JP2003032895A - Method of measuring loss in tidal current controller, and its use - Google Patents

Method of measuring loss in tidal current controller, and its use

Info

Publication number
JP2003032895A
JP2003032895A JP2001220818A JP2001220818A JP2003032895A JP 2003032895 A JP2003032895 A JP 2003032895A JP 2001220818 A JP2001220818 A JP 2001220818A JP 2001220818 A JP2001220818 A JP 2001220818A JP 2003032895 A JP2003032895 A JP 2003032895A
Authority
JP
Japan
Prior art keywords
power
loss
converter
control device
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001220818A
Other languages
Japanese (ja)
Other versions
JP3877984B2 (en
Inventor
Hiroo Konishi
博雄 小西
Shigeyuki Sugimoto
重幸 杉本
Shigeaki Ogawa
重明 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Hitachi Ltd
Original Assignee
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2001220818A priority Critical patent/JP3877984B2/en
Publication of JP2003032895A publication Critical patent/JP2003032895A/en
Application granted granted Critical
Publication of JP3877984B2 publication Critical patent/JP3877984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

PROBLEM TO BE SOLVED: To provide a loss measuring method which detects the power loss in a tidal current controller by the measurement of power at one end of input ends or output ends. SOLUTION: In the method of measuring the loss in a tidal current measuring device, an asynchronous linkage device, a DC transmission system, or the forward converter of UPFC perform DC voltage constant control, and the side of an inverter at the end of its opposite number performs power constant control, and the forward converter operates to take in power being larger by the amount of total loss of the system than the power set in the inverter so as to keep the DC voltage constant. As a result, the total power loss of the system including higher harmonic loss is obtained by subtracting the value of the power to be transmitted to load from the measured value of the input power of a forward converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は潮流制御装置の損失
測定方法と、その損失測定結果を利用して潮流制御のた
めの電力設定や電力コスト決定やコスト評価を行う利用
方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a loss measuring method for a power flow control device and a method of using the loss measurement result for power setting, power cost determination and cost evaluation for power flow control.

【0002】[0002]

【従来の技術】電力の自由化に伴いIPPや分散電源等
の卸売りや小売り電力業者が電力系統に参入しつつあ
る。このように電力系統に多くの電力業者が入ってくる
と、電力の潮流制御が必要になるので、潮流制御装置の
導入が検討されている。
2. Description of the Related Art With the liberalization of electric power, wholesale and retail electric power companies such as IPPs and distributed power sources are entering the electric power system. In this way, when many electric power companies enter the electric power system, it becomes necessary to control the power flow of electric power. Therefore, introduction of a power flow control device is being considered.

【0003】このような潮流制御装置には、これまで系
統安定化装置として開発されてきたFACTS等のパワ
ーエレクトロニクス技術を使った装置が、制御の容易
さ,高速性,安定度向上の面から適用できる。
For such a power flow control device, a device using power electronics technology such as FACTS, which has been developed as a system stabilizing device, is applied from the viewpoint of controllability, high speed, and improvement of stability. it can.

【0004】非同期連系システムや直流送電システムは
送電端で交流を直流に変換し、直接または直流送電線を
介して負荷地で直流を交流に変換して負荷に所定の電力
を供給する。また、高速移相調整器(UPFC:Unified
Power Flow Controller)はコンバータとインバータと
を備え、送電線に直列に挿入された直列変圧器の印加電
圧の位相と大きさとを制御し、潮流制御する。これら潮
流制御装置は常時潮流制御として使用するので常時の装
置損失が少ないことが必要である。また、これら装置の
送電損失を、電力指令所,ISO,電力託送会社,発電
会社等が送電電力設定や料金支払の面の必要性から把握
する必要がある。
Asynchronous interconnection systems and DC power transmission systems convert AC to DC at the power transmission end and convert DC to AC at the load site directly or via a DC power transmission line to supply a predetermined amount of power to the load. In addition, high-speed phase shift adjuster (UPFC: Unified
The power flow controller) includes a converter and an inverter, and controls the phase and magnitude of the applied voltage of the series transformer inserted in series in the power transmission line to control the power flow. Since these power flow control devices are always used for power flow control, it is necessary that the device loss is low at all times. In addition, the power transmission loss of these devices needs to be grasped by the electric power command center, ISO, power transmission company, power generation company, etc. from the necessity of setting transmission power and paying charges.

【0005】パワーエレクトロニクス技術を適用した非
同期連系システム,直流送電システム,UPFCなどの
前記潮流制御装置は、交流を直流に変換するコンバータ
と直流を交流に変換するインバータとを備えていて、潮
流制御装置の損失は交直変換器や交流系統に連系する変
換用変圧器等によって主に生じる。
The power flow control devices such as the asynchronous interconnection system, the DC power transmission system, and the UPFC to which the power electronics technology is applied are equipped with a converter for converting AC to DC and an inverter for converting DC to AC. Equipment losses are mainly caused by AC / DC converters and conversion transformers connected to the AC system.

【0006】従来はこの電力損失を各装置の抵抗分と流
れる電流から計算によって求めたり、入力端の電力と出
力端の電力とを両方検出しその差からを求めていた。
Conventionally, this power loss is obtained by calculation from the resistance of each device and the flowing current, or both the power at the input end and the power at the output end are detected and the difference is obtained.

【0007】[0007]

【発明が解決しようとする課題】前記の各装置の抵抗分
と流れる電流から計算によって電力損失を求める方法で
は、潮流制御装置の交直変換器から発生する高調波によ
る電力損失を求めることができなかった。また、前記従
来技術の入力電力と出力電力を検出しその差から損失を
求める方法では、入力端と出力端の両方に精度が同等な
電力検出器が必要であり、しかも電力検出器の検出デー
タを相手端に送る必要がある。
In the method of calculating the power loss from the resistance of each device and the flowing current, the power loss due to the harmonic generated from the AC / DC converter of the power flow control device cannot be calculated. It was Further, in the method of detecting the input power and the output power of the prior art and obtaining the loss from the difference between them, it is necessary to have power detectors having the same accuracy at both the input end and the output end, and moreover, the detection data of the power detector. Need to be sent to the other end.

【0008】本発明の目的は、潮流制御装置の電力損失
を入力端または出力端片端の電力測定により検出する損
失測定方法の提供である。
An object of the present invention is to provide a loss measuring method for detecting the power loss of a power flow control device by measuring the power at the input end or the output end.

【0009】また、本発明の別の目的は、検出した潮流
制御装置の電力損失情報を、インターネットや会社内の
イントラネット等の汎用の通信装置を介して電力制御
所,ISO,電力託送業者,IPP,分散電源供給会社
等に配送し、電力制御やコストを評価決定する方法の提
供である。
Another object of the present invention is to detect the detected power loss information of the power flow control device through a general-purpose communication device such as the Internet or an intranet in a company to a power control center, ISO, power transmission company, IPP. , The method of delivering to distributed power supply companies, etc., and evaluating and determining power control and cost.

【0010】[0010]

【課題を解決するための手段】本発明の潮流測定装置の
損失測定方法は、非同期連系装置,直流送電システムや
UPFCのコンバータ(順変換器)側が直流電圧一定制
御を行い、相手端のインバータ(逆変換器)側が電力一
定制御を行っていて、順変換器は直流電圧を一定に保つ
ために、逆変換器で設定された電力よりシステムトータ
ルの損失分だけ大きい電力を取り込むように動作をする
ので、順変換器の入力電力の測定値から負荷に送電する
電力設定値を差し引くことにより高調波損失を含むシス
テムの全電力損失を求める。
According to a loss measuring method of a power flow measuring device of the present invention, a converter (forward converter) side of an asynchronous interconnection device, a DC transmission system or a UPFC performs a constant DC voltage control, and an inverter at the other end. The (inverse converter) side is performing constant power control, and the forward converter operates to take in power that is larger than the power set in the inverse converter by the total system loss in order to keep the DC voltage constant. Therefore, the total power loss of the system including the harmonic loss is obtained by subtracting the power setting value transmitted to the load from the measured value of the input power of the forward converter.

【0011】また、本発明の潮流測定装置の損失測定方
法は、順変換器側が電力一定制御を行い、逆変換器側が
直流電圧一定制御を行っていて、逆変換器が順変換器の
出力よりもシステムトータル損失分だけ小さい電力しか
出力できないので、直流電圧一定制御を行う逆変換器側
に出力電力の測定値を求めて、負荷に送電する電力設定
値から出力電力の測定値を差し引くことにより高調波損
失を含むシステムの全電力損失を求める。
Further, in the loss measuring method of the power flow measuring device of the present invention, the forward converter side performs constant power control, the inverse converter side performs constant DC voltage control, and the inverse converter outputs from the output of the forward converter. Can output only a small amount of power corresponding to the system total loss, so obtain the measured output power on the inverse converter side that performs constant DC voltage control, and subtract the measured output power from the power set value transmitted to the load. Determine the total power loss of the system including harmonic loss.

【0012】上記のようにして測定した電力損失情報を
インターネットを介して電力制御所,発電会社,託送会
社,ISO等に送り、潮流制御装置の損失を含めた電力
ディーリング,運用やコスト評価等を行う。
The power loss information measured as described above is sent to a power control station, a power generation company, a consignment company, ISO, etc. via the Internet, and power dealing including loss of a power flow control device, operation, cost evaluation, etc. I do.

【0013】[0013]

【発明の実施の形態】以下、本発明の詳細を図面を用い
て説明する。
DETAILED DESCRIPTION OF THE INVENTION The details of the present invention will be described below with reference to the drawings.

【0014】(実施例1)本実施例を適用した非同期連
系システム、または直流送電システムを説明する。図1
に本実施例の直流送電システムを示す。本実施例では、
潮流が図1中左から右に流れる場合を説明する。図1中
の符号14,24は交流系統、13,23は交流母線、
3は2つの交流系統を連系する交流連系線、1はIGB
T等の自己消弧素子で構成する、交流を直流に変換する
自励式変換器の順変換器(コンバータ)、2は直流を交
流に変換する自励式変換器の逆変換器(インバータ)、
11,21は直流電圧を平滑するための直流コンデン
サ、12,22は変換用変圧器、30a,30bは直流
送電線である。符号100は潮流制御装置の潮流電力を
指令する潮流指令所、200は順変換器1を制御する制
御装置、300は逆変換器2を制御する制御装置であ
る。符号201は順変換器1に流れる電流を検出する交
流電流変成器、202は交流電圧変成器、203は順変
換器1の入力電力を検出する電力変成器である。符号4
00は全系統の潮流を制御する全電力指令所(制御
所)、500はISO,電力託送業者等、600は汎用
のインターネットやイントラネット等の通信ネットワー
クである。
(Embodiment 1) An asynchronous interconnection system or a DC power transmission system to which this embodiment is applied will be described. Figure 1
The DC power transmission system of this embodiment is shown in FIG. In this embodiment,
A case where the tidal current flows from left to right in FIG. 1 will be described. In FIG. 1, reference numerals 14 and 24 are AC systems, 13 and 23 are AC buses,
3 is an AC interconnection line that connects two AC systems, and 1 is an IGB
A forward converter (converter) of a self-exciting converter that converts alternating current to direct current, which is composed of a self-extinguishing element such as T, 2 is an inverse converter (inverter) of a self-exciting converter that converts direct current to alternating current,
Reference numerals 11 and 21 are DC capacitors for smoothing DC voltage, reference numerals 12 and 22 are conversion transformers, and reference numerals 30a and 30b are DC transmission lines. Reference numeral 100 is a power flow command station that commands the power flow power of the power flow control device, 200 is a control device that controls the forward converter 1, and 300 is a control device that controls the inverse converter 2. Reference numeral 201 is an AC current transformer that detects the current flowing through the forward converter 1, 202 is an AC voltage transformer, and 203 is a power transformer that detects the input power of the forward converter 1. Code 4
Reference numeral 00 is an all-power command center (control station) that controls the power flow of all systems, 500 is an ISO, a power transmission company, etc., and 600 is a general-purpose communication network such as the Internet or an intranet.

【0015】なお、非同期連系システムでは直流送電線
30a,30bがない他は、図1に示す直流送電システ
ムと同じである。
The asynchronous interconnection system is the same as the DC transmission system shown in FIG. 1 except that the DC transmission lines 30a and 30b are not provided.

【0016】まず図1の構成で交流系統14と24との
間の潮流が任意に制御できることを説明する。交流系統
14と24間の潮流は交流系統14と24の電圧の位相
差を調整して行う。交流系統24に対して交流系統14
の位相をθ進めると、下式のようになる。
First, it will be described that the power flow between the AC systems 14 and 24 can be arbitrarily controlled with the configuration of FIG. The power flow between the AC systems 14 and 24 is performed by adjusting the phase difference between the voltages of the AC systems 14 and 24. AC system 14 to AC system 24
When the phase of is advanced by θ, it becomes the following formula.

【0017】P=V1・V2・sin(θ)/X ここに、V1は交流系統14の電圧、V2は交流系統2
4の電圧、Xは交流系統14と24を連系する送電線の
インピーダンス、Pは電力である。
P = V1V2sin (θ) / X where V1 is the voltage of the AC system 14 and V2 is the AC system 2
4 is the voltage, X is the impedance of the transmission line interconnecting the AC systems 14 and 24, and P is the power.

【0018】しかし直流連系装置がある場合には交流系
統14と24との位相差に関係なく直流連系装置の電力
設定値に応じて任意の方向に、且つ高速に電力を流すこ
とができる。ただし、潮流連系装置により潮流が流れる
と、交流系統の位相差が変化するので、過渡的に潮流は
潮流制御装置によって調整できるが、定常的には交流系
統間の位相差を調整しないと潮流は変わらない。
However, if there is a DC interconnection device, it is possible to flow electric power in any direction and at high speed according to the power setting value of the DC interconnection device regardless of the phase difference between the AC systems 14 and 24. . However, when the tidal current flows through the tidal current interconnection device, the phase difference of the AC system changes, so the tidal current can be transiently adjusted by the tidal current controller, but if the phase difference between the AC systems is not adjusted steadily, Does not change.

【0019】次に本実施例で潮流制御装置の損失が順変
換器1側の入力電力のみを測定すれば求まることを図2
を用いて説明する。図2は直流連系装置の順変換器と逆
変換器の有効電力と直流電圧の特性の関係を示す。順変
換器と逆変換器に電力一定制御特性と直流電圧一定制御
特性とを持たせ、順変換器の電力設定値を変換器容量一
杯の値に設定値し、直流電圧設定値を規定の値Vdre
fに設定する。逆変換器の直流電圧設定値は順変換器の
設定値よりも余裕を持った値、例えば定格の10%程度
低い値に設定し、電力設定値を負荷が必要とする値Pd
refに設定する。
Next, in this embodiment, the loss of the power flow control device can be obtained by measuring only the input power on the side of the forward converter 1.
Will be explained. FIG. 2 shows the relationship between the active power and the DC voltage characteristics of the forward converter and the inverse converter of the DC interconnection device. The forward converter and the inverse converter are given constant power control characteristics and constant DC voltage control characteristics, and the power setting value of the forward converter is set to the value at which the converter capacity is full, and the DC voltage setting value is the specified value. Vdre
Set to f. The DC voltage set value of the reverse converter is set to a value having a margin larger than the set value of the forward converter, for example, a value lower by about 10% of the rating, and the power set value is set to a value Pd required by the load.
Set to ref.

【0020】このように設定したときの動作点は図2の
順変換器特性と逆変換器特性の交点となる。前記特性を
持たせると、順変換器の入力電力が、直流電圧を一定に
するために逆変換器に設定された電力量よりも潮流制御
装置の損失分だけ大きい電力となる。言い換えると、順
変換器の電力がこの値よりも小さいと直流電圧が規定値
よりも低下し、逆に大きいと高くなり、等しいところで
規定の電圧となる。
The operating point thus set is the intersection of the forward converter characteristic and the inverse converter characteristic shown in FIG. With the above characteristics, the input power of the forward converter becomes larger than the amount of power set in the inverse converter in order to keep the DC voltage constant by the loss of the power flow control device. In other words, when the power of the forward converter is lower than this value, the DC voltage is lower than the specified value, and when it is higher, the DC voltage is higher and the DC voltage becomes equal to the specified voltage.

【0021】従って直流電圧を制御する変換器の入力電
力のみを測定して潮流制御装置の高調波損失を含めた全
損失を求めることができる。すなわち図3に示すように
入力電力から、負荷の電力設定値を差し引くことにより
全損失が求まる。図3で、電力測定値と負荷電力指令値
との差の絶対値を計算している理由は、潮流制御装置の
潮流方向により電力測定値に損失が上記のようにプラス
で出る場合と後述するようにマイナスで出る場合とがあ
るためである。
Therefore, it is possible to obtain the total loss including the harmonic loss of the power flow control device by measuring only the input power of the converter controlling the DC voltage. That is, as shown in FIG. 3, the total loss can be obtained by subtracting the power set value of the load from the input power. In FIG. 3, the reason why the absolute value of the difference between the measured power value and the load power command value is calculated is that the loss will be positive in the measured power value as described above depending on the power flow direction of the power flow control device, and will be described later. This is because there are cases where it appears negative.

【0022】上記で求めた電力損失情報をインターネッ
ト,イントラネット等、汎用の通信装置により全電力指
令所や電力託送業者やISO等に送ることによって、全
系統の潮流のバランスを取ることができると共に、電力
損失を考慮した負荷への電力送電や送電コストの計算が
可能となる。
By transmitting the electric power loss information obtained above to all electric power command centers, electric power transmission companies, ISOs, etc. by a general-purpose communication device such as the Internet, intranet, etc., it is possible to balance the power flow of all systems. It becomes possible to transmit power to the load and calculate the transmission cost in consideration of power loss.

【0023】図4に具体的に損失を考えた電力指令値の
設定を示す。電力指令値は負荷系統に必要な電力に潮流
制御装置の損失を加えた電力指令値を潮流制御装置の電
力指令値とすれば良いし、また送電側の発電電力の設定
値にすれば良い。この機能を全電力指令所が備えること
が要求される。
FIG. 4 shows the setting of the power command value in consideration of the loss. The power command value may be the power command value of the power flow controller, which is the power required for the load system plus the loss of the power flow controller, or may be the set value of the generated power on the power transmission side. It is required that all electric power command centers have this function.

【0024】一方コストに関しては、潮流条件下での潮
流制御装置の損失量が求まるので、損失電力量を発電コ
ストに上乗せするか、送電コストに上乗せするか、また
は受電側コストに上乗せするか、何れかにするかが決ま
れば電力単価量をもとに決定できる。損失を考慮したコ
スト評価は専用のプログラムを使って電力託送業者やI
SO,発電所等で計算できる。
On the other hand, with respect to the cost, since the loss amount of the power flow control device under the power flow condition is obtained, whether the loss power amount is added to the power generation cost, the power transmission cost, or the power receiving side cost, If it is decided which one to use, it can be decided based on the unit price of electric power. For cost evaluation considering loss, a dedicated program is used to
It can be calculated at SO, power plants, etc.

【0025】図5に図2に示した順変換器と逆変換器の
制御特性を実現する自励式変換器の一般的な制御ブロッ
クを示す。符号211は有効電力一定制御回路、212
は直流電圧一定制御回路、213は信号選訳回路で図2
に示した各変換器特性となるように有効電力一定制御回
路と直流電圧一定制御回路の出力信号が選択され、この
信号が自励式変換器の交流出力の有効電力や直流出力ま
たは入力の直流電圧を規定値(設定値)にするための交
流出力電圧の位相を制御する。符号214は無効電力一
定制御回路で自励式変換器の出力電圧の大きさを制御し
て系統に流れる無効電力を制御する。符号215は有効
電力と無効電力を非干渉制御するための変換器制御部を
表す。一般に使われている構成制御ブロックを図6に示
す。
FIG. 5 shows a general control block of a self-excited converter that realizes the control characteristics of the forward converter and the inverse converter shown in FIG. Reference numeral 211 denotes a constant active power control circuit, 212
2 is a DC voltage constant control circuit, and 213 is a signal selection circuit.
The output signals of the active power constant control circuit and the constant DC voltage control circuit are selected so as to have the characteristics of each converter shown in Fig. 4, and this signal is the active power of the AC output of the self-excited converter or the DC output or the input DC voltage. Controls the phase of the AC output voltage to bring the voltage to a specified value (setting value). Reference numeral 214 is a constant reactive power control circuit that controls the magnitude of the output voltage of the self-excited converter to control the reactive power flowing in the grid. Reference numeral 215 represents a converter control unit for performing non-interference control of active power and reactive power. A commonly used configuration control block is shown in FIG.

【0026】図6で、符号215aは上位にある有効電
力制御回路または直流電圧制御回路の有効電力または直
流電圧を規定値に制御するための指令値を受け、交流電
流からdq変換によって取り出された実電流をこの指令
値に制御するための実電流(d軸電流)制御回路、215
bは上位にある無効電力制御回路の無効電力を規定値に
制御するための指令値を受け、交流電流からdq変換に
よって取り出された虚電流をこの指令値に制御するため
の虚電流(q軸電流)制御回路、IXは変換用変圧器のイ
ンピーダンスを乗じることを表し、実電流または虚電流
の該インピーダンスドロップによる干渉を打消して実電
流と虚電流の非干渉制御を実現する。ここでdq変換
は、系統の電圧と変換器出力電圧との位相差βの正弦及
び余弦の関数値を使って行われる。符号215eはdq
軸成分を固定座標のαβ座標系に座標変換する2軸逆変
換回路、215fはαβ座標系を元の3相回転座標系の
交流電圧基準値Va21,Vb21,Vc21に変換す
る3相変換回路、215gはパルスキャリアとなる三角
波とこの交流電圧基準値から自励式変換器のPWMパル
スを作成するPWMパルス発生回路である。この回路構
成により実電流(有効電力)と虚電流(無効電力)とを
独立に非干渉で制御できる。
In FIG. 6, reference numeral 215a denotes a command value for controlling the active power or DC voltage of the higher active power control circuit or DC voltage control circuit to a specified value, and is extracted from the AC current by dq conversion. A real current (d-axis current) control circuit 215 for controlling the real current to this command value
b receives a command value for controlling the reactive power of the upper reactive power control circuit to a specified value, and the imaginary current (q-axis) for controlling the imaginary current extracted from the alternating current by dq conversion to this command value. The (current) control circuit, IX, represents multiplication of the impedance of the transformer for conversion, and cancels interference due to the impedance drop of the real current or the imaginary current to realize non-interference control of the real current and the imaginary current. Here, the dq conversion is performed using the sine and cosine function values of the phase difference β between the system voltage and the converter output voltage. Reference numeral 215e is dq
A two-axis inverse conversion circuit 215f for converting the axis component into a fixed coordinate αβ coordinate system, and a three-phase conversion circuit 215f for converting the αβ coordinate system into the original AC voltage reference values Va21, Vb21, Vc21 of the three-phase rotation coordinate system. A PWM pulse generation circuit 215g creates a PWM pulse of a self-excited converter from a triangular wave serving as a pulse carrier and this AC voltage reference value. With this circuit configuration, the real current (active power) and the imaginary current (reactive power) can be independently controlled without interference.

【0027】(実施例2)実施例1では潮流の方向を図
中左から右に流れる場合を説明した。本実施例では、潮
流方向が実施例1と逆に変わり、順変換器が逆変換器と
なり、逆変換器が順変換器となった場合であって、順変
換器側で電力一定制御を行い、逆変換器側で直流電圧一
定制御を行う。この場合、逆変換器の出力は順変換器の
出力よりもシステムトータル損失分だけ小さい出力しか
出力できなくなる。これは損失分だけ小さい出力より、
多くの電力を出力すると直流電圧が低下し、損失分だけ
小さい出力よりさらに少ない電力を出力すると直流電圧
が上昇するので、ちょうど損失分を差し引いた電力で直
流電圧が規定値となる動作となる。従って直流電圧一定
制御を行う逆変換器側で出力電力を測定すれば、順変換
器の電力設定値からこの測定値を差し引くことにより高
調波損失を含めたシステムの全損失を求めることができ
る。
(Second Embodiment) In the first embodiment, the case where the direction of the tidal current flows from left to right in the figure has been described. In the present embodiment, the power flow direction is opposite to that of the first embodiment, the forward converter is an inverse converter, and the inverse converter is a forward converter, and constant power control is performed on the forward converter side. , Inverter side performs constant DC voltage control. In this case, the output of the inverse converter can only be smaller than the output of the forward converter by the total system loss. This is smaller than the output by the loss,
When a large amount of power is output, the DC voltage decreases, and when a smaller amount of power is output than when the output is smaller, the DC voltage increases, so that the DC voltage becomes a specified value with the power obtained by subtracting the loss. Therefore, if the output power is measured on the side of the inverse converter that performs constant DC voltage control, the total loss of the system including the harmonic loss can be obtained by subtracting this measured value from the power setting value of the forward converter.

【0028】求めた電力損失情報を上記と同様にインタ
ーネットやイントラネットを介して全電力制御所,発電
会社,託送会社,ISO等に送り、潮流制御装置の損失
を含めた電力ディーリング,運用,コスト決定・評価等
ができる。
Similar to the above, the obtained power loss information is sent to all power control stations, power generation companies, consignment companies, ISO, etc. via the Internet or intranet, and power dealing including loss of the power flow control device, operation, and cost. Can make decisions and evaluations.

【0029】(実施例3)図7に本実施例を示す。図1
では自励式変換器を用いた潮流制御装置であったが、本
実施例は他励式変換器を用いた非同期連系システムまた
は直流送電システムによる潮流制御装置である。図7の
構成により2つの交流系統間の潮流が制御できることは
図1と同様である。
(Embodiment 3) FIG. 7 shows this embodiment. Figure 1
In the above, the power flow control device uses a self-excited converter, but the present embodiment is a power flow control device using an asynchronous interconnection system or a DC power transmission system using a separately excited converter. Similar to FIG. 1, the power flow between the two AC systems can be controlled by the configuration of FIG. 7.

【0030】図7において、潮流の方向を図中左から右
に流れる場合を説明する。図7で、符号3はサイリスタ
等のオン時点のみを制御できる素子で構成される他励式
変換器の順変換器(コンバータ)、4は他励式変換器の
逆変換器(インバーター)、31,32は直流電流を平
滑する直流リアクトル、301は逆変換器1に流れる電
流を検出する交流電流変成器、302は交流電圧変成
器、303は逆変換器2の出力電力を検出する電力変成
器である。
In FIG. 7, the case where the direction of the tidal current flows from left to right in the figure will be described. In FIG. 7, reference numeral 3 is a forward converter (converter) of a separately excited converter including elements such as a thyristor that can control only the ON time, and 4 is an inverse converter (inverter) of the separately excited converter. Is a DC reactor that smoothes DC current, 301 is an AC current transformer that detects the current flowing in the inverse converter 1, 302 is an AC voltage transformer, and 303 is a power transformer that detects the output power of the inverse transformer 2. .

【0031】本実施例では順変換器で有効電力を制御
し、逆変換器で直流電圧を一定に制御する。この時の順
変換器と逆変換器の直流電流と直流電圧の関係を図8に
示す。順変換器には負荷に必要な有効電力を送電するた
めの直流電流設定値Idrefを与え、直流電流一定制
御特性を持たせる。一方、逆変換器には直流電圧を規定
の値Vdrefに保つための直流電圧一定制御特性と、
交流電圧低下時のバックアップ運転として順変換器の電
流設定値Idrefよりも電流マージン△Idだけ小さ
い値に電流設定値を持った直流電流一定制御特性を持た
せる。
In this embodiment, the forward converter controls the active power, and the inverse converter controls the DC voltage to be constant. FIG. 8 shows the relationship between the DC current and DC voltage of the forward converter and the inverse converter at this time. The forward converter is provided with a direct current setting value Idref for transmitting active power required for the load, and has a constant direct current control characteristic. On the other hand, the inverse converter has a constant DC voltage control characteristic for maintaining the DC voltage at a specified value Vdref,
As a backup operation when the AC voltage drops, a direct current constant control characteristic having a current setting value is given to a value smaller than the current setting value Idref of the forward converter by a current margin ΔId.

【0032】このような特性を順変換器と逆変換器に持
たせたときの動作点は2つの特性の交点となる。順変換
器で負荷に必要な有効電力を一定に保つ運転を行うが、
逆変換器では直流電圧一定制御を行っているので、逆変
換器側で有効電力を測定すると、損失分だけ小さい電力
が測定されることになる。逆変換器でこれよりも大きな
電力が測定されるならば直流電圧が規定値よりも低下す
るであろうし、少ない電力が測定されると直流電圧が高
くなる。従って、直流電圧が規定値に保たれるときには
逆変換器側で測定される出力電力は、順変換器側の電力
設定値よりも損失分だけ小さくなる。逆変換器で所定の
有効電力を取り出そうとする場合は、順変換器の電力設
定値(直流電流設定値×直流電圧)をシステムの全ロス
分だけ大きな電力設定値とする必要がある。
When the forward converter and the inverse converter have such characteristics, the operating point is the intersection of the two characteristics. The forward converter operates to keep the active power required for the load constant,
Since the inverse converter performs constant DC voltage control, when the active power is measured on the inverse converter side, the power that is smaller by the loss is measured. If the reverse converter measures more power than this, the DC voltage will drop below the specified value, and if less power is measured the DC voltage will increase. Therefore, when the DC voltage is maintained at the specified value, the output power measured on the inverse converter side is smaller than the power set value on the forward converter side by the amount of loss. In order to extract a predetermined active power with the inverse converter, it is necessary to set the power setting value of the forward converter (DC current setting value x DC voltage) to a power setting value larger by the total loss of the system.

【0033】直流電圧一定制御を行っている逆変換器側
の出力電力のみを測定し、電力設定値からこの測定値を
引くことにより、高調波損失を含めた潮流制御システム
の全損失が求められることになる。求められた損失の情
報をインターネット等の通信装置を用いて発電会社,託
送会社,ISO等に送り、潮流制御装置の損失を含めた
電力ディーリング,運用やコスト評価等ができる。
By measuring only the output power on the side of the inverse converter performing the constant DC voltage control and subtracting this measured value from the power setting value, the total loss of the power flow control system including the harmonic loss can be obtained. It will be. Information on the obtained loss can be sent to a power generation company, a consignment company, ISO, etc. using a communication device such as the Internet to perform power dealing including the loss of the power flow control device, operation and cost evaluation.

【0034】(実施例4)図9に本実施例を示す。図1
では自励式変換器を用いた潮流制御装置、図7では他励
式変換器を用いた潮流制御装置を示したが、本実施例で
は送電線に直列に挿入された直列変圧器の電圧の位相を
変化させることによって線路に流れる潮流を制御する。
(Embodiment 4) This embodiment is shown in FIG. Figure 1
7 shows a power flow control device using a self-excited converter, and FIG. 7 shows a power flow control device using a separately excited converter. In this embodiment, the voltage phase of the series transformer inserted in series in the transmission line is The tidal current flowing through the track is controlled by changing it.

【0035】その電圧位相は図1と同じ自励式変換器の
順変換器と逆変換器によって作り出される。これまでの
図と同じ番号のものは同じ機能を表すので異なった新し
いものについてのみ説明する。図9の符号29は送電線
に直列に挿入される直列変圧器で、変圧器の一次側は逆
変換器2によって励磁される。
The voltage phase is produced by the forward converter and the inverse converter of the same self-exciting converter as in FIG. The same numbers as in the previous figures represent the same functions, so only different new ones will be described. Reference numeral 29 in FIG. 9 is a series transformer that is inserted in series in the transmission line, and the primary side of the transformer is excited by the inverse converter 2.

【0036】逆変換器の出力電圧の大きさと位相を制御
して有効分及び無効分の潮流を制御できることが知られ
ている。本実施例でも順変換器1で直流電圧を一定に制
御し、逆変換器2で有効電力を一定に制御する。前記図
1の説明と同様に、順変換器に流れる電流と電圧から、
ここに流れる有効電力を求めると、この値はシステムの
損失分だけ大きい電力が測定される。従って電力設定値
を差し引くことによって高調波損失を含めたシステムの
全電力損失を求めることができる。
It is known that the magnitude and phase of the output voltage of the inverse converter can be controlled to control the effective and ineffective power flows. Also in this embodiment, the forward converter 1 controls the DC voltage to be constant, and the inverse converter 2 controls the active power to be constant. Similar to the description of FIG. 1, from the current and voltage flowing through the forward converter,
When the active power flowing here is determined, this value is measured as the power that is larger by the amount of system loss. Therefore, the total power loss of the system including the harmonic loss can be obtained by subtracting the power setting value.

【0037】求めた電力損失データはインターネット等
の通信装置を用いて発電会社,託送会社,ISO等に送
り、潮流制御装置の損失を含めた電力ディーリング,運
用やコスト評価等できる。
The obtained power loss data is sent to a power generation company, a consignment company, ISO, etc. using a communication device such as the Internet, and power dealing including loss of the power flow control device, operation and cost evaluation can be performed.

【0038】[0038]

【発明の効果】直流電圧一定制御を行う変換器に流れる
有効電力のみを測定して潮流制御装置の高調波損失を含
めた全システム損失を求められる。またこの損失をイン
ターネット,イントラネット等の汎用の低コストな通信
装置を介して発電会社,電力制御所,電力託送会社,I
SO等に送り、潮流制御装置の損失を含めた電力ディー
リング,運用やコスト評価等できる。
According to the present invention, the total system loss including the harmonic loss of the power flow control device can be obtained by measuring only the active power flowing in the converter that performs the constant DC voltage control. In addition, this loss is transferred to a power generation company, a power control station, a power transmission company, I through a general-purpose low-cost communication device such as the Internet or an intranet.
It is possible to send to SO etc., and deal with power including the loss of the power flow control device, operation and cost evaluation.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の潮流制御装置の損失の測定方法と利
用方法の説明図である。
FIG. 1 is an explanatory diagram of a loss measuring method and a using method of a power flow control device according to a first embodiment.

【図2】実施例1の自励式変換器の有効電力と直流電圧
の特性を示す図である。
FIG. 2 is a diagram showing the characteristics of active power and DC voltage of the self-excited converter of the first embodiment.

【図3】実施例1の損失測定方法の説明図である。FIG. 3 is an explanatory diagram of a loss measuring method according to the first embodiment.

【図4】実施例1の電力指令値作成方法の説明図であ
る。
FIG. 4 is an explanatory diagram of a power command value creation method according to the first embodiment.

【図5】実施例1の自励式変換器の制御部ブロック図で
ある。
FIG. 5 is a block diagram of a control unit of the self-excited converter according to the first embodiment.

【図6】実施例1の自励式変換器の変換器制御部ブロッ
ク図である。
FIG. 6 is a block diagram of a converter control unit of the self-excited converter according to the first embodiment.

【図7】実施例3の潮流制御装置の損失の測定方法と利
用方法の説明図である。
FIG. 7 is an explanatory diagram of a method of measuring loss and a method of using the power flow control device according to the third embodiment.

【図8】実施例3の他励式変換器の直流電流と直流電圧
の特性を示す図である。
FIG. 8 is a diagram showing characteristics of a DC current and a DC voltage of a separately excited converter according to a third embodiment.

【図9】実施例4の潮流制御装置の損失の測定方法と利
用方法の説明図である。
FIG. 9 is an explanatory diagram of a method of measuring loss and a method of using the power flow control device according to the fourth embodiment.

【符号の説明】[Explanation of symbols]

1…自励式変換器の順変換器(コンバータ)、2…自励
式変換器の逆変換器(インバータ)、3…交流連系線、
11,21…直流コンデンサ、12,22…変換用変圧
器、13,23…交流母線、14,24…交流系統、2
9…直列変圧器、30a,30b…直流送電線、100
…潮流指令所、200…制御装置1、201,301…
交流電流変成器、202,302…交流電圧変成器、2
03…電力変成器、211…有効電力一定制御回路、2
12…直流電圧一定制御回路、213…信号選択回路、
214…無効電力一定制御回路、215…変換器制御
部、215a…実電流(d軸電流)制御回路、215b
…虚電流(q軸電流)制御回路、215e…2軸逆変換
回路、215f…3相変換回路、215g…PWMパル
ス発生回路、300…制御装置2、303…電力変成
器、400…全電力指令所、500…ISO,電力託送
業者等、600…通信ネットワーク。
1 ... Forward converter (converter) of self-excited converter, 2 ... Inverse converter (inverter) of self-excited converter, 3 ... AC interconnection line,
11, 21 ... DC capacitor, 12, 22 ... Conversion transformer, 13, 23 ... AC bus bar, 14, 24 ... AC system, 2
9 ... Series transformer, 30a, 30b ... DC transmission line, 100
… Power flow command station, 200… Control devices 1, 201, 301…
AC current transformer, 202, 302 ... AC voltage transformer, 2
03 ... Power transformer, 211 ... Active power constant control circuit, 2
12 ... DC voltage constant control circuit, 213 ... Signal selection circuit,
214 ... Constant reactive power control circuit, 215 ... Converter control unit, 215a ... Real current (d-axis current) control circuit, 215b
... imaginary current (q-axis current) control circuit, 215e ... 2-axis inverse conversion circuit, 215f ... 3-phase conversion circuit, 215g ... PWM pulse generation circuit, 300 ... Control device 2, 303 ... Power transformer, 400 ... Full power command Office, 500 ... ISO, power transmission company, etc. 600 ... Communication network.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 重幸 愛知県名古屋市緑区大高町字北関山20−1 中部電力株式会社電力技術研究所内 (72)発明者 小川 重明 愛知県名古屋市緑区大高町字北関山20−1 中部電力株式会社電力技術研究所内 Fターム(参考) 5G066 CA04 CA10 5H420 BB15 CC05 DD04 EA04 EA10 EA29 EA45 EB09 EB23 FF03 FF04 FF06 FF22 FF25 GG01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigeyuki Sugimoto             20-1 Kitakousan, Otakamachi, Midori-ku, Nagoya-shi, Aichi               Chubu Electric Power Co., Inc. (72) Inventor Shigeaki Ogawa             20-1 Kitakousan, Otakamachi, Midori-ku, Nagoya-shi, Aichi               Chubu Electric Power Co., Inc. F-term (reference) 5G066 CA04 CA10                 5H420 BB15 CC05 DD04 EA04 EA10                       EA29 EA45 EB09 EB23 FF03                       FF04 FF06 FF22 FF25 GG01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】交流を直流に変換する順変換器と直流を交
流に変換する逆変換器とを有する潮流制御装置の損失測
定方法において、 前記潮流制御装置が直流電圧を一定に制御する変換器を
備えていて、該変換器の有効電力の測定値を、負荷の電
力設定値から差し引いて、高調波損失を含めた前記潮流
制御装置の全損失電力を求めることを特徴とする潮流制
御装置の損失測定方法。
1. A loss measuring method for a power flow control device comprising a forward converter for converting alternating current to direct current and an inverse converter for converting direct current to alternating current, wherein the power flow controller controls the direct current voltage to be constant. The measured value of the active power of the converter is subtracted from the power setting value of the load to obtain the total loss power of the power flow control device including the harmonic loss. Loss measurement method.
【請求項2】交流を直流に変換する順変換器と直流を交
流に変換する逆変換器とを有する潮流制御装置の損失測
定方法において、 前記潮流制御装置の直流電圧設定を行う順変換器の有効
電力の測定から、前記潮流制御装置の有効電力設定値を
差し引いて、該潮流制御装置の高調波分を含めた前記潮
流制御装置の全損失電力を求めることを特徴とする潮流
制御装置の損失測定方法。
2. A loss measuring method for a power flow control device having a forward converter for converting alternating current to direct current and an inverse converter for converting direct current to alternating current, comprising: a forward converter for setting a direct current voltage of the power flow control device. From the measurement of active power, the active power setting value of the power flow control device is subtracted to obtain the total loss power of the power flow control device including the harmonic components of the power flow control device. Measuring method.
【請求項3】交流を直流に変換する順変換器と直流を交
流に変換する逆変換器とを有する潮流制御装置の損失測
定方法において、 前記潮流制御装置の直流電圧設定を行う逆変換器の有効
電力測定値を、前記潮流制御装置の有効電力設定値から
差し引いて、該潮流制御装置の高調波分を含めた前記潮
流制御装置の全損失電力を求めることを特徴とする潮流
制御装置の損失測定方法。
3. A loss measuring method for a power flow control device comprising a forward converter for converting alternating current to direct current and an inverse converter for converting direct current to alternating current, wherein the reverse converter for setting direct current voltage of the power flow controlling device. Loss of the power flow control device, characterized in that the active power measurement value is subtracted from the active power setting value of the power flow control device to obtain the total loss power of the power flow control device including the harmonic components of the power flow control device. Measuring method.
【請求項4】交流を直流に変換する順変換器と直流を交
流に変換する逆変換器とを有する潮流制御装置の電力損
失情報の利用方法であって、 該電力損失情報が前記潮流制御装置が直流電圧を一定に
制御する変換器の有効電力の測定値を、負荷の電力設定
値から差し引いて、高調波損失を含めた前記潮流制御装
置の全損失電力を求めた情報であって、 該電力損失情報を電力制御所,ISO等にインターネッ
ト,イントラネット等の通信手段を使って配信し、前記
電力制御所において配信された信号を用いて潮流制御す
ることを特徴とする潮流制御装置の電力損失情報の利用
方法。
4. A method of using power loss information of a power flow controller having a forward converter for converting AC to DC and an inverse converter for converting DC to AC, wherein the power loss information is the power controller. Is information obtained by subtracting the measured value of the active power of the converter for controlling the DC voltage to be constant from the power setting value of the load to obtain the total loss power of the power flow control device including the harmonic loss, Power loss of a power flow controller characterized in that power loss information is distributed to a power control center, ISO, etc. using communication means such as the Internet and an intranet, and power flow control is performed using the signal distributed at the power control center. How to use the information.
【請求項5】交流を直流に変換する順変換器と直流を交
流に変換する逆変換器とを有する潮流制御装置の電力損
失情報の利用方法であって、 該電力損失情報が前記潮流制御装置が直流電圧を一定に
制御する変換器の有効電力の測定値を、負荷の電力設定
値から差し引いて、高調波損失を含めた前記潮流制御装
置の全損失電力を求めた情報であって、 該電力損失情報をISO,電力託送業者や発電業者にイ
ンターネット,イントラネット等の通信手段を使って配
信し、該配信された情報を用いてコスト決定や評価を行
うことを特徴とする潮流制御装置の電力損失情報の利用
方法。
5. A method of using power loss information of a power flow controller having a forward converter for converting AC to DC and an inverse converter for converting DC to AC, wherein the power loss information is the power controller. Is information obtained by subtracting the measured value of the active power of the converter for controlling the DC voltage to be constant from the power setting value of the load to obtain the total loss power of the power flow control device including the harmonic loss, Power of a power flow control device characterized in that power loss information is distributed to ISO, a power transmission company and a power generation company using communication means such as the Internet and an intranet, and cost determination and evaluation are performed using the distributed information. How to use loss information.
JP2001220818A 2001-07-23 2001-07-23 Loss measurement method of tidal current control device and its utilization method Expired - Fee Related JP3877984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220818A JP3877984B2 (en) 2001-07-23 2001-07-23 Loss measurement method of tidal current control device and its utilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220818A JP3877984B2 (en) 2001-07-23 2001-07-23 Loss measurement method of tidal current control device and its utilization method

Publications (2)

Publication Number Publication Date
JP2003032895A true JP2003032895A (en) 2003-01-31
JP3877984B2 JP3877984B2 (en) 2007-02-07

Family

ID=19054584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220818A Expired - Fee Related JP3877984B2 (en) 2001-07-23 2001-07-23 Loss measurement method of tidal current control device and its utilization method

Country Status (1)

Country Link
JP (1) JP3877984B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252999A (en) * 2007-03-29 2008-10-16 Chubu Electric Power Co Inc Line loss reducing apparatus of power system, power system and method for configuring power system
JP2012244759A (en) * 2011-05-19 2012-12-10 Fuji Electric Co Ltd Power leveling device
CN103280799A (en) * 2013-05-24 2013-09-04 南京南瑞继保电气有限公司 Start-stop method for unified power flow controller
CN105119305A (en) * 2015-09-23 2015-12-02 国家电网公司 Charging control strategy of MMC type unified power flow controller
JP2016148650A (en) * 2015-02-11 2016-08-18 エルエス産電株式会社Lsis Co.,Ltd. Method for correcting loss of electric power of high-voltage direct current power transmission system
JP2016148651A (en) * 2015-02-11 2016-08-18 エルエス産電株式会社Lsis Co., Ltd. Method of measuring power value in high voltage dc power transmission system
KR20200036482A (en) * 2018-09-28 2020-04-07 한국전력공사 Parallel type FACTS and its control method for DC voltage control of HVDC with BTB control scheme
CN111786382A (en) * 2020-07-02 2020-10-16 国网上海市电力公司电力科学研究院 Power distribution network load recovery amount calculation method considering weighted power flow entropy
CN112202184A (en) * 2020-10-10 2021-01-08 华北电力大学 UPFC fault transition method based on parallel side improved control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026137B (en) * 2016-05-30 2019-06-21 许继电气股份有限公司 A kind of alternating current circuit fault traversing control method of THE UPFC

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302731A (en) * 1987-05-30 1988-12-09 Toshiba Corp Controller for ac/dc converter
JPH07336892A (en) * 1994-06-01 1995-12-22 Hitachi Ltd Method and equipment for controlling self-excited dc transmission facility
JPH0865901A (en) * 1994-08-24 1996-03-08 Hitachi Ltd Method and device for calculating power flow in ac-dc link system and ac-dc link system control system
JP2000261963A (en) * 1999-03-05 2000-09-22 Toshiba Corp Entrusted power transmission assisting system and storage medium storing program thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302731A (en) * 1987-05-30 1988-12-09 Toshiba Corp Controller for ac/dc converter
JPH07336892A (en) * 1994-06-01 1995-12-22 Hitachi Ltd Method and equipment for controlling self-excited dc transmission facility
JPH0865901A (en) * 1994-08-24 1996-03-08 Hitachi Ltd Method and device for calculating power flow in ac-dc link system and ac-dc link system control system
JP2000261963A (en) * 1999-03-05 2000-09-22 Toshiba Corp Entrusted power transmission assisting system and storage medium storing program thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252999A (en) * 2007-03-29 2008-10-16 Chubu Electric Power Co Inc Line loss reducing apparatus of power system, power system and method for configuring power system
JP2012244759A (en) * 2011-05-19 2012-12-10 Fuji Electric Co Ltd Power leveling device
CN103280799A (en) * 2013-05-24 2013-09-04 南京南瑞继保电气有限公司 Start-stop method for unified power flow controller
US10254320B2 (en) 2015-02-11 2019-04-09 Lsis Co., Ltd. Method for measuring electric power value in an hvdc system
JP2016148650A (en) * 2015-02-11 2016-08-18 エルエス産電株式会社Lsis Co.,Ltd. Method for correcting loss of electric power of high-voltage direct current power transmission system
JP2016148651A (en) * 2015-02-11 2016-08-18 エルエス産電株式会社Lsis Co., Ltd. Method of measuring power value in high voltage dc power transmission system
US9651589B2 (en) 2015-02-11 2017-05-16 Lsis Co., Ltd. Method for correcting electric power loss in an HVDC system
CN105119305A (en) * 2015-09-23 2015-12-02 国家电网公司 Charging control strategy of MMC type unified power flow controller
KR20200036482A (en) * 2018-09-28 2020-04-07 한국전력공사 Parallel type FACTS and its control method for DC voltage control of HVDC with BTB control scheme
KR102654540B1 (en) * 2018-09-28 2024-04-05 한국전력공사 Parallel type FACTS for DC voltage control of HVDC with BTB control scheme
CN111786382A (en) * 2020-07-02 2020-10-16 国网上海市电力公司电力科学研究院 Power distribution network load recovery amount calculation method considering weighted power flow entropy
CN111786382B (en) * 2020-07-02 2022-03-11 国网上海市电力公司 Power distribution network load recovery amount calculation method considering weighted power flow entropy
CN112202184A (en) * 2020-10-10 2021-01-08 华北电力大学 UPFC fault transition method based on parallel side improved control

Also Published As

Publication number Publication date
JP3877984B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
CN103181052B (en) For the method for stable power-supplying net
CN103891081B (en) Method and apparatus for feeding electrical current into an electrical power supply system
CN102651551B (en) Method for controlling power factor of three-phase converter, method for controlling reactive power of three-phase converter, and controller of three-phase converter
US10998824B2 (en) Electric power conversion device
JP5530769B2 (en) DC circuit leakage detection device
US9997921B2 (en) Solar power conversion system and method
JP5442282B2 (en) Method and apparatus for estimating generator output
JP2003032895A (en) Method of measuring loss in tidal current controller, and its use
US20210021224A1 (en) Power conversion device, motor driving system, and control method
WO2021181629A1 (en) Power conversion device
US20200161871A1 (en) Network system for hybrid ac/dc grids
KR101414887B1 (en) Multi-level inverter and method for operating the same
JP2021145537A (en) Distributed power supply system and effective electric power estimation method
KR101696510B1 (en) Inverter controlling system for compensating distortion of output voltage
CN115800332B (en) Load adjusting method and system
US11770090B2 (en) Interconnected inverter system and method of manufacturing interconnected inverter system
US20240097442A1 (en) Control method, computer program product, control system & use
CN110535328B (en) Power electronic transformer energy flow identification method, system and equipment
JP5309500B2 (en) Power supply device and method for determining phase loss thereof
Mitra Distributed photovoltaic generation in residential distribution systems: impacts on power quality and anti-islanding
KR20150121333A (en) Electronic watt hour meter and measuring method thereof
JP3272053B2 (en) Ground fault detection method
CN108957217A (en) Hand over straight friendship control of power supply system and guard method
Asari et al. Method of inferring operation status of distributed generation systems in distribution section
JPH0865900A (en) Single operation detector for non-utility generator facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees