JPH073342B2 - Optical encoder - Google Patents

Optical encoder

Info

Publication number
JPH073342B2
JPH073342B2 JP62279834A JP27983487A JPH073342B2 JP H073342 B2 JPH073342 B2 JP H073342B2 JP 62279834 A JP62279834 A JP 62279834A JP 27983487 A JP27983487 A JP 27983487A JP H073342 B2 JPH073342 B2 JP H073342B2
Authority
JP
Japan
Prior art keywords
light
scale
transmitting portion
shaped groove
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62279834A
Other languages
Japanese (ja)
Other versions
JPH01121723A (en
Inventor
正彦 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62279834A priority Critical patent/JPH073342B2/en
Publication of JPH01121723A publication Critical patent/JPH01121723A/en
Publication of JPH073342B2 publication Critical patent/JPH073342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被測定物体の移動量や回転量等の変位を測定す
る光学式スケールを用いた光学式エンコーダに関し、特
に被測定物体の変位方向も同時に検出することのできる
簡易な構成の光学式エンコーダに関するものである。
Description: TECHNICAL FIELD The present invention relates to an optical encoder using an optical scale for measuring displacement such as movement amount and rotation amount of an object to be measured, and particularly to a displacement direction of the object to be measured. The present invention also relates to an optical encoder having a simple structure capable of simultaneously detecting.

(従来の技術) 従来より被測定物体の移動量や回転量の検出を光学式ス
ケールを利用して行う。所謂光学式エンコーダが例えば
特開昭59−63517号公報、特公昭57−12104号公報、特開
昭60−140119号公報等で提案されている。
(Prior Art) Conventionally, an optical scale is used to detect the movement amount and rotation amount of an object to be measured. So-called optical encoders have been proposed in, for example, JP-A-59-63517, JP-B-57-12104, and JP-A-60-140119.

例えば特公昭57−12104号公報では光透過性部材より成
る3角形状の溝断面を有する溝付格子より成る光学式ス
ケールを用いた光学式エンコーダを提案している。同公
報によれば3角形状の溝の傾斜面で2方向に射出した光
束を2個の受光素子で各々検出することにより、出力信
号として180度の電気的位相差を持つ2相出力信号(プ
ッシュプル出力関係の2相信号)を取出している。
For example, Japanese Examined Patent Publication (Kokoku) No. 57-12104 proposes an optical encoder using an optical scale formed of a grooved grating having a triangular groove cross section made of a light transmissive member. According to the publication, two light-receiving elements each detect a light beam emitted in two directions on the inclined surface of a triangular groove, and as a result, a two-phase output signal having an electrical phase difference of 180 degrees ( Two-phase signals related to push-pull output) are taken out.

しかしながら同公報の光学式エンコーダでは90度の位相
差を有する2相出力信号を得るには2相の出力信号の強
度関係を等しくする為の調整手段等を有しあまり好まし
い方法ではなかった。
However, the optical encoder of the above publication is not a very preferable method for obtaining a two-phase output signal having a phase difference of 90 degrees, because it has adjusting means for equalizing the intensity relationship of the two-phase output signals.

(発明が解決しようとする問題点) 本発明はプラスチックモールド等の製造方法により容易
に製作することができる所定形状のV型溝と平面光透過
部を有した光学式スケールと該光学スケールから所定位
置に配置した2つの受光素子を用いることにより、0度
〜180度の範囲内で任意の位相差を有する2つの出力信
号、特に90度の位相差を有する出力信号が容易に得ら
れ、被測定物の変位方向も同時に容易に求めることので
きる簡易な構成の光学式エンコーダの提供を目的とす
る。
(Problems to be Solved by the Invention) The present invention provides an optical scale having a V-shaped groove having a predetermined shape and a plane light transmitting portion, which can be easily manufactured by a manufacturing method such as a plastic mold, and a predetermined scale from the optical scale. By using the two light receiving elements arranged at the positions, it is possible to easily obtain two output signals having an arbitrary phase difference within the range of 0 degree to 180 degrees, particularly an output signal having a phase difference of 90 degrees. It is an object of the present invention to provide an optical encoder having a simple structure in which the displacement direction of an object to be measured can be easily obtained at the same time.

(問題点を解決するための手段) 光源からの光束を格子上の光透過部を設けた第1スケー
ルに入射させ、該光透過部からの光束を、被測定物の変
位方向に対して垂直方向に設けたV型溝と平面光透過部
とが該変位方向に対して水平方向に周期的に設けられた
第2スケールを介して、該第2スケールのV型溝の各傾
斜面に対して設けた2つの受光素子で受光する際、 該V型溝とその隣接するV型溝ピッチをPとしたとき、
該V型溝の傾斜面の幅をP/4とすることにより、前記2
つの受光素子より90度の位相差を有する2相出力信号を
出力させ、該2相出力信号より前記被測定物の変位方向
及び変位量を検出することである。
(Means for Solving Problems) A light beam from a light source is made incident on a first scale provided with a light transmitting portion on a grating, and the light beam from the light transmitting portion is perpendicular to the displacement direction of the object to be measured. Through a second scale in which a V-shaped groove and a planar light transmitting portion provided in the direction are periodically provided in the horizontal direction with respect to the displacement direction, with respect to each inclined surface of the V-shaped groove of the second scale. When light is received by the two light receiving elements provided as follows, when the V-shaped groove and its adjacent V-shaped groove pitch are P,
By setting the width of the inclined surface of the V-shaped groove to P / 4,
Two light receiving elements output two-phase output signals having a phase difference of 90 degrees, and the displacement direction and the displacement amount of the object to be measured are detected from the two-phase output signals.

(実施例) 第1図は本発明の光学式エンコーダの概略図、第2図は
第1図の一部分の光束の進行状態を示す概略図である。
図中1は発光素子であり、集光作用をするレンズ部1aを
有している。2は第1スケールとしての固定スケールで
あり、格子状の光透過部と光遮光部とを等間隔で周期的
にピッチPで設けている。3は第2スケールとしての可
動スケールであり、固定スケール2と対向配置すると共
に不図示の被測定物に取り付けられている。4a,4b,4cは
各々受光素子であり、後述する可動スケール3の各領域
からの光束を各々受光している。5は増幅回路、6は波
形整形回路であり、増幅回路5からの出力信号を波形整
形している。7は方向判別カウンタであり、波形整形回
路6からの2つの所定の位相差を有した出力信号を用い
て可動スケール3の移動方向を判別している。
(Embodiment) FIG. 1 is a schematic view of an optical encoder of the present invention, and FIG. 2 is a schematic view showing a traveling state of a light beam in a part of FIG.
In the figure, reference numeral 1 denotes a light emitting element, which has a lens portion 1a having a light condensing function. Reference numeral 2 is a fixed scale as a first scale, in which lattice-like light transmitting portions and light shielding portions are provided at equal intervals and at a pitch P. Reference numeral 3 denotes a movable scale as a second scale, which is arranged to face the fixed scale 2 and is attached to an object to be measured (not shown). Reference numerals 4a, 4b and 4c are light receiving elements, respectively, which receive light fluxes from respective regions of the movable scale 3 described later. Reference numeral 5 is an amplifier circuit, and 6 is a waveform shaping circuit, which shapes the output signal from the amplifier circuit 5. Reference numeral 7 is a direction discrimination counter, which discriminates the moving direction of the movable scale 3 using the output signal from the waveform shaping circuit 6 having two predetermined phase differences.

第3図(A),(B)は第1図に示す可動スケール3の
斜視図と光束の進行方向の断面図である。可動スケール
3はガラス若しくはプラスチック成形より成る平行平板
状の透明材料から成り、同図に示す如く発光素子1から
の光束の入射面上に、該可動スケールの可動方向Dに対
して垂直方向に固定スケール2の格子ピッチPと等しい
間隔で設けたV型溝31と可動方向Dに対して水平方向に
ピッチPと等しい間隔で設けた平面光透過部32とから構
成されている。
FIGS. 3A and 3B are a perspective view of the movable scale 3 shown in FIG. 1 and a cross-sectional view in the traveling direction of the light flux. The movable scale 3 is made of a parallel plate-shaped transparent material made of glass or plastic, and is fixed in a direction perpendicular to the movable direction D of the movable scale on the incident surface of the luminous flux from the light emitting element 1 as shown in FIG. The scale 2 is composed of V-shaped grooves 31 provided at intervals equal to the grating pitch P and plane light transmitting portions 32 provided at intervals equal to the pitch P in the horizontal direction with respect to the movable direction D.

V型溝32を形成する2つの傾斜面3a,3cの裏面である平
面3dに対する角度θは各々45度、平面光透過部3bは平面
3dと平行となっている。
The angles θ with respect to the flat surface 3d, which is the back surface of the two inclined surfaces 3a and 3c forming the V-shaped groove 32, are 45 degrees, and the flat light transmitting portion 3b is a flat surface.
It is parallel to 3d.

本実施例では発光素子1からの平行光束のうち固定スケ
ール2の透過部を通過した光束を可動スケール3に入射
させている。そして可動スケール3のV型溝31と平面光
透過部32を通過した光束を、第4図に示すように各々屈
折及び単に通過させて各々の受光素子4a,4b,4c面上に入
射させている。
In this embodiment, of the parallel light flux from the light emitting element 1, the light flux that has passed through the transmission part of the fixed scale 2 is made incident on the movable scale 3. Then, the light fluxes passing through the V-shaped groove 31 and the plane light transmitting portion 32 of the movable scale 3 are refracted and simply passed through as shown in FIG. 4 to be incident on the respective light receiving elements 4a, 4b, 4c. There is.

尚、本実施例において受光素子4bは特に設けなくても受
光素子4a,4cからの出力信号を用いれば、可動スケール
の変位状態を求めることができるが受光素子4a,4cから
の出力信号の位相関係を理解しやすくする為に以下必要
に応じて説明している。
Incidentally, in the present embodiment, the light receiving element 4b is not particularly provided, if the output signal from the light receiving element 4a, 4c is used, the displacement state of the movable scale can be obtained, but the phase of the output signal from the light receiving element 4a, 4c In order to make the relationship easier to understand, explanations are given below as necessary.

このとき本実施例では受光素子4a,4cからの出力信号に9
0度の位相差がつくように第3図に示すようにV型溝31
をピッチPの1/2の幅で、かつ2つの傾斜面3a,3cの幅が
等しく各々P/4となるようにし、又、平面光透過部32を
ピッチPの1/2の幅となるように設定している。
At this time, in this embodiment, the output signals from the light receiving elements 4a and 4c are
As shown in FIG. 3, the V-shaped groove 31 has a phase difference of 0 degree.
With a width of 1/2 of the pitch P, and the two inclined surfaces 3a and 3c have equal widths of P / 4, and the plane light transmitting portion 32 has a width of 1/2 of the pitch P. Is set.

本実施例では可動スケール3に空間的に強度分布が一様
な平行光束を垂直に入射させ、入射光束を可動スケール
3の3つの領域3a,3b,3cで3方向に分割している。この
うち傾斜面3a,3cの傾きによって決定される方向に射出
した光束を各々受光素子4a,4cに入射させ、又、平面光
透過部3bに垂直入射した光束を受光素子4bに入射させて
いる。そして受光素子4a,4cからの所定の位相差を有し
た2つの出力信号を用いて可動スケール3の移動量及び
移動方向等の変位状態を検出している。
In this embodiment, a parallel light flux having a spatially uniform intensity distribution is vertically incident on the movable scale 3, and the incident light flux is divided into three regions 3a, 3b, 3c of the movable scale 3 in three directions. Of these, the light beams emitted in the directions determined by the inclinations of the inclined surfaces 3a, 3c are made incident on the light receiving elements 4a, 4c, respectively, and the light beams vertically made incident on the plane light transmitting portion 3b are made incident on the light receiving element 4b. . Then, the displacement state of the movable scale 3 such as the moving amount and the moving direction is detected by using the two output signals having a predetermined phase difference from the light receiving elements 4a and 4c.

尚、受光素子4bからの出力信号を利用して発光素子1か
らの出力光を監視するようにしても良い。
The output light from the light emitting element 1 may be monitored using the output signal from the light receiving element 4b.

次に本実施例において、可動スケール3と固定スケール
2との相対的位置の違いにより、発光素子1から射出し
た光束の各受光素子4a,4b,4cへの入射状態について第5
図〜第8図に代表的な4つの状態を例にとり説明する。
Next, in the present embodiment, due to the relative position difference between the movable scale 3 and the fixed scale 2, the state of incidence of the light flux emitted from the light emitting element 1 on each of the light receiving elements 4a, 4b, 4c is fifth.
4 to 8 will be described as an example of four typical states.

第5図は固定スケール2の光透過部2aが可動スケール3
の平面光透過部3bと重なった場合である。固定スケール
2の光透過部2aを通過した平行光束は全て可動スケール
3の平面光透過部3bを通過し受光素子4bに入射する。こ
のとき受光素子4a,4cには光束は入射しない。
In FIG. 5, the light transmitting portion 2a of the fixed scale 2 is the movable scale 3
This is the case where it overlaps with the planar light transmitting portion 3b. All the parallel light fluxes that have passed through the light transmitting portion 2a of the fixed scale 2 pass through the flat light transmitting portion 3b of the movable scale 3 and enter the light receiving element 4b. At this time, no light beam is incident on the light receiving elements 4a and 4c.

第6図は固定スケール2の光透過部2aが可動スケール3
の平面光透過部3bの半分の領域と傾斜面3aに重なった場
合である。固定スケール2の光透過部2aを通過した光束
は、その1/2が平面光透過部3bに入射し、残りの1/2が傾
斜面3aに入射する。その結果、可動スケール3からの射
出光束は受光素子4a,4bに入射する。このとき受光素子4
cには光束は入射しない。
FIG. 6 shows that the light transmitting portion 2a of the fixed scale 2 is the movable scale 3
This is a case where the half area of the planar light transmitting portion 3b and the inclined surface 3a overlap. Half of the light flux that has passed through the light transmitting portion 2a of the fixed scale 2 is incident on the flat light transmitting portion 3b, and the other half is incident on the inclined surface 3a. As a result, the luminous flux emitted from the movable scale 3 enters the light receiving elements 4a and 4b. At this time, the light receiving element 4
No light beam enters c.

第7図は固定スケール2の光透過部2aが可動スケール3
のV型溝の両傾斜面3a,3cに重なった場合である。固定
スケール2の光透過部2aを通過した光束は、その1/2が
傾斜面3aに入射し、残りの1/2が傾斜面3cに入射し、こ
の結果、2つの受光素子4a,4cに各々等しく光束が入射
する。このとき受光素子4bには光束は入射しない。
In FIG. 7, the light transmitting portion 2a of the fixed scale 2 is the movable scale 3
This is the case where the V-shaped groove is overlapped with both inclined surfaces 3a and 3c. Half of the light flux that has passed through the light transmitting portion 2a of the fixed scale 2 is incident on the inclined surface 3a, and the other half is incident on the inclined surface 3c. As a result, the two light receiving elements 4a, 4c The light beams are equally incident on each. At this time, no light flux enters the light receiving element 4b.

第8図は固定スケール2の光透過部2aが可動スケール3
の平面光透過部3bの半分の領域と傾斜面3cに重なった場
合である。固定スケール2の光透過部2aを通過した光束
はその1/2が平面光透過部3bに入射し、残りの1/2が傾斜
面3cに入射し、この結果、受光素子4b,4cに光束が入射
する。このとき受光素子4aには光束は入射しない。
In FIG. 8, the light transmitting portion 2a of the fixed scale 2 is the movable scale 3
This is the case where half the area of the plane light transmitting portion 3b and the inclined surface 3c overlap. Half of the light flux that has passed through the light transmitting portion 2a of the fixed scale 2 is incident on the flat light transmitting portion 3b, and the other half is incident on the inclined surface 3c. As a result, the light flux is received by the light receiving elements 4b and 4c. Is incident. At this time, no light beam enters the light receiving element 4a.

次に第5図〜第8図に示した固定スケール2と可動スケ
ール3との相対的位置を連続的に変化させたときの各受
光素子4a,4b,4cで受光される光量変化を第9図(A),
(B)に示す。
Next, the change in the amount of light received by each of the light receiving elements 4a, 4b, 4c when the relative positions of the fixed scale 2 and the movable scale 3 shown in FIGS. Figure (A),
It shows in (B).

同図(A)は第5図〜第8図に相当する概略図、同図
(B)はそのときの各受光素子で受光される光量変化を
横軸を可動スケールの変化量をとり示している。9A,9C
は受光素子4a,4cで受光される光量の相対的変位を示し
ており、両方の位相関係は90度ずれたものとなってい
る。
5A shows a schematic diagram corresponding to FIGS. 5 to 8, and FIG. 8B shows the change in the amount of light received by each light receiving element at that time, with the horizontal axis representing the change amount of the movable scale. There is. 9A, 9C
Indicates the relative displacement of the amount of light received by the light receiving elements 4a and 4c, and the phase relationship between the two is shifted by 90 degrees.

第10図(A)は本実施例において固定スケール2と可動
スケール3の相対的位置を連続的に変位させたときの各
受光素子からの出力信号Sを第9図(B)と同様に示し
たものである。
FIG. 10 (A) shows the output signal S from each light receiving element when the relative positions of the fixed scale 2 and the movable scale 3 are continuously displaced in the same manner as in FIG. 9 (B). It is a thing.

同図においては発光素子1からの出射光が平行光束であ
り、固定スケールの透過部からの出射光が回折されな
く、又、可動スケールの各入射面と射出面で光量損失が
ないものと仮定した場合の出力信号Sを示している。
In the figure, it is assumed that the light emitted from the light emitting element 1 is a parallel light flux, the light emitted from the transmission part of the fixed scale is not diffracted, and there is no light amount loss on each of the entrance and exit surfaces of the movable scale. The output signal S in the case of doing is shown.

又、第10図(B)は同図(A)において前述の各仮定が
成り立たない実際に組立た場合の各受光素子4a,4b,4cか
らの出力信号の波形を示している。
Further, FIG. 10 (B) shows the waveforms of the output signals from the respective light receiving elements 4a, 4b, 4c in the case where the above-mentioned assumptions do not hold true in FIG.

第10図(A),(B)に示すように、いずれの場合も受
光素子4a,4cからの出力信号は互いに90度の位相差を有
している。
As shown in FIGS. 10A and 10B, in both cases, the output signals from the light receiving elements 4a and 4c have a phase difference of 90 degrees with each other.

本実施例における可動スケール3のV型溝の傾斜面3a,3
cは第3図に示す45度の傾斜角度に限定されるものでは
なく、傾斜面3a,3cに入射した光束が容易に2方向に分
離し、2つの受光素子に入射する角度であれば何度であ
っても良い。
The inclined surfaces 3a, 3 of the V-shaped groove of the movable scale 3 in this embodiment
c is not limited to the inclination angle of 45 degrees shown in FIG. 3, but any angle can be used as long as the light beam incident on the inclined surfaces 3a and 3c is easily separated into two directions and is incident on two light receiving elements. It may be degree.

但し、あまり傾斜角度θが小さいと光束の分離角度が小
さくなり受光素子を可動スケールから遠く離した位置に
配置しなければならなくなり、装置全体が大型してくる
ので良くない。又、傾斜角度θが大きすぎると傾斜面3
a,3cで屈折した光束が底面である面dにおいて全反射し
てくるので、全反射しない程度の角度に設定する必要が
ある。
However, if the inclination angle θ is too small, the separation angle of the light beam becomes small, and the light receiving element has to be arranged at a position distant from the movable scale, which is not preferable because the entire device becomes large. If the inclination angle θ is too large, the inclined surface 3
Since the light beam refracted by a and 3c is totally reflected on the surface d, which is the bottom surface, it is necessary to set the angle so that the light is not totally reflected.

この他、全反射しなくても傾斜角度が大きいと面dでの
光量損失が増加するので好ましくは傾斜角度θを 30<θ<60 の範囲内に設定するのが良い。
In addition to this, if the tilt angle is large even if the light is not totally reflected, the light amount loss on the surface d increases, so it is preferable to set the tilt angle θ within the range of 30 <θ <60.

本実施例においては、第3図(B)に示すように可動ス
ケール3の光入射面を前述のピッチを有するV型溝31
(傾斜面3a,3cの幅を1/4P)と平面光透過部32(その幅
を1/2P)で構成し、2つの受光素子4a,4cからの出力信
号に90度の位相差を付与した場合を示したが、V型溝と
平面光透過部を1ピッチ内に任意の幅で設けることによ
り、0度から180度の範囲内で任意の位相差を付与する
ことができる。
In this embodiment, as shown in FIG. 3B, the light incident surface of the movable scale 3 has a V-shaped groove 31 having the above-mentioned pitch.
(The width of the inclined surfaces 3a and 3c is 1 / 4P) and the plane light transmitting part 32 (its width is 1 / 2P), and the phase difference of 90 degrees is given to the output signals from the two light receiving elements 4a and 4c. Although the case is shown, by providing the V-shaped groove and the planar light transmitting portion with an arbitrary width within one pitch, an arbitrary phase difference can be imparted within the range of 0 to 180 degrees.

第11図は(A)はV型溝の幅を2/3P、平面光透過部の幅
を1/3Pとし、2つの受光素子からの出力信号に120度の
位相差を付与する場合の一実施例の概略図である。この
ときV型溝の2つの傾斜面の幅は1/3P、又、固定スケー
ルの光透過部と光遮光部の幅は各々1/2Pである。
FIG. 11A shows an example in which the width of the V-shaped groove is 2 / 3P and the width of the plane light transmitting portion is 1 / 3P, and a phase difference of 120 degrees is given to the output signals from the two light receiving elements. It is a schematic diagram of an example. At this time, the width of the two inclined surfaces of the V-shaped groove is 1 / 3P, and the widths of the light transmitting portion and the light shielding portion of the fixed scale are each 1 / 2P.

第11図(B),(C)はこのとき得られる各受光素子か
らの出力信号を第10図(A),(B)と同様に示したも
のであり、同図に示すように2つの受光素子からは互い
に120度の位相差を有した出力信号11A,11Cが得られる。
FIGS. 11 (B) and 11 (C) show output signals from the respective light receiving elements obtained at this time in the same manner as FIGS. 10 (A) and 10 (B), and as shown in FIG. Output signals 11A and 11C having a phase difference of 120 degrees from each other are obtained from the light receiving element.

一般に第3図(B)に示す形状においてピッチPにおけ
るV型溝の幅をaと平面光透過部の幅bに対する2つの
受光素子からの出力信号の位相差δとの関係は となる。
Generally, in the shape shown in FIG. 3B, the relationship between the width of the V-shaped groove at the pitch P and the phase difference δ of the output signals from the two light receiving elements with respect to the width b of the plane light transmitting portion is Becomes

尚、このとき固定スケールの光透過部と光遮光部の幅は
いずれも各々1/2Pである。
At this time, the widths of the light transmitting portion and the light shielding portion of the fixed scale are both 1 / 2P.

以上の各実施例において可動スケールと固定スケールと
の配置を交換し、発光素子1側に可動スケールを配置
し、受光素子側に固定スケールを配置しても本発明の目
的を同様に達成することができる。
In each of the above embodiments, the arrangement of the movable scale and the fixed scale is exchanged, the movable scale is arranged on the light emitting element 1 side, and the fixed scale is arranged on the light receiving element side. You can

第12図は本発明をロータリーエンコーダに適用したとき
の一実施例の概略図、第13図は本発明をリニアエンコー
ダに適用したときの一実施例の概略図である。
FIG. 12 is a schematic diagram of an embodiment when the present invention is applied to a rotary encoder, and FIG. 13 is a schematic diagram of an embodiment when the present invention is applied to a linear encoder.

第12図,第13図において1は発光素子、2は固定スケー
ル、3は可動スケールであり、例えば第3図(A),
(B)に示す形成より構成されている。4a,4b,4cは各々
受光素子である。
In FIGS. 12 and 13, 1 is a light emitting element, 2 is a fixed scale, 3 is a movable scale, and for example, FIG.
(B) is formed. Reference numerals 4a, 4b and 4c are light receiving elements.

可動スケール3は被測定物体に各々取り付けられてい
る。固定スケール2の透過部と可動スケール3のV型溝
を通過した光束を受光素子4a,4cで所定の位相差を付与
した状態で受光することにより、被測定物体の変位方向
及び変位量等を検出している。
The movable scales 3 are attached to the objects to be measured. The displacement direction and displacement amount of the object to be measured can be detected by receiving the light flux that has passed through the transmission part of the fixed scale 2 and the V-shaped groove of the movable scale 3 with the light receiving elements 4a and 4c providing a predetermined phase difference. It is detecting.

(発明の効果) 本発明によれば1ピッチ内に所定形状のV型溝と平面光
透過部を形成した光学式スケールを用い、光学式スケー
ルを通過した光束を2つの受光素子に各々入射させるこ
とにより、任意の位相差を有した2つの出力信号を容易
に得ることが出来る光学式エンコーダを達成することが
できる。
(Effect of the Invention) According to the present invention, an optical scale in which a V-shaped groove having a predetermined shape and a plane light transmitting portion are formed within one pitch is used, and a light flux passing through the optical scale is made incident on two light receiving elements, respectively. As a result, it is possible to achieve an optical encoder that can easily obtain two output signals having an arbitrary phase difference.

特に従来の検出方法で問題となっていた光源の指向性、
固定スケールと可動スケールとのアジマス角のズレ、そ
して固定スケールと可動スケールとの空隙間の変動等に
よる位相差付与の誤差を改善した安定した出力信号が得
られる光学式エンコーダを達成することができる。
In particular, the directivity of the light source, which has been a problem with conventional detection methods,
It is possible to achieve an optical encoder that can obtain a stable output signal with an error in phase difference imparted due to a deviation of the azimuth angle between the fixed scale and the movable scale and a change in the gap between the fixed scale and the movable scale. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の光学式エンコーダの概略斜視図、第2
図は第1図の一部分の光束の進行状態を示す概略図、第
3図(A),(B)は第1図の可動スケールの説明図、
第4図は第1図の可動スケールを通過する光束の説明
図、第5図〜第8図は各々第1図の固定スケールと可動
スケールが特定位置にある場合、双方のスケールを通過
する光束の説明図、第9図(A),(B)、第10図
(A),(B)は各々第1図の固定スケールと可動スケ
ールとを連続的に変位させたときの説明図、第11図
(A),(B),(C)は本発明に係る可動スケールの
V型溝と平面光透過部の幅を変化させたときの一実施例
の説明図、第12図は本発明をロータリーエンコーダに適
用したときの一実施例の概略図、第13図は本発明をリニ
アエンコーダーに適用したときの一実施例の概略図であ
る。 図中、1は発光素子、2は固定スケール、3は可動スケ
ール、4a,4b,4cは受光素子、5は増幅器、6は波形整形
回路、7は方向判別カウンタ、31はV型溝、32は平面光
透過部である。
1 is a schematic perspective view of an optical encoder of the present invention, FIG.
FIG. 3 is a schematic view showing a traveling state of a part of the luminous flux of FIG. 1, FIGS. 3A and 3B are explanatory views of the movable scale of FIG.
FIG. 4 is an explanatory view of a light beam passing through the movable scale of FIG. 1, and FIGS. 5 to 8 are light beams passing through both scales when the fixed scale and the movable scale of FIG. 1 are at specific positions. And FIGS. 9 (A), (B), and FIGS. 10 (A), (B) are explanatory views when the fixed scale and the movable scale of FIG. 1 are continuously displaced, respectively. 11 (A), (B), and (C) are explanatory views of an embodiment in which the widths of the V-shaped groove and the plane light transmitting portion of the movable scale according to the present invention are changed, and FIG. FIG. 13 is a schematic view of an example in which is applied to a rotary encoder, and FIG. 13 is a schematic view of an example in which the present invention is applied to a linear encoder. In the figure, 1 is a light emitting element, 2 is a fixed scale, 3 is a movable scale, 4a, 4b and 4c are light receiving elements, 5 is an amplifier, 6 is a waveform shaping circuit, 7 is a direction discrimination counter, 31 is a V-shaped groove, 32 Is a plane light transmitting portion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源からの光束を格子上の光透過部を設け
た第1スケールに入射させ、該光透過部からの光束を、
被測定物の変位方向に対して垂直方向に設けたV型溝と
平面光透過部とが該変位方向に対して水平方向に周期的
に設けられた第2スケールを介して、該第2スケールの
V型溝の各傾斜面に対して設けた2つの受光素子で受光
する際、 該V型溝とその隣接するV型溝ピッチをPとしたとき、
該V型溝の傾斜面の幅をP/4とすることにより、前記2
つの受光素子より90度の位相差を有する2相出力信号を
出力させ、該2相出力信号より前記被測定物の変位方向
及び変位量を検出することを特徴とする光学式エンコー
ダ。
1. A light beam from a light source is made incident on a first scale provided with a light transmitting portion on a grating, and the light beam from the light transmitting portion is
The V-shaped groove provided in the direction perpendicular to the displacement direction of the object to be measured and the plane light transmitting portion are provided via the second scale provided periodically in the horizontal direction with respect to the displacement direction. When light is received by the two light receiving elements provided on each inclined surface of the V-shaped groove, when the V-shaped groove and its adjacent V-shaped groove pitch are P,
By setting the width of the inclined surface of the V-shaped groove to P / 4,
An optical encoder, wherein two light receiving elements output two-phase output signals having a phase difference of 90 degrees, and the displacement direction and the displacement amount of the object to be measured are detected from the two-phase output signals.
JP62279834A 1987-11-05 1987-11-05 Optical encoder Expired - Lifetime JPH073342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279834A JPH073342B2 (en) 1987-11-05 1987-11-05 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279834A JPH073342B2 (en) 1987-11-05 1987-11-05 Optical encoder

Publications (2)

Publication Number Publication Date
JPH01121723A JPH01121723A (en) 1989-05-15
JPH073342B2 true JPH073342B2 (en) 1995-01-18

Family

ID=17616569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279834A Expired - Lifetime JPH073342B2 (en) 1987-11-05 1987-11-05 Optical encoder

Country Status (1)

Country Link
JP (1) JPH073342B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8821837D0 (en) * 1988-09-16 1988-10-19 Renishaw Plc Scale for use with opto-electronic scale reading apparatus
JP4551780B2 (en) * 2005-01-31 2010-09-29 キヤノン株式会社 Encoder signal processing circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170721A (en) * 1984-02-16 1985-09-04 Tdk Corp Linear encoder
JPS618669A (en) * 1984-06-25 1986-01-16 Matsushita Electric Ind Co Ltd Rotary disk for speed detection

Also Published As

Publication number Publication date
JPH01121723A (en) 1989-05-15

Similar Documents

Publication Publication Date Title
US7002137B2 (en) Reference point talbot encoder
JP3170902B2 (en) Signal processing method and encoder using the same
US5124548A (en) Encoder for detecting relative displacement having first and second scales and a light receiving device
US7183537B2 (en) Rotary position sensor with offset beam generating element and elliptical detector array
JP3832874B2 (en) Optical scale and rotary encoder using the same
US3930734A (en) Process and apparatus for sensing magnitude and direction of lateral displacement
EP0451780B1 (en) Encoder
JP3213552B2 (en) Home position detection device for encoder
JPH073342B2 (en) Optical encoder
EP0489399B1 (en) Displacement detector
JP4343350B2 (en) Optical encoder
JP2704017B2 (en) Optical encoder
JPH0237963B2 (en)
CN86103140A (en) Reading device for laser angular rate sensor
EP0209340A2 (en) Datum sensing using optical grating
US10746573B2 (en) Optical encoder and measurement device including the same
JP2002139353A (en) Optical rotary encoder
JPS62298704A (en) Optical length measuring apparatus
JP2000121388A (en) Optical encoder
JPH0253728B2 (en)
JPH09264712A (en) Movement detecting device
JP2810524B2 (en) Rotation detector
JP2000275063A (en) Photoelectric encoder
JPH1123221A (en) Position detector
JPH04130221A (en) Rotary encoder and apparatus using rotary encoder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 13