JPH0733580A - Drawdown type method for growing large-sized single crystal and apparatus therefor - Google Patents

Drawdown type method for growing large-sized single crystal and apparatus therefor

Info

Publication number
JPH0733580A
JPH0733580A JP5201797A JP20179793A JPH0733580A JP H0733580 A JPH0733580 A JP H0733580A JP 5201797 A JP5201797 A JP 5201797A JP 20179793 A JP20179793 A JP 20179793A JP H0733580 A JPH0733580 A JP H0733580A
Authority
JP
Japan
Prior art keywords
single crystal
raw material
growing
crucible
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5201797A
Other languages
Japanese (ja)
Inventor
Hirohito Goto
後藤博仁
Hiroshi Yoshioka
浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATERUZU KK
Original Assignee
MATERUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATERUZU KK filed Critical MATERUZU KK
Priority to JP5201797A priority Critical patent/JPH0733580A/en
Publication of JPH0733580A publication Critical patent/JPH0733580A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a technology in which the thickness of a melt can be kept constant without any fluctuation of composition and a large-sized single crystal of high quality can be grown at low cost according to a drawdown method. CONSTITUTION:The characteristic of this method for growing a large-sized single crystal comprises controlling the thickness of a melt to a constant value by measuring the distance from a prescribed position in an upper part of this apparatus for growing the single crystal to the melt surface and making the set heating temperature variable corresponding to the fluctuation in the distance thereof in using a heating furnace, a crucible for growing the single crystal arranged on the inside thereof and a device for continuously feeding a raw material from the upper part of an electric furnace into the crucible for growing and growing the single crystal according to a drawdown method. A further characteristic of the method comprises continuously feeding the raw material powder of a shape having a shape ratio of >=1/1 of the major axis/thickness of the raw material and 0.01-0.4g weight of one piece of the raw material from the upper part of the electric furnace into the interior of the crucible for growing the single crystal. Thereby, the large-sized single crystal of high quality with hardly any change in composition can be grown without using a melting crucible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原料連続充填式引下げ法
(ブリッジマン法とも言う)による単結晶育成技術に係
り、より詳しくは、溶融ルツボを用いないで引下げ法に
より大型の単結晶を育成する技術に関するもので、例え
ば、磁気ヘッド用MnZnフェライト単結晶、及び表面弾
性波用のゲルマニウム酸ビスマス、ホウ酸リチウム、タ
ンタル酸リチウム及び二オブ酸リチウム等々の単結晶
で、特に大型で長尺な単結晶を引下げ法で育成するのに
好適である。
FIELD OF THE INVENTION The present invention relates to a continuous filling method for pulling down raw materials.
The present invention relates to a technique for growing a single crystal by the (also referred to as Bridgman method), and more specifically, it relates to a technique for growing a large single crystal by a pull-down method without using a melting crucible. For example, a MnZn ferrite single crystal for a magnetic head, And single crystals of bismuth germanate for surface acoustic waves, lithium borate, lithium tantalate, lithium diobate, etc., particularly suitable for growing a large and long single crystal by the pulling method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】良質で
生産原価の廉価な単結晶を製造する場合は、大型で長尺
な単結晶を得ることが重要課題になっている。ブリッジ
マン法によってフェライト単結晶を製造するためには、
製造コストの観点から、大型で長尺な単結晶で、かつ酸
化鉄、酸化マンガン、酸化亜鉛の組成が一定であり、白
金の混入が少ないことが好ましいことは一般的に理解さ
れている。
2. Description of the Related Art When manufacturing a single crystal of good quality and low production cost, obtaining a large and long single crystal has become an important issue. To manufacture a ferrite single crystal by the Bridgman method,
From the viewpoint of manufacturing cost, it is generally understood that it is preferable that the single crystal is large and long, the composition of iron oxide, manganese oxide, and zinc oxide is constant, and the amount of platinum mixed is small.

【0003】従来は、特に大型で長尺な単結晶をブリッ
ジマン法で育成するには、加熱炉内に配置された育成ル
ツボ内に、炉上部より白金管で吊された溶融ルツボを設
けて、この溶融ルツボ内に、プレスで成形された円柱
状、円盤状或いはリング状を有する1gr程度の焼成フェ
ライト原料を連続的に供給し、溶融ルツボ内で溶融して
から育成ルツボ内へ供給していた。そうすることによ
り、単結晶育成量と連続充填量がマッチングすることで
各元素の組成をある程度均一にすることができる。
Conventionally, in order to grow a particularly large and long single crystal by the Bridgman method, a growing crucible arranged in a heating furnace is provided with a molten crucible suspended from a furnace upper part by a platinum tube. Into this molten crucible, a sintered ferrite raw material having a columnar shape, a disk shape or a ring shape, which is formed by pressing, of about 1 gr is continuously supplied, and after being melted in the molten crucible, it is supplied into the growing crucible. It was By doing so, the composition of each element can be made uniform to some extent by matching the growth amount of the single crystal and the continuous filling amount.

【0004】この方法には、育成ルツボだけを固定し、
溶融ルツボと電気炉を同期駆動する方法と、溶融ルツボ
と電気炉を固定し、育成ルツボを駆動する方法がある。
いずれにしろ、実際は長尺な単結晶をブリッジマン法で
育成すると、結晶量が増加するに従って融液部分の厚さ
が変化し、そのために単結晶育成量と連続充填量のマッ
チングが徐々にくずれて、夫々の元素の組成が変化して
しまうという欠点を有していた。
In this method, only the growing crucible is fixed,
There are a method of synchronously driving the melting crucible and the electric furnace, and a method of fixing the melting crucible and the electric furnace and driving the growing crucible.
In any case, in practice, when a long single crystal is grown by the Bridgman method, the thickness of the melt portion changes as the amount of crystal increases, which causes the matching between the single crystal growth amount and the continuous filling amount to gradually collapse. Then, there is a drawback that the composition of each element changes.

【0005】また、従来技術では、育成ルツボ内に溶融
ルツボを使用するために、この温度をある程度高く(約
1630℃)保持しないと、原料が溶融しないので、あ
る一定時間内で溶融させるために炉の温度を設定してい
た。例えば、原料の直径が70mmで、育成速度2mm/h
の場合、1grの原料は93秒以内に溶ける必要がある。
Further, in the prior art, since a melting crucible is used in the growing crucible, unless the temperature is maintained at a certain high temperature (about 1630 ° C.), the raw material does not melt. The furnace temperature was set. For example, if the diameter of the raw material is 70 mm and the growth rate is 2 mm / h
In the case of, 1 gr of raw material needs to melt within 93 seconds.

【0006】しかし、このような従来法で長時間単結晶
育成を続けると、結晶量が増加するに従って、溶融ルツ
ボ内の温度が上昇し、融液内部の温度も上昇して、融液
量が増加し、その結果、白金の混入が多くなり、結晶の
組成が変動するという傾向があった。
However, when single crystal growth is continued for a long time by such a conventional method, as the crystal amount increases, the temperature inside the melting crucible rises and the temperature inside the melt also rises, and the melt amount increases. There was a tendency that the amount of platinum increased and, as a result, the amount of platinum mixed in increased and the composition of the crystal fluctuated.

【0007】本発明は、上記従来技術の問題点を解決し
て、融液の厚さを一定にでき、組成の変動がなく、不純
物が少ない高品質の大型の単結晶を引下げ法により安価
に育成し得る技術を提供することを目的としている。
The present invention solves the above-mentioned problems of the prior art, makes it possible to make the thickness of the melt constant, does not change the composition, and makes a large single crystal of high quality with few impurities inexpensive by the pulling method. The purpose is to provide technologies that can be nurtured.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意研究を重ねた結果、溶融ルツボを
使用しないで高品質の単結晶を育成する方策を見い出し
た。
As a result of intensive studies to solve the above problems, the present inventors have found a method for growing a high quality single crystal without using a melting crucible.

【0009】すなわち、従来の溶融ルツボを使用する方
法では、溶融ルツボ内の温度を1630℃以上にする必
要があり、育成設定温度を下げることが難しく、そのた
めに白金の混入を防ぐことはできなかった。そもそも、
溶融ルツボを使用する目的は、1gr程度の重量のフェラ
イト充填原料をそのまま育成ルツボ内の融液表面に投下
すると、融液表面からの跳ね返りがあり、炉芯管を汚す
こと、更に育成された単結晶に気泡が入り、磁気ヘッド
用に使用することができなかったためである。この気泡
は育成速度を20%程度遅くしても容易に除去すること
はできなかった。更に小さな粉体で供給すると粉体が炉
芯管内で飛散してしまい、炉芯管を汚すだけであった。
That is, in the conventional method using a molten crucible, the temperature inside the molten crucible needs to be 1630 ° C. or higher, and it is difficult to lower the growth set temperature, and therefore it is not possible to prevent platinum from being mixed. It was In the first place,
The purpose of using a molten crucible is to drop a ferrite-filled raw material having a weight of about 1 gr onto the melt surface in the growing crucible as it is, there is a bounce from the melt surface, and the furnace core tube is contaminated. This is because the crystals could not be used for a magnetic head because they contained bubbles. These bubbles could not be easily removed even if the growth rate was reduced by about 20%. If a smaller powder is supplied, the powder scatters in the furnace core tube, and only the furnace core tube is soiled.

【0010】また、溶融ルツボを使用すると、育成ルツ
ボ内の融液部分の厚さを測定できないため、融液の厚さ
を一定に制御することができないという問題があった。
Further, when the melted crucible is used, there is a problem that the thickness of the melt cannot be controlled to be constant because the thickness of the melt in the growing crucible cannot be measured.

【0011】そこで、溶融ルツボを使用しないこととし
たため、育成ルツボ内で溶融した原料の高さを電気炉上
部のある一定位置から測定することで、融液表面までの
距離を電気的或いは光学的に測定し、この変動量を制御
温度信号に重畳させて、加熱設定温度を制御させること
により、融液の厚さを一定化することができることを見
い出した。
Therefore, since the melting crucible is not used, the height of the molten material in the growing crucible is measured from a certain position in the upper part of the electric furnace so that the distance to the surface of the melt can be measured electrically or optically. It was found that the thickness of the melt can be made constant by controlling the heating set temperature by superimposing this fluctuation amount on the control temperature signal.

【0012】また、供給原料の形状を変え、従来の円筒
片焼結体を原料として供給した方法に対し、この粉体供
給法は、軽く溶け易くしてあるために、炉の設定温度を
下げることができ、また原料を溶融するためのルツボ
(溶融ルツボ)が不要になり、不純物が少ない高品質な単
結晶を育成することができることも見い出した。
Further, in contrast to the method in which the shape of the feed material is changed and the conventional cylindrical piece sintered body is fed as the raw material, the powder feeding method lowers the set temperature of the furnace because it is easier to melt. Crucible for melting raw materials
It was also found that a (molten crucible) becomes unnecessary and a high-quality single crystal with few impurities can be grown.

【0013】[0013]

【作用】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0014】まず、本発明者らが着目したのは、フェラ
イトの液体と固体の比重に差があるという点である。育
成速度量と原料の連続供給がマッチングしていると、フ
ェライト融液は一定になるように考えられるが、実際は
大型で長尺な単結晶を育成すると、ある時点からフェラ
イト固体の増加と共に融液量が増加し、更にフェライト
固体量が増加すると、逆に融液量は減少していくという
結果になることが判明した。
First, the present inventors have paid attention to the fact that there is a difference in specific gravity between the liquid and solid ferrite. If the growth rate and the continuous supply of the raw materials are matched, the ferrite melt is considered to be constant, but in reality, when growing a large and long single crystal, the melt increases as the ferrite solids increase from a certain point. It was found that, when the amount of the ferrite solids increases and the amount of the ferrite solids further increases, the melt amount decreases.

【0015】すなわち、ある程度の固体の増加は、炉内
の熱をこもらせる役目をし、更に増加すると、結晶化さ
れた固体を通じて、熱が逃げていくようになり、炉内の
温度は低下していき、このように炉内の熱の状態は変化
している。そのために融液量が変化している。
That is, an increase in the solid content to some extent serves to keep the heat in the furnace, and when it further increases, the heat escapes through the crystallized solid, and the temperature in the furnace decreases. The state of heat in the furnace is changing in this way. Therefore, the melt amount is changing.

【0016】この理由は、固体の密度と液体の密度が違
うためである。液体の密度をρ(L)、固体の密度をρ(S)
とすると、ここでは、以下の比が成立するとする。 ρ(S)≧1.05ρ(L) 但し、液体は気泡を含んでいる。
The reason for this is that the density of the solid and the density of the liquid are different. Liquid density ρ (L), solid density ρ (S)
Then, the following ratio holds here. ρ (S) ≧ 1.05ρ (L) However, the liquid contains bubbles.

【0017】融液の厚みは80mmとし、熱が奪われて炉
のある位置から融液表面までの距離が1mm増加したとす
ると、液体部が固体部に変わったことになり、融液の厚
みは、 1mm÷1.05=0.952mm(固体としての換
算量) 1mm−0.952mm=0.048mm(1mmでの変化量) 1mm÷0.048mm=20.8mm(液体が固体に変わった
厚み) 80mm−20.8mm=59.2mm(減少後の厚み) と計算されることから、約60mmに減少したことにな
る。
If the thickness of the melt is 80 mm and the distance from the position where the furnace is located to the surface of the melt is increased by 1 mm due to heat being taken away, it means that the liquid part has changed to the solid part, and the thickness of the melt is Is 1 mm ÷ 1.05 = 0.952 mm (converted amount as solid) 1 mm-0.952 mm = 0.048 mm (change amount at 1 mm) 1 mm ÷ 0.048 mm = 20.8 mm (liquid changed to solid) Thickness) 80 mm-20.8 mm = 59.2 mm (thickness after reduction), which means that the thickness has been reduced to about 60 mm.

【0018】そこで、融液表面までの距離を正確に測定
し、設定温度をこれに対して変化させるか、或いは原料
の形状をある程度の大きさのものとすると共に連続供給
量を制御して融液量を一定にすることにより、均一組成
を有する大型で長尺な単結晶を育成することができるよ
うになる。
Therefore, the distance to the surface of the melt is accurately measured and the set temperature is changed, or the shape of the raw material is set to a certain size and the continuous supply amount is controlled to melt the melt. By making the liquid volume constant, it becomes possible to grow a large and long single crystal having a uniform composition.

【0019】前者の手段として、本発明では、融液表面
までの距離を電気的或いは光学的測定器で測定し、この
変動量を制御温度信号に重畳させて、融液の厚みが一定
になるように加熱設定温度を可変させるものである。融
液の厚みが一定に制御されるので、長時間育成を続けて
も単組成の変動がなく、大型で均一な一定の組成の単結
晶を育成できる。
As the former means, in the present invention, the distance to the surface of the melt is measured by an electrical or optical measuring device, and the fluctuation amount is superposed on the control temperature signal to make the melt thickness constant. Thus, the heating set temperature is changed. Since the thickness of the melt is controlled to be constant, there is no fluctuation in the single composition even when the growth is continued for a long time, and a large single crystal having a uniform composition can be grown.

【0020】また、後者の手段として、本発明では、造
粒された原料粉体をある程度の大きさだけに選別し、次
に形状を、従来の円筒状と異なり、長径/厚みの比を1
/1以上とし、具体的には、球状のままか、圧延成形で
円盤状か楕円形状にして、表面積を増加して軽く溶け易
くし、この形状の原料を電気炉上部より連続的に育成ル
ツボ内へ供給することにより、炉の設定温度を下げるこ
とができるため、溶融ルツボを使用しないことと相俟っ
て、不純物が少なく気泡の無い高品質な大型で長尺なフ
ェライト単結晶を得ることができる。
As the latter means, in the present invention, the granulated raw material powder is selected to a certain size, and then the shape is different from the conventional cylindrical shape, and the ratio of major axis / thickness is 1.
/ 1 or more, and more specifically, it remains spherical, or is made into a disk shape or an elliptical shape by roll forming to increase the surface area and facilitate light melting, and a raw material of this shape is continuously grown from the upper part of the electric furnace. Since it can lower the set temperature of the furnace by supplying it to the inside, it is possible to obtain a high quality large and long ferrite single crystal with few impurities in combination with not using a melting crucible. You can

【0021】その際、1個の原料の重量が0.01〜0.
4gである軽い粉体原料とする必要がある。1個の連続
充填原料の重さを0.4gr以上にすると、単結晶内部に
小さい気泡が入る。一方、0.01gr以下になると、原
料が融液表面からの上昇気流に負けて舞い上がり、育成
ルツボ内へ供給されなくなる。なお、融液表面が揺れる
と測定に誤差が生じるので、育成ルツボの駆動にはハン
チングの無いように十分留意する。
At this time, the weight of one raw material is 0.01 to 0.
It is necessary to use a light powder raw material that is 4 g. When the weight of one continuous filling material is 0.4 gr or more, small bubbles enter inside the single crystal. On the other hand, when the amount is 0.01 gr or less, the raw material loses the rising airflow from the surface of the melt and soars, and is not supplied into the growing crucible. In addition, when the surface of the melt shakes, an error will occur in the measurement, so be careful not to hunt the drive of the growth crucible.

【0022】原料の連続送給方法としては、従来は、円
筒状やディスク状に焼結されたコアをパーツフィーダー
(揺動式)を用いて1個ずつ溶融ルツボに充填する方式
で、溶融ルツボ内で溶融してから、育成ルツボ表面に滴
下していた。この方法では、パーツフィーダーを用いて
いるため、焼結されたコアの寸法管理をしないとトラブ
ルが発生することが多く、また振動が炉本体に伝わって
結晶育成のときに融液表面が微妙に揺れて、結晶にサブ
グレーンが入る原因にもなっていた。更には、焼結され
たコアを製作するまでに、時間とプレス等の設備が必要
であり、また白金製の溶融ルツボも必要であり、コスト
が高くなる問題があった。
As a continuous feeding method for raw materials, conventionally, a core sintered in a cylindrical shape or a disk shape is used as a parts feeder.
(Fluctuating type) was used to fill the melting crucibles one by one, and after melting in the melting crucible, they were dropped on the surface of the growing crucible. In this method, since a parts feeder is used, problems often occur unless the dimensions of the sintered core are controlled, and vibrations are transmitted to the furnace body and the surface of the melt becomes delicate during crystal growth. It also shook, causing subgrains to enter the crystal. Further, it takes time and equipment such as a press until the sintered core is manufactured, and a fused crucible made of platinum is also required, which causes a problem of high cost.

【0023】一方、本発明では、粉体原料が上記の重量
及び形状を有することに鑑みて、粉体原料をプレスせず
にペレット状態で育成ルツボ内に連続的に送給するもの
であり、原料連続送給装置としては、非揺動式のものを
使用する。例えば、図1に示すような非揺動式で、粉体
原料収納容器(16)と充填パイプ(15)とガイドパイプ
(14)を有する原料供給装置が挙げられる。
On the other hand, in the present invention, in view of the fact that the powder raw material has the above weight and shape, the powder raw material is continuously fed into the growing crucible in a pellet state without pressing, A non-oscillating type continuous feeding device is used. For example, as shown in FIG. 1, a non-oscillating type powder raw material container (16), a filling pipe (15) and a guide pipe.
A raw material supply device having (14) is exemplified.

【0024】好ましくは、図3に示すように、支柱(1
4)に支え板(13)を介して支持され粉体原料(32)を
収容する容器(31)と、粉体原料を受入れ且つ排出する
ための溝(36)を備えた回転体(35)と、該回転体の溝
から排出される粉体原料を濾斗(42)、ガイドパイプ
(44)、受け皿(45)などで育成ルツボ内に送給する装
置とを有する原料連続送給装置を使用する。回転体(3
5)は固定板(37)と抑え治具(38)で回転可能に支持
され、ジョイント(39)とギヤー(40)を介してモータ
ー(41)により回転駆動される。容器(31)に収納され
た粉体原料(ペレット)は所定量ずつ、回転体の溝(36)
に充填され、回転体(35)が回転されることにより濾斗
(42)に供給され、ガイドパイプ(43)を通して受け皿
(44)に供給されて、育成ルツボに充填される。育成ル
ツボの大きさや育成速度、ペレットの大きさや重量等の
条件が変更されれば、それに応じて、モーターの回転速
度を変更したり、或いはモーターの回転のON/OFF
時間を変更することにより充填量を制御することができ
る。プレスせずにペレット状態で供給されるので、プレ
スが不要になり、また振動の発生もない。
Preferably, as shown in FIG.
4) A container (31) supported by a support plate (13) for containing the powder raw material (32), and a rotating body (35) having a groove (36) for receiving and discharging the powder raw material. And the powder raw material discharged from the groove of the rotor is filtered by a filter (42) and a guide pipe.
(44), a continuous feed device for raw materials having a device for feeding into the growing crucible with a saucer (45) is used. Rotating body (3
5) is rotatably supported by a fixing plate (37) and a holding jig (38), and is rotationally driven by a motor (41) via a joint (39) and a gear (40). The powder raw material (pellet) stored in the container (31) is a predetermined amount by a predetermined amount in the groove (36) of the rotating body.
And the rotor (35) is rotated to fill the funnel.
(42), and through the guide pipe (43) the saucer
It is supplied to (44) and filled in the growing crucible. If conditions such as the size and speed of the growing crucible and the size and weight of the pellet are changed, the rotation speed of the motor is changed or the rotation of the motor is turned ON / OFF.
The filling amount can be controlled by changing the time. Since it is supplied in pellet form without pressing, no pressing is required and no vibration occurs.

【0025】なお、上述の前者の手段と後者の手段を単
独で利用するほか、併用することもできる。両者を併用
するのが好ましい。
The former means and the latter means described above may be used alone or in combination. It is preferable to use both in combination.

【0026】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0027】[0027]

【実施例】【Example】

【0028】図1は本発明の実施に使用する装置の一例
を示している。白金製の育成ルツボ(11)は、アルミナ
支持管(8)に支えられ、この支持管は支持台(23)に置
かれ、この支持台はネジ棒(6)と支柱(22)でモーター
駆動部(5)に連結されている。(7)はフランジである。
モーターが駆動すると、ネジ棒(6)が回転し、育成ルツ
ボ(11)が移動する機構である。育成ルツボ(11)は、
炉芯管(24)で雰囲気が保たれていて、発熱体(10)に
より加熱されて、その外側に在る断熱材(9)で保温され
ている。電気炉は基板(4)に立設した外枠(1)に設けた
支持台(2)、(3)で支えられている。
FIG. 1 shows an example of an apparatus used for implementing the present invention. The platinum growth crucible (11) is supported by an alumina support tube (8), and this support tube is placed on a support table (23), which is driven by a motor with a screw rod (6) and a support (22). It is connected to the part (5). (7) is a flange.
When the motor is driven, the screw rod (6) rotates and the growing crucible (11) moves. Raising crucible (11)
The atmosphere is maintained in the furnace core tube (24), is heated by the heating element (10), and is kept warm by the heat insulating material (9) outside thereof. The electric furnace is supported by supporting stands (2) and (3) provided on an outer frame (1) standing on a substrate (4).

【0029】加熱されると、育成ルツボ(11)内のフェ
ライト原料が溶融し、育成ルツボを下降して育成する
と、図示のように固体(12)と液体(13)になる。ここ
で、育成する固体の量に見合った本発明形状のフェライ
ト原料(17)を、支持台(21)で支えられた容器(16)
に充填し、充填パイプ(15)とガイドパイプ(14)を介
して育成ルツボ(11)内に連続的に供給する。原料は造
粒粉体を成型したもので、融液表面からの上昇気流に負
けない程度に軽く常に連続供給されるために融液量が安
定している。従来は、1gr程度の重さのために約96秒
おきに融液の厚さが変動していた。更に、台(20)の上
にあるレーザー測長器(18)を用いて、融液表面までの
距離を正確に測定する。(19)は直角プリズムでレーザ
ーの方向を変えるものであり、(20)はレーザー測長器
(18)の支持台である。
When heated, the ferrite raw material in the growth crucible (11) is melted, and when the growth crucible is lowered and grown, it becomes a solid (12) and a liquid (13) as shown in the figure. Here, the container (16) in which the ferrite raw material (17) of the shape of the present invention, which corresponds to the amount of solid to be grown, is supported by the support table (21)
And is continuously supplied into the growing crucible (11) through the filling pipe (15) and the guide pipe (14). The raw material is formed of granulated powder, and the amount of melt is stable because it is continuously and lightly supplied so as not to be defeated by the rising air current from the surface of the melt. Conventionally, the thickness of the melt fluctuates every about 96 seconds due to the weight of about 1 gr. Further, the distance to the melt surface is accurately measured using the laser length measuring device (18) on the table (20). (19) is a right angle prism that changes the direction of the laser, and (20) is a laser length measuring instrument.
It is the support of (18).

【0030】実施条件は以下のとおりである。 育成結晶:マンガン亜鉛フェライト(原料MnO、Zn
O、Fe23) 育成方法:ブリッジマン法(本発明法:育成ルツボのみ
使用) (従来法:溶融ルツボと育成ルツボを使用) 育成ルツボ:白金製、70mmφ×500mm以上 育成温度:1650℃(本発明法)、1670℃(従来法) 炉芯管:外径100mmφ/内径90mmφ×1000mm 育成速度:2mm/h 温度勾配:19℃/cm 融液厚さ:80mm 雰囲気:酸素 充填原料形状:円板(約1.0gr)及び粉体(約0.1gr) 連続充填量:0.64gr/min(0.1gr/個のものを6.
4個/minの速度で連続供給) (従来法は1個1grを供給し93.6secで溶融) 測長器:LD型(分解能:1000mmに対して±10μ
m) 温度制御器:デジタル式プログラム温度調節器
The implementation conditions are as follows. Growing crystal: manganese zinc ferrite (raw materials MnO, Zn
O, Fe 2 O 3 ) Growing method: Bridgman method (invention method: using only growing crucible) (Conventional method: using melting crucible and growing crucible) Growing crucible: made of platinum, 70 mmφ × 500 mm or more, growing temperature: 1650 ° C. (Invention method), 1670 ° C (conventional method) Furnace core tube: outer diameter 100 mmφ / inner diameter 90 mmφ × 1000 mm Growth rate: 2 mm / h Temperature gradient: 19 ° C / cm Melt thickness: 80 mm Atmosphere: Oxygen Filling raw material shape: Disc (about 1.0 gr) and powder (about 0.1 gr) Continuous filling amount: 0.64 gr / min (0.1 gr / piece 6.
(Continuous supply at a rate of 4 pieces / min) (Conventional method supplies 1 gr per piece and melts in 93.6 seconds) Length measuring device: LD type (resolution: ± 10μ for 1000 mm)
m) Temperature controller: Digital program temperature controller

【0031】上記の条件で単結晶を育成した。なお、本
発明法ではレーザー測長器にて図示の上部の一定の位置
から融液表面までの距離を測定し、距離の増加又は減少
の変動に応じて、融液の厚さが一定(80mm)となるよう
に温度制御器にて設定温度を制御した。
A single crystal was grown under the above conditions. In the method of the present invention, the distance from the constant position in the upper part of the drawing to the melt surface is measured by a laser length measuring machine, and the thickness of the melt is constant (80 mm depending on the increase or decrease of the distance). The set temperature was controlled by the temperature controller so that

【0032】得られた単結晶の長さと組成分布の関係を
図2に示す。本発明法によれば、単結晶の長さが長くな
ってもMnO、ZnO、Fe23の組成割合が殆ど変化せ
ず、400mm長まで可能であることがわかる。一方、従
来法では、特にMnOとFe23の組成割合の変化が著し
く、250mmの長さの単結晶育成は困難であり、300
mmが限度である。
The relationship between the length of the obtained single crystal and the composition distribution is shown in FIG. According to the method of the present invention, it can be understood that the composition ratio of MnO, ZnO, and Fe 2 O 3 hardly changes even when the length of the single crystal becomes long, and the length can be up to 400 mm. On the other hand, according to the conventional method, the composition ratio of MnO and Fe 2 O 3 is remarkably changed, and it is difficult to grow a single crystal having a length of 250 mm.
mm is the limit.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
融液の厚さを一定にでき、組成の変動がなく、不純物が
少ない高品質の大型の単結晶を育成することができ、し
かも安価である。
As described above, according to the present invention,
The thickness of the melt can be kept constant, the composition does not fluctuate, a large single crystal of high quality with few impurities can be grown, and it is inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明に係る融液層制御可能な連続充填
式単結晶育成装置の外観説明図である。
FIG. 1 is an external view of a continuous filling type single crystal growing apparatus capable of controlling a melt layer according to the present invention.

【図2】図2は実施例において従来法と本発明法で得ら
れたフェライト単結晶の組成分布図である。
FIG. 2 is a composition distribution diagram of ferrite single crystals obtained by a conventional method and an inventive method in Examples.

【図3】本発明の実施に用いる粉体原料連続供給装置の
一例を示す図で、(a)は正面図、(b)は側面図である。
3A and 3B are diagrams showing an example of a powder raw material continuous supply apparatus used for carrying out the present invention, in which FIG. 3A is a front view and FIG. 3B is a side view.

【符号の説明】[Explanation of symbols]

11 育成ルツボ 12 固体 13 液体 16 粉体原料収納容器 18 レーザー測長器 24 炉芯管 31 粉体原料収納容器 35 回転体 36 溝 11 Growing crucible 12 Solid 13 Liquid 16 Powder raw material storage container 18 Laser length measuring device 24 Furnace core tube 31 Powder raw material storage container 35 Rotating body 36 Groove

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉と、その内側に配置した単結晶育
成ルツボと、この育成ルツボ内に電気炉上部から連続的
に原料を供給する装置を用いて引下げ法にて単結晶を育
成するに際して、上部の一定の位置より融液表面までの
距離を測定し、その距離の変動に対応して加熱設定温度
を可変させることにより、融液の厚みを一定に制御する
ことを特徴とする引下げ式大型単結晶育成方法。
1. When growing a single crystal by a pull-down method using a heating furnace, a single-crystal growing crucible arranged inside the heating crucible, and a device for continuously supplying the raw material into the growing crucible from the upper part of the electric furnace. The pull-down type is characterized in that the thickness of the melt is controlled to be constant by measuring the distance from a fixed position on the upper part to the surface of the melt and varying the heating set temperature according to the fluctuation of the distance. Large single crystal growth method.
【請求項2】 加熱炉と、その内側に配置した単結晶育
成ルツボと、この育成ルツボ内に電気炉上部から連続的
に原料を供給する装置を用いて引下げ法にて単結晶を育
成する装置において、上部の一定の位置より融液表面ま
での距離を測定する測定器と、測定された距離に対応し
て加熱設定温度を可変する温度制御装置を備えたことを
特徴とする引下げ式大型単結晶育成装置。
2. An apparatus for growing a single crystal by a pulling down method using a heating furnace, a single crystal growth crucible arranged inside thereof, and an apparatus for continuously supplying a raw material into the growth crucible from the upper part of the electric furnace. In the above, a large pull-down single unit is equipped with a measuring device for measuring the distance from a certain position on the upper part to the melt surface and a temperature control device for varying the heating set temperature according to the measured distance. Crystal growth equipment.
【請求項3】 加熱炉と、その内側に配置した単結晶育
成ルツボと、この育成ルツボ内に電気炉上部から連続的
に原料を供給する装置を用いて引下げ法にて単結晶を育
成するに際して、原料の長径/厚みの比が1/1以上の
形状比率を有する形状で、かつ、1個の原料の重量が
0.01〜0.4gである粉体原料を、電気炉上部から単
結晶育成ルツボ内に連続的に供給することを特徴とする
引下げ式大型単結晶育成方法。
3. When growing a single crystal by a pulling down method using a heating furnace, a single crystal growth crucible arranged inside thereof, and a device for continuously supplying the raw material into the growth crucible from the upper part of the electric furnace. , A powder raw material having a shape in which the ratio of major axis / thickness of the raw material is 1/1 or more and the weight of one raw material is 0.01 to 0.4 g, is obtained by single crystal from the upper part of the electric furnace. A pull-down large-sized single crystal growing method characterized by continuously supplying into a growing crucible.
【請求項4】 加熱炉と、その内側に配置した単結晶育
成ルツボと、この育成ルツボ内に電気炉上部から連続的
に原料を供給する装置を用いて引下げ法にて単結晶を育
成する装置において、原料の長径/厚みの比が1/1以
上の形状比率を有する形状で、かつ、1個の原料の重量
が0.01〜0.4gである粉体原料を収容する容器と、
粉体原料を受入れ且つ排出するための溝を備えた回転体
と、該回転体の溝から排出される粉体原料を単結晶育成
ルツボ内に送給する装置とを有する原料連続送給装置
を、電気炉上部に配置したことを特徴とする引下げ式大
型単結晶育成装置。
4. An apparatus for growing a single crystal by a pulling down method using a heating furnace, a single crystal growth crucible arranged inside the heating furnace, and an apparatus for continuously supplying the raw material into the growth crucible from the upper part of the electric furnace. In the above, a container having a shape in which a ratio of major axis / thickness of the raw material has a shape ratio of 1/1 or more, and a powder raw material in which the weight of one raw material is 0.01 to 0.4 g,
A raw material continuous feeding device having a rotating body having a groove for receiving and discharging the powdery raw material, and a device for feeding the powdery raw material discharged from the groove of the rotating body into a single crystal growing crucible. , A pull-down large-scale single crystal growing device, which is arranged at the upper part of the electric furnace.
JP5201797A 1993-07-22 1993-07-22 Drawdown type method for growing large-sized single crystal and apparatus therefor Pending JPH0733580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5201797A JPH0733580A (en) 1993-07-22 1993-07-22 Drawdown type method for growing large-sized single crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5201797A JPH0733580A (en) 1993-07-22 1993-07-22 Drawdown type method for growing large-sized single crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0733580A true JPH0733580A (en) 1995-02-03

Family

ID=16447098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5201797A Pending JPH0733580A (en) 1993-07-22 1993-07-22 Drawdown type method for growing large-sized single crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0733580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026963A1 (en) 2008-09-03 2010-03-11 株式会社マキタ Work tool
CN111793820A (en) * 2020-08-04 2020-10-20 上海岚玥新材料科技有限公司 Novel continuous feeding micro-pulling-down method device and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026963A1 (en) 2008-09-03 2010-03-11 株式会社マキタ Work tool
CN111793820A (en) * 2020-08-04 2020-10-20 上海岚玥新材料科技有限公司 Novel continuous feeding micro-pulling-down method device and process

Similar Documents

Publication Publication Date Title
US4203951A (en) Apparatus for growing single crystals from melt with additional feeding of comminuted charge
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
JP3527203B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2013129551A (en) Apparatus and method for producing single crystal
US4379021A (en) Method of manufacturing single crystals
JPH02157180A (en) Pulling up device for single crystal rod
JPH0733580A (en) Drawdown type method for growing large-sized single crystal and apparatus therefor
JP3551242B2 (en) Method and apparatus for producing oxide single crystal
JP4916425B2 (en) Crystal growth method and apparatus
JP3550495B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2734485B2 (en) Single crystal growth equipment
JP2831906B2 (en) Single crystal manufacturing equipment
JP2721242B2 (en) Silicon single crystal pulling method
JP2015020942A (en) Apparatus and method for growing crystal
JPH061688A (en) Method and device for feeding granular dopant
KR940006041B1 (en) Continuous growing method and apparatus for single crystals
US6926771B2 (en) Apparatus for growing stoichiometric lithium niobate and lithium tantalate single crystals and method of growing the same
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
RU2009104734A (en) METHOD FOR GROWING CRYSTALS BY A TRAFFICLESS METHOD AND A DEVICE FOR ITS IMPLEMENTATION
JP2002167299A (en) Method of growing single crystal
JPS5815474B2 (en) Single crystal manufacturing method and equipment used for it
KR100209578B1 (en) Mn-zn ferrite material feed device for single crystal growth
JP3010848B2 (en) Single crystal manufacturing method
RU1122015C (en) Method of growing monocrystals from melt
JPS62176993A (en) Method for bringing up manganese zinc ferrite single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250