JPH07335476A - Manufacture of layered ceramic electronic component - Google Patents

Manufacture of layered ceramic electronic component

Info

Publication number
JPH07335476A
JPH07335476A JP6127853A JP12785394A JPH07335476A JP H07335476 A JPH07335476 A JP H07335476A JP 6127853 A JP6127853 A JP 6127853A JP 12785394 A JP12785394 A JP 12785394A JP H07335476 A JPH07335476 A JP H07335476A
Authority
JP
Japan
Prior art keywords
firing
ceramic
electronic component
batch furnace
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6127853A
Other languages
Japanese (ja)
Inventor
Masayuki Yamada
昌幸 山田
Yasunobu Yoneda
康信 米田
Shinichi Takakura
真一 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6127853A priority Critical patent/JPH07335476A/en
Publication of JPH07335476A publication Critical patent/JPH07335476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To provide a method, which can inhibit delamination and along with that, makes it possible to obtain a layered ceramic electronic component having superior environment-proof characteristics. CONSTITUTION:In the case where layered materials 13 formed of a plurality of raw ceramic layers via an internal electrode are fired in a batch type furnace 14, the pressure in the furnace 14 is made higher than the atmospheric pressure to conduct a firing of the layered material 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック積層電子部
品の製造方法に関し、特に、焼成工程が改良されたセラ
ミック積層電子部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic laminated electronic component, and more particularly to a method for producing a ceramic laminated electronic component having an improved firing process.

【0002】本発明は、積層コンデンサの他、セラミッ
ク積層圧電共振部品やセラミック多層基板などのセラミ
ック積層電子部品の製造方法に一般的に利用することが
できる。
INDUSTRIAL APPLICABILITY The present invention can be generally used in a method for manufacturing a ceramic multilayer piezoelectric resonance component, a ceramic multilayer electronic component such as a ceramic multilayer substrate, as well as a multilayer capacitor.

【0003】[0003]

【従来の技術】積層コンデンサを例にとり、従来のセラ
ミック積層電子部品の製造方法の一例を説明する。積層
コンデンサの製造に際しては、まず、誘電体セラミック
スを主成分とするセラミックスラリーを用い、セラミッ
クグリーンシートを成形する。しかる後、セラミックグ
リーンシート上にPd等の導電性粉末を含有した内部電
極ペーストをスクリーン印刷し、内部電極を形成する。
しかる後内部電極が形成されたセラミックグリーンシー
トを積層コンデンサを構成するように積層し、更に上下
に内部電極ペーストの印刷されていないセラミックグリ
ーンシートを適宜の枚数積層し、積層体を得る。この積
層体を厚み方向に加圧することにより成形体を得る。更
に、上記のようにして得られた成形体を焼成し、内部電
極の焼き付けと共にセラミックスの焼成を行い、それに
よって一体焼成型の焼結体を得る。最後に、得られた焼
結体の外表面に、外部電極を形成し、積層コンデンサを
得る。
2. Description of the Related Art An example of a conventional method for manufacturing a ceramic multilayer electronic component will be described by taking a multilayer capacitor as an example. When manufacturing a multilayer capacitor, first, a ceramic green sheet is formed using a ceramic slurry containing a dielectric ceramic as a main component. Then, an internal electrode paste containing a conductive powder such as Pd is screen-printed on the ceramic green sheet to form internal electrodes.
Thereafter, the ceramic green sheets having the internal electrodes formed thereon are laminated so as to form a laminated capacitor, and an appropriate number of ceramic green sheets on which the internal electrode paste is not printed are laminated on the upper and lower sides to obtain a laminated body. A molded body is obtained by pressing this laminated body in the thickness direction. Further, the molded body obtained as described above is fired, the internal electrodes are fired, and the ceramics are fired to obtain an integrally fired sintered body. Finally, external electrodes are formed on the outer surface of the obtained sintered body to obtain a multilayer capacitor.

【0004】ところで、上記焼成に際しては、生産性を
高める為に、トンネル炉が一般的に用いられていた。す
なわち、ベルトコンベアーなどの搬送手段上に焼成前の
成形体を配置し、ベルトコンベアー上において多数の成
形体を搬送しつつトンネル炉を通過させ、該トンネル炉
を通過させる間に上記成形体を所定の温度プロファイル
に従って焼成していた。
By the way, in the above firing, a tunnel furnace is generally used in order to improve productivity. That is, the molded body before firing is arranged on a conveyor such as a belt conveyor, and while passing a large number of molded bodies on the belt conveyor, it is passed through a tunnel furnace, and the molded body is preliminarily specified while passing through the tunnel furnace. It was baked according to the temperature profile of.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
トンネル炉を用いた焼成方法では、焼結体においてデラ
ミネーションと称されている層間剥離現象が生じること
があった。このようなデラミネーションが生じていた場
合、外部電極を形成し、積層コンデンサを得たとして
も、層間剥離が生じている部分から湿気等が侵入し易
く、従って安定な特性を発揮し得る積層コンデンサを提
供することができなかった。
However, in the firing method using the conventional tunnel furnace, the delamination phenomenon called delamination sometimes occurs in the sintered body. When such delamination occurs, even if an external electrode is formed and a multilayer capacitor is obtained, moisture or the like easily enters from the portion where delamination occurs, and thus stable characteristics can be exhibited. Could not be provided.

【0006】本発明の目的は、焼成に際してのデラミネ
ーションが発生し難く、従って耐環境特性に優れたセラ
ミック積層電子部品を提供し得る製造方法を提供するこ
とにある。
An object of the present invention is to provide a manufacturing method capable of providing a ceramic laminated electronic component which is less likely to cause delamination during firing and therefore has excellent environmental resistance.

【0007】[0007]

【課題を解決するための手段】本発明は、内部電極を介
して複数のセラミック層が積層されている成形体を焼成
することにより得られた一体焼成型の焼結体を用いたセ
ラミック積層電子部品の製造方法において、上記焼成を
バッチ炉において行い、且つ該焼成に際しての最高温度
におけるバッチ炉の内圧を大気圧よりも高くして上記成
形体を焼成することを特徴とする。本発明が適用される
セラミック積層電子部品としては、積層コンデンサの
他、セラミック多層基板や積層セラミック圧電共振部品
のようなセラミック積層電子部品を広く含むものとす
る。
DISCLOSURE OF THE INVENTION The present invention relates to a ceramic laminated electron using an integrally fired sintered body obtained by firing a molded body in which a plurality of ceramic layers are laminated via internal electrodes. In the method of manufacturing a component, the firing is performed in a batch furnace, and the formed body is fired by increasing the internal pressure of the batch furnace at the highest temperature during the firing above atmospheric pressure. The ceramic laminated electronic component to which the present invention is applied includes a wide variety of ceramic laminated electronic components such as a ceramic multilayer substrate and a laminated ceramic piezoelectric resonance component in addition to a laminated capacitor.

【0008】本発明において焼成に供される成形体と
は、上記のようなセラミック積層電子部品に用いられる
ものであって、内部電極を介して複数の生のセラミック
層が積層された構造を有する。この場合、内部電極を介
して複数のセラミック層が積層された構造とは、1枚以
上の内部電極を介して生のセラミック層が厚み方向に積
層されている構造を広く含むものとし、同じ高さ位置に
複数の内部電極が配置されていてもよい。
The molded body used for firing in the present invention is used for the above-mentioned ceramic laminated electronic component and has a structure in which a plurality of raw ceramic layers are laminated via internal electrodes. . In this case, the structure in which a plurality of ceramic layers are laminated via the internal electrodes widely includes a structure in which a raw ceramic layer is laminated in the thickness direction via one or more internal electrodes, and the same height A plurality of internal electrodes may be arranged at the position.

【0009】本発明では、焼成はバッチ炉で行われる。
焼成をバッチ炉で行うのは、上記のように焼成に際して
の最高温度におけるバッチ炉の内圧を大気圧よりも高く
し、すなわち成形体に加わる圧力を高めるためであり、
それによってデラミネーションの発生を抑制するためで
ある。
In the present invention, firing is carried out in a batch furnace.
The firing is carried out in a batch furnace in order to increase the internal pressure of the batch furnace at the highest temperature during firing above atmospheric pressure, that is, to increase the pressure applied to the molded body,
This is to suppress the occurrence of delamination.

【0010】バッチ炉としては、従来よりセラミック電
子部品の焼成に用いられていた適宜の形式のバッチ炉を
用いることができ、特に限定されるものではない。ま
た、バッチ炉の内圧と大気圧との関係については、焼成
に際しての最高温度におけるバッチ炉の内圧を、大気圧
よりも高くすれば良く、このバッチ炉の内圧が大気圧よ
りも高ければ高いほどデラミネーションの発生を効果的
に抑制することができる。もっとも、デラミネーション
の発生を抑制するためにはバッチ炉の内圧は高ければ高
いほど好ましいが、他の問題、例えばバッチ炉の大型化
等を考慮すると、最高温度におけるバッチ炉の内圧が大
気圧よりも20kg/cm2 以下の範囲で高くなること
が好ましく、より好ましくは、バッチ炉の内圧は、大気
圧に比べて5〜10kg/cm2 程度とされる。
As the batch furnace, a batch furnace of an appropriate type conventionally used for firing ceramic electronic parts can be used, and is not particularly limited. Regarding the relationship between the internal pressure of the batch furnace and the atmospheric pressure, the internal pressure of the batch furnace at the maximum temperature during firing may be higher than the atmospheric pressure, and the higher the internal pressure of the batch furnace is, the higher the atmospheric pressure. The occurrence of delamination can be effectively suppressed. However, in order to suppress the occurrence of delamination, the higher the internal pressure of the batch furnace, the more preferable, but in consideration of other problems such as the size increase of the batch furnace, the internal pressure of the batch furnace at the maximum temperature is higher than the atmospheric pressure. It is also preferable that the pressure becomes higher in the range of 20 kg / cm 2 or less, and more preferably the internal pressure of the batch furnace is set to about 5 to 10 kg / cm 2 as compared with the atmospheric pressure.

【0011】バッチ炉の内圧を調整する方法としては、
バッチ炉内に大気圧に比べて圧力の高い適宜のガスを供
給することにより行い得る。この場合、供給するガスと
して、焼成雰囲気を調整するのに適したガスを用いれ
ば、雰囲気調整と、本発明におけるバッチ炉内の圧力調
整の双方を上記ガスの供給により果たすことができる。
As a method of adjusting the internal pressure of the batch furnace,
It can be performed by supplying an appropriate gas having a pressure higher than atmospheric pressure into the batch furnace. In this case, if a gas suitable for adjusting the firing atmosphere is used as the gas to be supplied, both the atmosphere adjustment and the pressure adjustment in the batch furnace in the present invention can be achieved by the supply of the gas.

【0012】上記のような例を、具体的に説明する。例
えば、鉛複合ペロブスカイト系誘電体セラミックスを用
いて積層セラミック電子部品を焼成する場合、内部電極
を介して複数の生のセラミック層が積層されている成形
体を、所定の雰囲気で焼成する必要がある。従って、雰
囲気ガスの圧力を高めることにより、本発明の方法に従
って、焼成を行うことができ、焼成に際しての雰囲気調
整と、バッチ炉内の圧力の調整を上記ガスの供給により
同時に果たすことができる。
The above example will be specifically described. For example, when firing a laminated ceramic electronic component using a lead composite perovskite-based dielectric ceramic, it is necessary to fire a molded body in which a plurality of raw ceramic layers are laminated via internal electrodes in a predetermined atmosphere. . Therefore, by increasing the pressure of the atmosphere gas, firing can be performed according to the method of the present invention, and the atmosphere at the time of firing and the pressure in the batch furnace can be adjusted at the same time by supplying the gas.

【0013】なお、本発明のセラミック積層電子部品の
製造方法は、上記のようにバッチ炉を用いて焼成し、且
つ焼成に際しての圧力条件を上記のように設定したこと
に特徴を有し、その他の工程については特に限定される
ものではない。従って、成形体を用意する工程や、焼成
後に外部電極を形成する工程等については、従来より公
知のセラミック積層電子部品の製造方法に従って適宜行
い得る。
The method for producing a ceramic laminated electronic component of the present invention is characterized in that it is fired in a batch furnace as described above, and the pressure conditions during firing are set as described above. The step of is not particularly limited. Therefore, the step of preparing the molded body, the step of forming the external electrode after firing, and the like can be appropriately performed according to a conventionally known method for manufacturing a ceramic laminated electronic component.

【0014】[0014]

【発明の作用及び効果】本発明のセラミック積層電子部
品の製造方法では、バッチ炉を用いて成形体が焼成さ
れ、該焼成に際し、最高温度におけるバッチ炉の内圧が
大気圧よりも高く設定される。従って、焼成工程におい
て、層間剥離現象が生じようとしても、周囲の圧力が大
気圧よりも高いため、層間剥離の発生が抑制される。そ
の結果、デラミネーションの生じていない一体焼成型の
セラミック焼結体を安定に得ることができ、ひいてはセ
ラミック積層電子部品の耐環境特性を高めることが可能
となる。
In the method for producing a ceramic laminated electronic component of the present invention, the molded body is fired in the batch furnace, and the internal pressure of the batch furnace at the highest temperature is set higher than the atmospheric pressure during the firing. . Therefore, even if the delamination phenomenon occurs in the firing step, since the ambient pressure is higher than the atmospheric pressure, the delamination is suppressed. As a result, it is possible to stably obtain an integrally fired ceramic sintered body in which delamination does not occur, and it is possible to enhance the environmental resistance characteristics of the ceramic laminated electronic component.

【0015】[0015]

【実施例の説明】以下、図面を参照しつつ実施例を説明
することにより、本発明を明らかにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be clarified by describing embodiments with reference to the drawings.

【0016】まず、図1(a)に示すように、矩形のセ
ラミックグリーンシート11上にPdを導電性粉末とし
て含む内部電極ペースト12を印刷した。次に、上記内
部電極ペースト12が印刷されたセラミックグリーンシ
ート11を、図1(a)に示す向きと、図1(b)に示
す向きとなるように交互に複数枚積層し、更に上下に内
部電極ペースト12が印刷されていない適宜の枚数のセ
ラミックグリーンシートを積層し、積層体を得た。得ら
れた積層体を厚み方向に加圧し、図2に示す成形体を得
た。成形体13では、上記内部電極ペースト12が生の
セラミック層を介して積層されている。
First, as shown in FIG. 1A, an internal electrode paste 12 containing Pd as a conductive powder was printed on a rectangular ceramic green sheet 11. Next, a plurality of the ceramic green sheets 11 on which the internal electrode paste 12 is printed are alternately laminated so as to have the orientation shown in FIG. 1A and the orientation shown in FIG. An appropriate number of ceramic green sheets on which the internal electrode paste 12 was not printed were laminated to obtain a laminated body. The obtained laminated body was pressed in the thickness direction to obtain a molded body shown in FIG. In the molded body 13, the internal electrode paste 12 is laminated via a green ceramic layer.

【0017】次に、図3に示すバッチ炉14内に、上記
のようにして用意された複数の成形体13を投入し、焼
成を行った。焼成に際しては、バッチ炉14内に、ガス
導入管14aからガス(酸素やエアー等)を導入し、焼
成を行った。なお、14bはガス排出管を示す。また、
上記ガス導入によるバッチ炉14内の圧力を下記の表1
に示すように種々変更し(実施例1では、内外の圧力差
を2kg/cm2 、実施例2では圧力差を5kg/cm
2 、実施例3では10kg/cm2 とした)また、比較
のために、内外の圧力差を0とし、同様に焼成をおこな
った。
Next, the plurality of molded bodies 13 prepared as described above were put into the batch furnace 14 shown in FIG. 3 and fired. At the time of firing, gas (oxygen, air, etc.) was introduced into the batch furnace 14 from the gas introduction pipe 14a to perform firing. In addition, 14b shows a gas discharge pipe. Also,
The pressure in the batch furnace 14 due to the introduction of the gas is shown in Table 1 below.
Various changes (in Example 1, the pressure difference between the inside and outside was 2 kg / cm 2 , and in Example 2 the pressure difference was 5 kg / cm 2).
(2 , 10 kg / cm 2 in Example 3) For comparison, the pressure difference between the inside and outside was set to 0, and firing was performed in the same manner.

【0018】上記のようにして得られた実施例1〜3及
び比較例の焼結体の外表面に外部電極を付与し、それぞ
れ、積層コンデンサを作製した。得られた積層コンデン
サにつき、積層コンデンサを切断し顕微鏡で観察するこ
とによりデラミネーションの発生率を評価した。結果
を、下記の表1に示す。また、下記の要領で高温負荷試
験を行い、高温負荷初期故障率を評価した。結果を下記
の表1に示す。
External electrodes were provided on the outer surfaces of the sintered bodies of Examples 1 to 3 and Comparative Example obtained as described above, and multilayer capacitors were produced. With respect to the obtained multilayer capacitor, the rate of delamination was evaluated by cutting the multilayer capacitor and observing it with a microscope. The results are shown in Table 1 below. Further, a high temperature load test was conducted in the following manner to evaluate the high temperature load initial failure rate. The results are shown in Table 1 below.

【0019】高温負荷試験…積層コンデンサを85°C
の雰囲気に置き、定格電圧の4倍の電圧を印加し、初期
故障が発生しているか否かを評価した。
High-temperature load test: Multilayer capacitors at 85 ° C
It was placed in an atmosphere of No. 3, and a voltage four times the rated voltage was applied to evaluate whether or not an initial failure occurred.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように、内外の圧力差が
0の比較例では、得られた積層コンデンサにおいて高温
初期故障率が500ppmと高く、デラミネーションの
発生率も1200ppmと高かった。これに対して、実
施例1〜3では、バッチ炉の内圧が大気圧に比べて、そ
れぞれ2〜10Kg/cm2 高められているため、高温
負荷初期故障率が低く、且つ、デラミネーションの発生
率も比較例に比べて非常に低いことがわかる。このこと
から、本発明においては、炉内外の圧力差が2kg/c
2 よりも5kg/cm2 の方が効果は高く、さらに1
0kg/cm2の方がより高い効果が得られることがわ
かる。
As is clear from Table 1, in the comparative example in which the pressure difference between the inside and the outside was 0, the high temperature initial failure rate of the obtained multilayer capacitor was as high as 500 ppm, and the occurrence rate of delamination was as high as 1200 ppm. On the other hand, in Examples 1 to 3, the internal pressure of the batch furnace was increased by 2 to 10 Kg / cm 2 as compared with the atmospheric pressure. Therefore, the high temperature load initial failure rate was low, and delamination occurred. It can be seen that the rate is also very low compared to the comparative example. From this, in the present invention, the pressure difference between the inside and outside of the furnace is 2 kg / c.
5kg / cm 2 is more effective than m 2
It can be seen that a higher effect can be obtained with 0 kg / cm 2 .

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)及び(b)は実施例において用意したセ
ラミックグリーンシート及びその上に形成された内部電
極ペーストの印刷形状を示す各平面図。
1A and 1B are plan views showing a printed shape of a ceramic green sheet prepared in an example and an internal electrode paste formed thereon.

【図2】実施例において用意した成形体の断面図。FIG. 2 is a cross-sectional view of a molded body prepared in an example.

【図3】バッチ炉内において成形体を焼成する工程を説
明するための概略構成図。
FIG. 3 is a schematic configuration diagram for explaining a step of firing a molded body in a batch furnace.

【符号の説明】 11…セラミックグリーンシート 12…内部電極ペースト 13…成形体 14…バッチ炉[Explanation of reference numerals] 11 ... Ceramic green sheet 12 ... Internal electrode paste 13 ... Molded body 14 ... Batch furnace

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部電極を介して複数のセラミック層が
積層されてなる成形体を焼成して得られた一体焼成型の
焼結体を用いたセラミック積層電子部品の製造方法にお
いて、 前記焼成に際し、成形体をバッチ炉内において焼成時の
最高温度におけるバッチ炉の内圧を大気圧よりも高くし
て焼成を行うことを特徴とする、セラミック積層電子部
品の製造方法。
1. A method for producing a ceramic laminated electronic component using an integrally fired sintered body obtained by firing a molded body in which a plurality of ceramic layers are laminated via internal electrodes, wherein the firing is performed. A method for manufacturing a ceramic laminated electronic component, comprising: firing a molded body in a batch furnace at a maximum temperature during firing at an internal pressure of the batch furnace higher than atmospheric pressure.
JP6127853A 1994-06-09 1994-06-09 Manufacture of layered ceramic electronic component Pending JPH07335476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6127853A JPH07335476A (en) 1994-06-09 1994-06-09 Manufacture of layered ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6127853A JPH07335476A (en) 1994-06-09 1994-06-09 Manufacture of layered ceramic electronic component

Publications (1)

Publication Number Publication Date
JPH07335476A true JPH07335476A (en) 1995-12-22

Family

ID=14970293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6127853A Pending JPH07335476A (en) 1994-06-09 1994-06-09 Manufacture of layered ceramic electronic component

Country Status (1)

Country Link
JP (1) JPH07335476A (en)

Similar Documents

Publication Publication Date Title
JP3775366B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
US6704191B2 (en) Multilayer ceramic electronic components and methods for manufacturing the same
JPH06140279A (en) Burning method of laminated ceramic electronic part
JP2005101317A (en) Ceramic electronic component and its manufacturing method
US20090032168A1 (en) Method for producing ceramic compact
JP2007039755A (en) Composite metal powder, manufacturing method therefor, electroconductive paste, method for manufacturing electronic parts, and electronic parts
KR100492813B1 (en) Method of manufacturing monolithic piezoelectric ceramic device
JP2004179349A (en) Laminated electronic component and its manufacturing method
JPH07335476A (en) Manufacture of layered ceramic electronic component
JPH0266916A (en) Manufacture of laminated ceramic capacitor
JPH07263272A (en) Manufacture of laminated electronic component
JP3934983B2 (en) Multilayer electronic component and manufacturing method thereof
JP3924898B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2756745B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2000169243A (en) Sheath for baking and production of ceramic electronic component by using the same
JP2019067827A (en) Laminate electronic component
KR100237294B1 (en) Multi-layer ceramic capacitor manufacturing method
JP2000277367A (en) Multilayer ceramic capacitor
JPH08181514A (en) Manufacture of high frequency use ceramics component
JP3239666B2 (en) Manufacturing method of grain boundary insulated multilayer ceramic component
JP3873928B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0756850B2 (en) Ceramic multilayer capacitor and manufacturing method thereof
JP3780798B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2003124054A (en) Method of manufacturing laminated ceramic electronic part
JP2000302558A (en) Production of multilayer ceramic electronic parts