a self-excited converter of the present invention with respect to a DC current.

【図3】本発明の対象とする他励式変換器と自励式変換
器から構成されるハイブリッド式直流送電設備の各変換
器の電圧−電流特性上の動作点を示す図
FIG. 3 is a diagram showing operating points on the voltage-current characteristics of each converter of a hybrid DC transmission facility including a separately excited converter and a self-excited converter, which are the objects of the present invention.

【図4】本発明の他の実施形態FIG. 4 is another embodiment of the present invention.

【図5】本発明の対象とする他励式変換器と自励式変換
器から構成されるハイブリッド式直流送電設備の各変換
器の電圧−電流特性上の動作点を示す図
FIG. 5 is a diagram showing operating points on the voltage-current characteristics of each converter of the hybrid type DC power transmission equipment constituted by the separately excited converter and the self-excited converter, which are the objects of the present invention.

【図6】本発明の他の実施形態FIG. 6 is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:他励式変換器、2:自励式変換器、11、21:交
流系統、12、22:交流母線、30a:直流送電線本
線、30b:帰路線、16:他励式変換器の制御装置、
17:交流電圧変成器、18:第1の直流電流変成器、
26:第2の直流電流変成器検出器、27:直流電圧変
成器、28:交流電圧変成器、29:交流電流変成器、
30:自励式変換器の制御装置、101:定電流制御回
路、102:位相制御回路、200:第1の設定値作成
回路、201:直流電圧制御回路、202:有効電力制
御回路、203:無効電力制御回路、204:信号選択
回路、205:非干渉電流制御回路、206:PWMパ
ルス作成回路、210:第1の比較回路、211:第2
の比較回路、212:アンド回路、213:スイッチ回
路、220:第2の設定値作成回路
1: Separately-excited converter, 2: Self-excited converter, 11, 21: AC system, 12, 22: AC bus, 30a: DC transmission line main line, 30b: Return line, 16: Control device of separately-excited converter,
17: AC voltage transformer, 18: first DC current transformer,
26: second DC current transformer detector, 27: DC voltage transformer, 28: AC voltage transformer, 29: AC current transformer,
30: Self-excited converter control device, 101: Constant current control circuit, 102: Phase control circuit, 200: First set value creation circuit, 201: DC voltage control circuit, 202: Active power control circuit, 203: Invalid Power control circuit, 204: signal selection circuit, 205: non-interference current control circuit, 206: PWM pulse generation circuit, 210: first comparison circuit, 211: second
Comparing circuit, 212: AND circuit, 213: Switch circuit, 220: Second setting value creating circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹中 清 東京都狛江市岩戸北二丁目11番1号 財 団法人 電力中央研究所内 (72)発明者 高崎 昌洋 東京都狛江市岩戸北二丁目11番1号 財 団法人 電力中央研究所内 (72)発明者 宜保 直樹 東京都狛江市岩戸北二丁目11番1号 財 団法人 電力中央研究所内 (56)参考文献 特開 平7−284224(JP,A) 特開 平5−211779(JP,A) 特開 平1−311825(JP,A) 特開 平11−27865(JP,A) 特開 昭58−51737(JP,A) 特開 平11−299107(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 5/00 H02J 1/00 301 H02J 3/36 H02M 7/48 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kiyoshi Takenaka 2-1-11-1 Iwatokita, Komae-shi, Tokyo Inside Central Research Institute of Electric Power Industry (72) Masahiro Takasaki 2--11-11 Iwatokita, Komae-shi, Tokyo No. 1 Central Research Institute of Electric Power Industry (72) Inventor Naoki Yibo 2-11-11 Iwatokita, Komae-shi, Tokyo Inside Central Research Institute of Electric Power Industry (56) Reference JP-A-7-284224 (JP, A) ) JP-A-5-212779 (JP, A) JP-A 1-311825 (JP, A) JP-A 11-27865 (JP, A) JP-A-58-51737 (JP, A) JP-A 11- 299107 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H02J 5/00 H02J 1/00 301 H02J 3/36 H02M 7/48

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 交流を直流に変換する他励式変換器と、
直流を交流に変換する自励式変換器とが直流送電線を介
して接続されてなるハイブリッド式直流送電設備の制御
装置において、 前記制御装置が他励式変換器の制御装置と自励式変換器
の制御装置とを備え、 前記自励式変換器の制御装置は、前記直流送電線の電流
が規定値より小さくなったことを検出する第1の比較手
段と、前記他励式変換器の入力交流電圧が規定値以下に
なったことを検出する第2の比較手段と、前記第1の比
較手段の出力と前記第2の比較手段の出力との論理積を
出力するアンド手段と、前記直流送電線の電流に基づい
て前記自励式変換器の電圧設定値を作成する設定値作成
手段と、前記アンド手段の出力に基づいて前記設定値作
成手段の出力値または定格直流電圧設定値の何れかを入
力直流電圧設定値に選択する信号選択手段とを有し、 前記直流送電線に流れる電流が規定値以下になり、同時
に前記他励式変換器の入力交流電圧が規定値以下となっ
たとき、前記自励式変換器の入力直流電圧設定値を前記
定格直流電圧設定値より低い電圧にすることを特徴とす
るハイブリッド式直流送電設備の制御装置。
1. A separately excited converter for converting alternating current into direct current,
In a control device for a hybrid type DC power transmission facility in which a self-exciting converter for converting DC to AC is connected via a DC transmission line, the control device controls the control device for the separately excited converter and the self-excited converter. The control device for the self-excited converter includes a first comparison unit that detects that the current of the DC transmission line is smaller than a specified value, and an input AC voltage of the separately excited converter is specified. Second comparing means for detecting that the value is less than or equal to a value, AND means for outputting a logical product of the output of the first comparing means and the output of the second comparing means, and the current of the DC transmission line Based on the set value creating means for creating the voltage set value of the self-excited converter, and based on the output of the AND means, either the output value of the set value creating means or the rated DC voltage set value is input DC voltage. Signal to select for set value When the current flowing through the DC transmission line is below a specified value and the input AC voltage of the separately excited converter is below a specified value at the same time, the input DC voltage setting of the self-excited converter is included. A control device for a hybrid type DC power transmission facility, wherein a value is set to a voltage lower than the rated DC voltage set value.
【請求項2】 請求項1において、前記自励式変換器の
入力直流電圧設定値を前記直流送電線の電流の大きさに
基づいて連続的に下げることを特徴とするハイブリッド
式直流送電設備の制御装置。
2. The control of a hybrid DC power transmission facility according to claim 1, wherein the input DC voltage set value of the self-excited converter is continuously lowered based on the magnitude of the current of the DC power transmission line. apparatus.
【請求項3】 交流を直流に変換する他励式変換器と、
直流を交流に変換する自励式変換器とが直流送電線を介
して接続されてなるハイブリッド式直流送電設備の制御
装置において、 前記制御装置が他励式変換器の制御装置と自励式変換器
の制御装置とを備え、 前記自励式変換器の制御装置は、前記直流送電線の電流
が規定値より小さくなったことを検出する第1の比較手
段と、前記他励式変換器の入力交流電圧が規定値以下に
なったことを検出する第2の比較手段と、前記第1の比
較手段の出力と前記第2の比較手段の出力との論理積を
出力するアンド手段と、前記アンド手段の出力に基づい
て定格直流電圧設定値または該定格直流電圧設定値より
低い一定値の何れかを入力直流電圧設定値に選択する信
号選択手段とを有し、 前記直流送電線に流れる電流が規定値以下になり、同時
に前記他励式変換器の交流電圧が規定値以下となったと
き、前記自励式変換器の入力直流電圧設定値を前記定格
直流電圧設定値より低い一定値に設定することを特徴と
するハイブリッド式直流送電設備の制御装置。
3. A separately excited converter for converting alternating current to direct current,
In a control device for a hybrid type DC power transmission facility in which a self-exciting converter for converting DC to AC is connected via a DC transmission line, the control device controls the control device for the separately excited converter and the self-excited converter. The control device for the self-excited converter includes a first comparison unit that detects that the current of the DC transmission line is smaller than a specified value, and an input AC voltage of the separately excited converter is specified. A second comparing means for detecting that the value is less than or equal to a value; an AND means for outputting a logical product of an output of the first comparing means and an output of the second comparing means; and an output of the AND means. Based on the rated DC voltage set value or a constant value lower than the rated DC voltage set value based on the signal selection means for selecting the input DC voltage set value, the current flowing through the DC transmission line is below a specified value. And at the same time When the AC voltage of the converter is equal to or less than a specified value, the input DC voltage set value of the self-excited converter is set to a constant value lower than the rated DC voltage set value of the hybrid DC transmission facility. Control device.
【請求項4】 請求項1から請求項3のいずれかにおい
て、前記他励式変換器の入力交流電圧が規定値に戻った
後、予め設定した時間が経過してから前記自励式変換器
の入力直流電圧設定値を前記定格直流電圧設定値に戻す
ことを特徴とするハイブリッド式直流送電設備の制御装
置。
4. The input of the self-excited converter according to any one of claims 1 to 3, after a preset time elapses after the input AC voltage of the separately excited converter returns to a specified value. A control device for a hybrid DC power transmission facility, wherein a DC voltage setting value is returned to the rated DC voltage setting value.
【請求項5】 請求項1から請求項4のいずれかにおい
て、前記自励式変換器の入力直流電圧設定値を、前記直
流送電線に流れる電流が予め設定された時間以上継続し
て規定値以下になった場合および/または前記他励式変
換器の入力交流側電圧が予め設定された時間以上継続し
て規定値以下となった場合に前記定格直流電圧設定値よ
り低い電圧にすることを特徴とするハイブリッド式直流
送電設備の制御装置。
5. The input DC voltage set value of the self-exciting converter according to claim 1, wherein the current flowing through the DC power transmission line is continuously maintained for a preset time or more and is equal to or less than a specified value. And / or if the input AC side voltage of the separately excited converter continues to fall below a specified value for a preset time or longer, a voltage lower than the rated DC voltage set value is set. Control device for hybrid type DC power transmission equipment.
JP14054798A 1998-05-07 1998-05-07 Control device for hybrid DC power transmission equipment Expired - Fee Related JP3364588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14054798A JP3364588B2 (en) 1998-05-07 1998-05-07 Control device for hybrid DC power transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14054798A JP3364588B2 (en) 1998-05-07 1998-05-07 Control device for hybrid DC power transmission equipment

Publications (2)

Publication Number Publication Date
JPH11332096A JPH11332096A (en) 1999-11-30
JP3364588B2 true JP3364588B2 (en) 2003-01-08

Family

ID=15271223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14054798A Expired - Fee Related JP3364588B2 (en) 1998-05-07 1998-05-07 Control device for hybrid DC power transmission equipment

Country Status (1)

Country Link
JP (1) JP3364588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931113B2 (en) 2016-03-15 2021-02-23 Mitsubishi Electric Corporation Power conversion device and power system performing protection control for suppressing received power

Also Published As

Publication number Publication date
JPH11332096A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP3265398B2 (en) DC power transmission device control device
US5005115A (en) Forced-commutated current-source converter and AC motor drive using the same
JP2760666B2 (en) Method and apparatus for controlling PWM converter
US6313600B1 (en) Control method and apparatus for insufficient input voltage in an AC drive
JPH04197097A (en) High capacity speed varying system for ac motor
KR930024269A (en) Parallel operation control device of pulse width modulation (PWM) inverter
US4862340A (en) DC power transmission system
JP6937962B1 (en) Power converter
WO2019234884A1 (en) Control device and power control system
JP3234932B2 (en) Power conversion system and control device for power converter
JP3364588B2 (en) Control device for hybrid DC power transmission equipment
JP2001047894A (en) Alternate current feeding device and control method for the same
JPH07336892A (en) Method and equipment for controlling self-excited dc transmission facility
JPH08230523A (en) Method and apparatus for controlling voltage of changeover section in ac feeder circuit
JP2000245066A (en) Control equipment of dc power transmission system
JPH0669316B2 (en) Power regeneration control circuit for power converter
JP3261947B2 (en) Self-excited DC power transmission controller
JPH0739151A (en) Controlling device for switching power supply
JPS58107083A (en) Driving regenerative converting power supply device
JPH11299107A (en) Controller for self-excited converter and direct-current transmission equipment
JP2866526B2 (en) Reactive power compensator
JPH09163751A (en) Pwm controlled self-excited rectifier
JP2007124888A (en) Inverter control device
JP2856743B2 (en) Control device for system DC interconnection equipment
JPH0715979A (en) Controller of self-excitation type ac/dc converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees