JPH0253728B2 - - Google Patents

Info

Publication number
JPH0253728B2
JPH0253728B2 JP15106884A JP15106884A JPH0253728B2 JP H0253728 B2 JPH0253728 B2 JP H0253728B2 JP 15106884 A JP15106884 A JP 15106884A JP 15106884 A JP15106884 A JP 15106884A JP H0253728 B2 JPH0253728 B2 JP H0253728B2
Authority
JP
Japan
Prior art keywords
light
transparent
transmitting
pitch
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15106884A
Other languages
Japanese (ja)
Other versions
JPS6129718A (en
Inventor
Akio Takamura
Kazuo Makishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP15106884A priority Critical patent/JPS6129718A/en
Publication of JPS6129718A publication Critical patent/JPS6129718A/en
Publication of JPH0253728B2 publication Critical patent/JPH0253728B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば工作機械の回転テーブルの
回動角度の検出、あるいは往復動テーブルの直線
移動距離の検出等に利用される光電式透過型エン
コーダに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a photoelectric transmission encoder used, for example, to detect the rotation angle of a rotary table of a machine tool, or to detect the linear movement distance of a reciprocating table. .

従来の技術 第2図は、直線移動距離の検出に利用されるも
のの従来技術の原理を説明するためのものであ
る。これは細巾の板状体の、微小一定距離ごとに
スリツト状の透光部11,11,……と非透光部
12,12,……を等間隔で同じ巾に交互に形成
した第1の透光体10と、上記と同じように透光
部21,21,……と非透光部22,22,……
が交互に形成された第2の透光体20とを間隔を
有して重合状態にし、その第1、第2の透光体1
0,20を挟んで投光部1と受光部2を対向させ
たものであり、その投光部1は上記透光部11の
ピツチの複数倍の巾を有していてその巾全面に投
光要素をもち、かつ投光は平行光であり、また受
光部2は上記投光部1と同じ巾で、その巾全面に
受光要素をもつている。これは投光部1から発光
させた略平行光を第1の透光体10の透光部1
1,11,……を介して第2の透光体20に照射
し、その照射光のうち透光部21,21,……を
通過した光を受光部2で受け、その受光量に対し
た電圧を発生させるようにしたものである。尚、
通常は透光体10または20のいずれか一方を静
止させ、他方を被検出対象と一体化させるが、両
者を異なる移動体に結合して相対移動量を検出す
ることもあり、その場合には、投・受光部1,2
もいずれか一方と結合することになる。以上のも
のにおいては、透光体10と投光体20とがその
ピツチ(透光部11,11,……または21,2
1………の配列間隔)分だけ相対移動するごと
に、透光部11,11,……と透光部21,2
1,……の重合面積が周期的に変化し、その結
果、透光部1から受光部2に達する光量が周期的
に変わり、受光部2からは周期的に変化する交番
電圧信号が取り出される。したがつて、この交番
電圧信号の周期数を測定することにより透光体1
0と投光体20の相対移動量が求められる。尚、
上記は直線移動距離の検出用のものであるが、回
動角度の検出用は、透光体10、、投光体20の
いずれか一方または両方を円板の周辺に形成する
点が異なるだけで、他は何等異なる点はない。
BACKGROUND ART FIG. 2 is a diagram for explaining the principle of a conventional technique used for detecting linear movement distance. This is a thin plate-shaped body, in which slit-shaped transparent parts 11, 11, ... and non-transparent parts 12, 12, ... are formed alternately at regular intervals and with the same width at a constant minute distance. 1 transparent body 10, transparent parts 21, 21, . . . and non-transparent parts 22, 22, . . . in the same way as above.
The first and second transparent bodies 1 are brought into a polymerized state with a gap between them and the second transparent bodies 20 formed alternately.
A light emitting part 1 and a light receiving part 2 are placed opposite each other with 0 and 20 in between, and the light emitting part 1 has a width several times as large as the pitch of the light transmitting part 11, and the light is emitted over the entire width of the light emitting part 1. The light receiving section 2 has the same width as the light projecting section 1 and has a light receiving element over its entire width. This allows the substantially parallel light emitted from the light projecting section 1 to be transferred to the light transmitting section 1 of the first light transmitting body 10.
1, 11, . . ., the light receiving portion 2 receives the light that has passed through the light transmitting portions 21, 21, . It is designed to generate a voltage that is still,
Normally, either one of the transparent bodies 10 or 20 is stationary and the other is integrated with the object to be detected, but there are cases where the two are connected to different moving bodies to detect the relative movement amount. , light emitting/receiving section 1, 2
will also be combined with either one. In the above, the light transmitting body 10 and the light projecting body 20 are arranged at the pitch (light transmitting parts 11, 11, ... or 21, 2).
Each time the relative movement is made by an arrangement interval of 1......, the transparent parts 11, 11,...
The overlapping area of 1,... changes periodically, and as a result, the amount of light reaching the light-receiving part 2 from the light-transmitting part 1 changes periodically, and a periodically changing alternating voltage signal is extracted from the light-receiving part 2. . Therefore, by measuring the number of cycles of this alternating voltage signal,
0 and the relative movement amount of the light projector 20 is determined. still,
The above is for detecting a linear movement distance, but the only difference is that for detecting a rotation angle, one or both of the transparent body 10 and the light projecting body 20 are formed around the disk. And there is nothing else different.

発明が解決しようとする課題 ところで、この種のものの検出分解能は、透光
部11,11,……と透光部21,21,……の
ピツチにより決定されることになり、結局、高分
解能のものを形成するには、それだけピツチを小
さくしなければならず、製作および価格のいずれ
の面でも制約がある。
Problems to be Solved by the Invention By the way, the detection resolution of this kind of thing is determined by the pitch of the transparent parts 11, 11, . . . and the transparent parts 21, 21, . In order to form such a device, the pitch must be made smaller, which imposes constraints on both production and cost.

本発明は、高分解能の光電式透過型エンコーダ
を実現するに際してピツチの微小化を解決しよう
とするものである。
The present invention attempts to solve the problem of miniaturization of the pitch when realizing a high-resolution photoelectric transmission encoder.

課題を解決するための手段 本発明は、透光部と非透光部が交互に形成され
てなる三つの透光体を有し、その第2の透光体を
挟んで第1、第3の透光体を対向配置し、第2の
透光体とその両外側の第1、第3の透光体の対の
一方または双方を他方に対して上記対向方向とは
直交方向に移動自在に支承し、第1乃至第3の透
光体を挟んで投光部と受光部を配設し、上記第
1、第3の透光体の透光部と非透光部の巾は同一
とし、上記第2の透光体の透光部の配列ピツチは
上記第1、第3の透光部の配列ピツチと同一に
し、かつ透光部の巾は非透光部の巾より小とし、
投光部、受光部はその巾が上記透光部ピツチの複
数倍であつてそれぞれその巾全面に投光要素、受
光要素をもち、かつその投光部の投光は散乱光で
あることを特徴とする光電式透過型エンコーダで
ある。
Means for Solving the Problems The present invention has three transparent bodies in which transparent parts and non-transparent parts are formed alternately, and the first and third transparent bodies are sandwiched between the second transparent body. transparent bodies are arranged facing each other, and one or both of the second transparent body and the first and third transparent bodies on both sides of the second transparent body are movable relative to the other in a direction orthogonal to the facing direction. a light transmitting part and a light receiving part are disposed with first to third transparent bodies in between, and the widths of the transparent part and the non-transparent part of the first and third transparent bodies are the same. The arrangement pitch of the transparent parts of the second transparent body is the same as the arrangement pitch of the first and third transparent parts, and the width of the transparent part is smaller than the width of the non-transparent part. ,
The width of the light emitting part and the light receiving part is multiple times the width of the above-mentioned light transmitting part pitch, and each of them has a light emitting element and a light receiving element on the entire width thereof, and the light emitted by the light emitting part is scattered light. This is a photoelectric transmission encoder with special features.

作 用 投光部からは散乱光が第1の透光体上に放射さ
れ、その透光部を通過した光が第2の透光体上に
放射され、その透光部を通過し、続いて第3の透
光体上に達し最後にその透光部を通貨した光が受
光部に導入される。したがつて、散乱光の入射角
と第1〜第3の透光体の透光部を結ぶ空間が大き
いほど透過光量は大となり、その光路中にいずれ
かの非透過部が位置した場合にはそこで遮光され
ることになる。すなわち、第2の透光体の透光部
と第1、第3の透光体の透光部が完全に対向した
場合をみると、第2の透光体の透光部の法線(そ
の透光部中央と直交する線)に対する透光部から
の放射光の放射角度が大きいと、放射光は第1の
透光体の非透光部により遮られて第2の透光体の
透光部に達しにくくなるが、その角度の大きい投
光点からの小さな放射角度の放射光はその手前の
第1の透光体の透光部を介して第2の透光体の手
前の透光部に達し、その後第3の透光体の透光部
を介して受光部の受光面に達するので、受光部全
体では各投光点からの放射光のうち受光部の受光
面達する光量は大となる。次に、1/2ピツチずれ
た場合は、上記と逆に法線に対する放射角度が小
さいと、第1の透光体の非透光部に遮られるが、
放射角度の大きな投光点からの放射光は第1の透
光体の手前の透光部を介して第2の透光体の透光
部に達し、その透過光はその次の第3の透光体の
透光部を介して受光部の受光面に達するので、上
記と同様受光部全体では各投光点からの放射光の
うち受光部の受光面に達する光量は大となる。次
に、1/4と3/4ピツチずれた場合をみると、法線に
対する放射角度が小さい場合は、第1の透光体の
非透光部に遮られて放射光の一部しか第2の透光
体の透光部に達しないことになり、また放射角度
が大となると、第2の透光体の透光部を透過して
も第3の透光体の非透光部で遮られるため、結局
受光部全体では各投光点からの放射光のうち受光
部の受光面に達する光量は上記の場合に比べて小
となる。このようにして最終的に受光部に達する
光量の大きさは、第1、第3の透光体の透光部と
第2の透光体の透光部との対向位置関係に応じて
変わり、両者の透光部の完全対向状態およびその
配列ピツチの1/2ずれた状態で最大、配列ピツチ
の1/4、および3/4ずれた状態で最小となり、その
最大、最小間は単調に変化する。この結果、受光
部には、第1、第3の透光体と第2の透光体が相
対的に1ピツチ移動するごとに2周期の周期的変
化を生ずる交番電圧が発生する。
Function Scattered light is emitted from the light projecting part onto the first transparent body, and the light that has passed through the transparent part is emitted onto the second transparent body, passes through the transparent part, and then is emitted onto the second transparent body. The light reaches the third transparent body and finally passes through the transparent part and is introduced into the light receiving part. Therefore, the larger the space connecting the incident angle of the scattered light and the transparent parts of the first to third transparent bodies, the larger the amount of transmitted light, and if any non-transparent part is located in the optical path. will be shaded there. That is, when looking at the case where the transparent part of the second transparent body and the transparent parts of the first and third transparent bodies completely oppose each other, the normal to the transparent part of the second transparent body ( If the radiation angle of the emitted light from the transparent part with respect to the line perpendicular to the center of the transparent part is large, the emitted light will be blocked by the non-transparent part of the first transparent body, and the emitted light will be blocked by the non-transparent part of the first transparent body. Although it becomes difficult to reach the light-transmitting part, the radiation light with a small radiation angle from the light projection point with a large angle is transmitted to the front of the second light-transmitting body through the light-transmitting part of the first light-transmitting body in front of it. The light reaches the light-transmitting part and then reaches the light-receiving surface of the light-receiving part via the light-transmitting part of the third light-transmitting body, so the amount of light reaching the light-receiving surface of the light-receiving part out of the light emitted from each light emitting point in the whole light-receiving part is becomes large. Next, in the case of a 1/2 pitch deviation, if the radiation angle with respect to the normal is small, contrary to the above, it will be blocked by the non-transparent part of the first transparent body, but
Radiant light from a light projection point with a large radiation angle reaches the transparent part of the second transparent body via the transparent part in front of the first transparent body, and the transmitted light is transmitted to the next third transparent body. Since the light reaches the light-receiving surface of the light-receiving section through the light-transmitting part of the light-transmitting body, the amount of light that reaches the light-receiving surface of the light-receiving section out of the light emitted from each light projecting point in the whole light-receiving section is large, as described above. Next, looking at the case where the pitch is shifted by 1/4 and 3/4, if the radiation angle with respect to the normal is small, only a part of the radiation is blocked by the non-transparent part of the first transparent body. If it does not reach the transparent part of the second transparent body and the radiation angle becomes large, even if it passes through the transparent part of the second transparent body, it will not reach the non-transparent part of the third transparent body. Therefore, in the entire light receiving section, the amount of light that reaches the light receiving surface of the light receiving section out of the light emitted from each light projecting point is smaller than in the above case. In this way, the amount of light that finally reaches the light receiving section varies depending on the opposing positional relationship between the light-transmitting parts of the first and third light-transmitting bodies and the light-transmitting parts of the second light-transmitting body. , the maximum is reached when the transparent parts of both are completely facing each other and the arrangement pitch is shifted by 1/2, and the minimum is reached when the arrangement pitch is shifted by 1/4 and 3/4, and the period between the maximum and minimum is monotonous. Change. As a result, an alternating voltage is generated in the light-receiving section that causes a periodic change of two periods each time the first and third light-transmitting bodies and the second light-transmitting body move relative to each other by one pitch.

以上は、第1、第3の透光体の透光部位置を完
全に一致させて対向させた場合であるが、第1、
第3の透光体の透光部位置をずらして対向させて
も、前記と同様であり(但し、最大となる位置は
異なる)、第1、第3の透光体と第2の透光体が
相対的に1ピツチ移動するごとに2周期の周期的
変化を生ずる交番電圧が発生する。
The above is a case where the positions of the light-transmitting parts of the first and third light-transmitting bodies are completely matched and facing each other.
Even if the positions of the light-transmitting parts of the third light-transmitting body are shifted and facing each other, the result is the same as above (however, the maximum position is different), and the first and third light-transmitting bodies and the second light-transmitting body Each relative movement of the body by one pitch generates an alternating voltage that causes a periodic change of two periods.

実施例 第1図は本発明の直線移動距離検出用のものに
ついての実施例であり、前記第2図と同番号を付
した透光体10は、第2図と同様のものであり、
同じ幅の透光部11,11,……と非透光部12
が交互に形成されている。その第1の透光体10
と対向して配設されたのが第2の透光体20′で
あり、透光部21′,21′,……と非透光部2
2′,22′,……とが交互に形成され、その透光
部21′,……の配列ピツチは前記透光体10の
透光部11,……のピツチと等しく、その巾は非
透光部22′……の巾より小となり、図では透光
部21′はピツチの50%より小さい例えば25%、
すなわち透光部21′は非透光部22′の1/3の大
きさに形成されている。その第2の透光体20′
の反対側の面と対向して配設されたのが第1の透
光体10と全く同一構造の第3の透光体30であ
り、透光部31と非透光部32が等間隔で交互に
形成されている。そして、第1、第3の透光体1
0,30の外側には散乱光を発光する投光部1′
と受光部2が配設され両者は対向している。
Embodiment FIG. 1 shows an embodiment of the present invention for detecting linear movement distance, and the transparent body 10 with the same number as in FIG. 2 is the same as that in FIG.
Transparent parts 11, 11, ... and non-transparent part 12 of the same width
are formed alternately. The first transparent body 10
A second transparent body 20' is disposed facing the transparent part 21', 21', . . . and a non-transparent part 2.
2', 22', . . . are formed alternately, the arrangement pitch of the transparent parts 21', . . . is equal to the pitch of the transparent parts 11, . The width of the transparent part 22' is smaller than the width of the transparent part 22', and in the figure, the width of the transparent part 21' is smaller than 50% of the pitch, for example 25%,
That is, the transparent portion 21' is formed to have a size ⅓ of the non-transparent portion 22'. The second transparent body 20'
A third light-transmitting body 30 having exactly the same structure as the first light-transmitting body 10 is disposed facing the opposite surface of are formed alternately. Then, the first and third transparent bodies 1
On the outside of 0 and 30, there is a light projector 1' that emits scattered light.
and a light-receiving section 2 are arranged, and both are facing each other.

以上のものにおいては、投光器1′から放射さ
れた散乱光は第1の透光体10に達し、そのうち
透光部11,,11,……を通過した光が第2の
透光体20′上に放射され、続いてその透光部2
1′,21′,……を通過した光が第3の透光体3
0に放射され、最後にその透光部31,31,…
…を通過した光が受光部2に達する。このとき、
受光部2に達する光量は、第1、第3の透光体1
0,30の透光部11,11,……,31,3
1,……と第2の透光体20′の透光部21′,2
1′……との対向位置関係に応じ変化する。
In the above structure, the scattered light emitted from the projector 1' reaches the first transparent body 10, and the light that has passed through the transparent parts 11, 11, . . . reaches the second transparent body 20'. The light is emitted upward, and then the transparent part 2
The light passing through 1', 21', . . . passes through the third transparent body 3.
0, and finally the transparent parts 31, 31,...
The light that has passed through... reaches the light receiving section 2. At this time,
The amount of light reaching the light receiving section 2 is determined by the amount of light that reaches the light receiving section 2.
0,30 transparent parts 11,11,...,31,3
1, ... and the transparent parts 21', 2 of the second transparent body 20'
It changes depending on the opposing positional relationship with 1'...

第3〜6図は、上記の透光部11,11,……
31,31,……と透光部21′,21′,……と
の対向位置関係とそのときに一つの透光部11を
通過した光のうち何%が受光部2に達するかを投
光点を横軸にモデル化して示したものであり、こ
こには投光部1′と第1の透光体10間および受
光部2と第3の透光部30間、の各間隔をそれぞ
れ透光部21′,21′,……(透光部11,1
1,……)の配列ピツチと同じとし、第1、第
2、第3の透光体10,20′,30の各間隔を
1/2ピツチとしてある。第3図の状態は透光部1
1,11,……と透光部21′,21′,……が1/
2ピツチ、すなわち透光部11の中心に対して第
2の透光体の透光部21′の中心位置が透光部1
1間距離の1/2だけずれて対向し、第4図は第3
図の状態から透光体20′が1/4ピツチ分左方にず
れ、第5図は第3図の状態から透光体20′が左
方に1/2ピツチずれて透光部11,11,……と
透光部21′が完全に対向し、第6図は第3図の
状態から透光体20′が左方に3/4ピツチずれた状
態を示している。そして矢印付の線により囲まれ
た面積は投光体1′のある1点からの散乱光のう
ち透光体10の中央部の一つの透光部11を通過
する光線を示し、その中のハツチング部分は第
2、第3の透光部21′,31を通過する光量を
示し、各図の下側は、上記透光部11を通過する
全光量に対し、受光部2に達した光量の割合を百
分率で示したものである。
3 to 6 show the above-mentioned transparent parts 11, 11,...
31, 31, . . . and the transparent parts 21', 21', . The light spot is modeled and shown on the horizontal axis, and the distances between the light emitter 1' and the first transparent body 10 and between the light receiver 2 and the third transparent body 30 are shown here. Transparent parts 21', 21', ... (transparent parts 11, 1
1, . . . ), and the intervals between the first, second, and third transparent bodies 10, 20', and 30 are set to 1/2 pitch. The state shown in Figure 3 is the transparent part 1.
1, 11, ... and transparent parts 21', 21', ... are 1/
2 pitches, that is, the center position of the transparent part 21' of the second transparent body with respect to the center of the transparent part 11 is the center position of the transparent part 1
They face each other with a difference of 1/2 of the distance between them.
The transparent body 20' is shifted to the left by 1/4 pitch from the state shown in the figure, and in FIG. 5, the transparent body 20' is shifted by 1/2 pitch to the left from the state shown in FIG. 11, . . . and the transparent portion 21' completely oppose each other, and FIG. 6 shows a state in which the transparent body 20' is shifted by 3/4 pitch to the left from the state shown in FIG. The area surrounded by the line with an arrow indicates the light rays that pass through one light-transmitting part 11 in the center of the light-transmitting body 10 among the scattered light from one point of the light projector 1'. The hatched part shows the amount of light passing through the second and third transparent parts 21' and 31, and the lower part of each figure shows the amount of light that reached the light receiving part 2 relative to the total amount of light passing through the transparent part 11. The ratio is shown as a percentage.

すなわち、投光部の投光要素からは種々の放射
角度にわたつて光が反射されている(散乱光)。
いま、投光部の投光要素の任意に選んだ一つにつ
いてみると、その散乱光のうちで上記透光部11
を通過する光量は、透光部21′の位置と無関係
に一定である。ここでは、その通過光量(第3乃
至6図の矢印付実線で囲まれた部分)を100%と
おく。次に、この通過光量は、第2の投光体2
0′に達するが、その光路上に透光部21′がある
と、その部分の光路の光のみがそこを通過する
(第3,5のハツチング部分)ことになる。そし
て、その通過光は第3の透光体30に向い、その
光路に透光部31があればそこを通過して受光部
2の受光要素に達し(第3,5図の状態)、非透
光部32があればそこで遮断される(第4図の状
態)。第3乃至6図の下段は、投光部1′の各位置
ごとにそこの投光要素から放射され、透光部11
を通過した光量(100%)のうち受光部2に戻つ
た光量の割合を各投光要素位置を横軸にとつて示
しており、例えば第3図において、投光部1′の
投光位置から垂下した線(図示されていない)と
交叉する位置の割合が、その位置から放射され、
透光部11,21′,31を通過して受光部2に
達した光量であり、図にはその割合が25%の場合
が示されている。同様にその位置からわずかに右
方の第3図の中央付近に位置する投光要素につい
てみると、この放射光の光路上には透光部21′
がなく、その結果反射光量もないため0%として
示される。そして、受光部2にはこれら各々の位
置から放射された光が上記のような割合で戻るこ
とになり、全体についてみると、そこに戻る光量
は、結局第3乃至6図の各図において各下段に示
した割合を加算した値に対応したものとなる。
That is, light is reflected from the light projecting element of the light projecting section over various radiation angles (scattered light).
Now, looking at one arbitrarily selected light projecting element of the light projecting section, among the scattered light, the light transmitting section 11
The amount of light passing through is constant regardless of the position of the transparent portion 21'. Here, the amount of transmitted light (the area surrounded by the solid line with arrows in FIGS. 3 to 6) is set to 100%. Next, this amount of light passing through the second light projector 2
0', but if there is a transparent part 21' on that optical path, only the light of that part of the optical path will pass there (third and fifth hatched parts). Then, the passing light is directed toward the third light-transmitting body 30, and if there is a light-transmitting part 31 in the optical path, it passes there and reaches the light-receiving element of the light-receiving part 2 (states shown in FIGS. 3 and 5). If there is a transparent portion 32, the light is blocked there (the state shown in FIG. 4). The lower part of FIGS. 3 to 6 shows that the light is emitted from the light projecting element at each position of the light projecting part 1', and the light is emitted from the light transmitting part 11.
The ratio of the amount of light that returns to the light receiving section 2 out of the amount of light (100%) that has passed through is shown with the position of each light emitting element on the horizontal axis.For example, in Fig. 3, the light emitting position of the light emitting section 1' The proportion of positions that intersect a line (not shown) depending from is radiated from that position,
This is the amount of light that passes through the light-transmitting parts 11, 21', and 31 and reaches the light-receiving part 2, and the figure shows a case where the ratio is 25%. Similarly, if we look at the light projecting element located slightly to the right of that position, near the center of FIG.
Since there is no amount of reflected light as a result, it is shown as 0%. Then, the light emitted from each of these positions returns to the light receiving section 2 at the rate described above, and when looking at the whole, the amount of light that returns there ends up being the same in each figure in Figures 3 to 6. It corresponds to the value obtained by adding the ratios shown in the lower row.

以下、上記の第3図を例にとり、投光要素の位
置と透光部11,21′,31を通過した光量の
うち受光部2に達する光量の割合の関係、すなわ
ち、第3図下段の割合が得られる根拠を第7乃至
17図を参照して図式的に説明する。第7乃至1
7図において、第3図と同番号を付した投光部
1′、受光部11,21′,31は第3図と同様の
ものであり、同様に配置されている。第7乃至1
7図は、左端の透光部11の左端を基準にそれぞ
れ1/4ピツチ単位で投光要素位置が右方に変わつ
た場合、すなわち基準位置から0、1/4、1/2、…
…7/4ピツチの位置にある投光要素から放射され、
左方から2番目の透光部11を通過した通過光と
透光部21′の通過光(ハツチング)の関係を順
次示している。第7乃至9図に示す投光要素位置
が0、1/4、1/2ピツチ位置では、その通過光範囲
内に透光部21′全部が位置し、その通過光全部
が受光部2に達するのでその到達光量は大きく、
33.3%である。次に、第10図の3/4ピツチの状
態では、その通過光範囲内に透光部21′全部が
位置するが、その通過光の一部は非透光部で遮ら
れる(図の塗り潰し部)ので受光部2への到達光
量は上記より減少し、25%となる。次に第11乃
至13図の1、5/4、3/2ピツチにおいては、その
通過光範囲内に透光部21′の一部しか位置しな
いか、全く位置せず、かつ一部位置した場合もそ
の通過光は非透光部32によつて遮られてしま
い、0%となる。次に、第14乃至17図の7/4、
2、9/4、5/2ピツチの状態は、上記第12図の5/
4ピツチの位置を中心に上記10乃至7図と対称
の関係にあり、それぞれ25%、33.3%……とな
る。これをプロツトしたのが第3図の下段であ
る。
Hereinafter, using FIG. 3 above as an example, we will explain the relationship between the position of the light emitting element and the ratio of the amount of light that reaches the light receiving section 2 out of the amount of light that passes through the light transmitting parts 11, 21', and 31, that is, the lower part of FIG. The basis for obtaining the ratio will be explained diagrammatically with reference to FIGS. 7 to 17. 7th to 1st
In FIG. 7, the light projecting section 1' and the light receiving sections 11, 21', and 31, which are given the same numbers as in FIG. 3, are the same as in FIG. 3, and are arranged in the same manner. 7th to 1st
Fig. 7 shows a case where the light emitting element position changes to the right in units of 1/4 pitch from the left end of the transparent section 11 at the left end, that is, 0, 1/4, 1/2, . . . from the reference position.
...Emitted from the light projecting element located at 7/4 pitch,
The relationship between the light passing through the second light-transmitting section 11 from the left and the light passing through the light-transmitting section 21' (hatched) is shown in sequence. When the light emitting element position shown in FIGS. 7 to 9 is at 0, 1/4, and 1/2 pitch positions, the entire light-transmitting part 21' is located within the range of light passing through it, and all of the light passing through it reaches the light-receiving part 2. The amount of light reaching the target is large.
It is 33.3%. Next, in the 3/4 pitch state shown in Figure 10, the entire transparent part 21' is located within the range of the passing light, but a part of the passing light is blocked by the non-transparent part (filled areas in the figure). part), the amount of light reaching the light receiving part 2 is reduced from the above, to 25%. Next, in the 1, 5/4, and 3/2 pitches in Figures 11 to 13, only a part of the transparent part 21' is located within the passing light range, or it is not located at all, and a part of it is located. Even in this case, the transmitted light is blocked by the non-light-transmitting portion 32 and becomes 0%. Next, 7/4 in Figures 14 to 17,
The conditions of 2, 9/4, and 5/2 pitches are 5/2 in Figure 12 above.
There is a symmetrical relationship with the above-mentioned figures 10 to 7, centering on the position of 4 pitches, and they are 25%, 33.3%, etc., respectively. This is plotted in the lower part of Figure 3.

尚、これは、一つの透光部11の通過光につい
ての結果であるが、各透光部11についても同様
であり、複数の透光部11については、上記一つ
の透光部11において得られるパターンが位置関
係がずれて加え合わされたものとなる。
Note that this is a result for the light passing through one transparent section 11, but the same is true for each transparent section 11, and for a plurality of transparent sections 11, the result is the same for the light passing through one transparent section 11. The resulting patterns are added together with their positional relationship shifted.

さて、第4乃至第6図には、その上段にある一
点の投光要素からの放射光に対する通過光の状態
を、またその各図の下段には、上記第7乃至17
図に示したのと同様の図式解析により求めた投光
要素の位置と透光部11を通過した光量のうち受
光部2に達する光量の割合を示している。第4図
および第6図の1/4と3/4ピツチずれた場合をみる
と、放射角度が小さい場合は、非透光部22′に
遮られて放射光の一部しか通過しないこと、また
放射角度が大になると、透光部11により通過光
が遮られたり、通過しても非透光部32で遮られ
ることから、結局受光部全体では各投光点からの
放射光のうち受光部の受光面に達する光量は第5
図および第3図の場合に比べて小となる。結局こ
のパターンの面積が、受光部2全体に戻つてくる
光量と対応関係を有しており、したがつて、受光
部2に達する光量は、第5,3図の状態、すなわ
ち透光部11と透光部21′の完全重合状態およ
び1/2ピツチずれた状態おいて最大、第4,6図
状態、すなわち、両透光部11,21′がそれぞ
れ1/4、3/4ピツチずれた状態で最小となり、その
最大と最小、最小と最大の間に単調に変化する。
Now, FIGS. 4 to 6 show the state of the passing light with respect to the emitted light from one light projecting element in the upper part, and the states of the light passing through the light emitted from the light projecting element at one point in the upper part, and the states of the above-mentioned lights 7 to 17 in the lower part of each figure.
The position of the light projecting element obtained by the same graphical analysis as shown in the figure and the ratio of the amount of light reaching the light receiving section 2 out of the amount of light passing through the light transmitting section 11 are shown. Looking at the cases where the pitch is shifted by 1/4 and 3/4 in FIGS. 4 and 6, when the radiation angle is small, only a part of the emitted light passes through because it is blocked by the non-transparent part 22'. Furthermore, when the radiation angle becomes large, the passing light is blocked by the transparent part 11, or even if it passes, it is blocked by the non-transparent part 32, so in the end, the light receiving part as a whole accounts for only a portion of the light emitted from each light emitting point. The amount of light reaching the light-receiving surface of the light-receiving section is the fifth
It is smaller than the cases shown in FIG. 3 and FIG. After all, the area of this pattern has a corresponding relationship with the amount of light that returns to the entire light receiving section 2. Therefore, the amount of light that reaches the light receiving section 2 corresponds to the state shown in FIGS. 4 and 6, that is, both transparent parts 11 and 21' are shifted by 1/4 and 3/4 pitch, respectively. It reaches a minimum when

この結果、受光部2からは、導入される光量に
対応した電圧信号、すなわち第1、第3の透光体
10,30と第2の透光体20′とが相対的に1/2
ピツチ移動するごとに周期的に変化する交番電圧
信号が発生することになり、結局、従来技術のも
のに比べて2倍の分解能を有する交番電圧信号と
なる。
As a result, a voltage signal corresponding to the amount of light introduced from the light receiving section 2, that is, a voltage signal corresponding to the amount of light introduced, that is, a voltage signal corresponding to the first and third light transmitting bodies 10, 30 and the second light transmitting body 20' is relatively 1/2.
An alternating voltage signal that changes periodically with each pitch movement is generated, resulting in an alternating voltage signal having twice the resolution as that of the prior art.

尚、上記実施例においては、投・受光部1′,
2と透光体10,30の間、透光体10,20′,
30の各間隔をそれぞれ透光部ピツチと同じおよ
び1/2倍とした場合であるが、これに限定される
ものではなく、適宜に選定しても同様であり、ま
た、第2の透光体の透光部21′,21′,……の
ピツチに占める割合も50%より小さい適宜の割合
としてよい。すなわち、第18図は投光体1′と
透光体10間、透光体10と透光体20′間、透
光体20′と透光体30間の各間隔を共に透光部
ピツチとした場合の透光部11を通過した光量の
うち受光部2に達する光量の割合を、それぞれ透
光部11と透光部21′の完全重合状態、1/4ピツ
チ、1/2ピツチ、3/4ピツチについて示したもので
あり、第3乃至第6図の場合と同様に1ピツチ間
に2回の光量変化が生じる。また、第19図は、
透光部21′の巾をピツチの50%とした場合の透
光部11を通過した光量のうち受光部1′に達す
る光量の割合を、それぞれ透光部11と透光部2
1′の完全重合状態、1/4ピツチ、1/2ピツチ、3/4
ピツチについて示したものであり、これにおいて
も1ピツチ間に2回の光量変化が生じる。
In the above embodiment, the light emitting/receiving section 1',
2 and the transparent body 10, 30, the transparent body 10, 20',
30 are the same as and 1/2 times the pitch of the transparent part, respectively, but the present invention is not limited to this. The ratio of the transparent parts 21', 21', . . . of the body to the pitch may also be set to an appropriate ratio smaller than 50%. That is, in FIG. 18, the distances between the light emitter 1' and the light-transmitting body 10, between the light-transmitting body 10 and the light-transmitting body 20', and between the light-transmitting body 20' and the light-transmitting body 30 are calculated as the light-transmitting part pitch. The ratio of the amount of light that reaches the light receiving part 2 out of the amount of light passing through the transparent part 11 in the case of The figure shows a 3/4 pitch, and as in the case of FIGS. 3 to 6, the amount of light changes twice during one pitch. Also, Figure 19 shows
When the width of the transparent part 21' is set to 50% of the pitch, the proportion of the amount of light that reaches the light receiving part 1' out of the amount of light passing through the transparent part 11 is calculated as the ratio of the amount of light that reaches the light receiving part 1'.
1' complete polymerization state, 1/4 pitch, 1/2 pitch, 3/4
The figure shows the pitch, and even in this case, the amount of light changes twice during one pitch.

発明の効果 本発明は、第1、第3の透光体の間に位置させ
た第2の透光体の透光部をそのピツチの50%より
小とし、かつ投光部の光源を散乱光源とすること
により従来技術の2倍の分解能を有する出力を取
り出すようにしたものであり、高分解能化が制作
面、経済面のいずれの面でも容易となり、高分解
能な回動角、距離の検出が容易に実現される。
Effects of the Invention The present invention makes the light-transmitting part of the second light-transmitting body located between the first and third light-transmitting bodies smaller than 50% of the pitch thereof, and scattering the light source of the light projecting part. By using it as a light source, it is possible to extract an output with twice the resolution of conventional technology, making it easier to achieve higher resolution both from the production and economic aspects, and making it possible to obtain high-resolution rotation angles and distances. Detection is easily achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す正面図、第2図
は従来技術を示す正面図、第3〜6図は本発明の
動作説明図、第7〜17図は第3図の下段に示さ
れる受光部に達する光量の割合を説明するための
解析図、第18図、第19図はそれぞれ三つの透
光体の間隔が第3乃至6図と異なる条件下、第2
の透光体が異なる条件下における受光部に達する
光量の割合を示す線図である。 1′:投光部、2:受光部、10,20,3
0:透光体、11,21′,31:透光部、12,
22′,32:非透光部。
Fig. 1 is a front view showing an embodiment of the present invention, Fig. 2 is a front view showing a conventional technique, Figs. 3 to 6 are explanatory diagrams of the operation of the present invention, and Figs. The analytical diagrams shown in FIGS. 18 and 19 for explaining the proportion of the amount of light reaching the light-receiving part are obtained under conditions in which the intervals between the three light-transmitting bodies are different from those in FIGS. 3 to 6.
FIG. 4 is a diagram showing the ratio of the amount of light reaching the light receiving section under different conditions of the light-transmitting body. 1': Light emitter, 2: Light receiver, 10, 20, 3
0: Transparent body, 11, 21', 31: Transparent part, 12,
22', 32: Non-transparent part.

Claims (1)

【特許請求の範囲】[Claims] 1 透光部と非透光部が交互に形成されてなる三
つの透光体を有し、その第2の透光体を挟んで第
1、第3の透光体を対向配置し、第2の透光体と
その両外側の第1、第3の透光体の対の一方また
は双方を他方に対して上記対向方向とは直交方向
に移動自在に支承し、第1乃至第3の透光体を挟
んで投光部と受光部を配設し、上記第1、第3の
透光体の透光部と非透光部の巾は同一とし、上記
第2の透光体の透光部の配列ピツチは上記第1、
第3の透光部の配列ピツチと同一にし、かつ透光
部の巾は非透光部の巾より小とし、投光部、受光
部はその巾が上記透光部ピツチの複数倍であつて
それぞれその巾全面に投光要素、受光要素をも
ち、かつその投光部の投光は散乱光であることを
特徴とする光電式透過型エンコーダ。
1. It has three transparent bodies in which transparent parts and non-transparent parts are formed alternately, the first and third transparent bodies are arranged facing each other with the second transparent body in between, and one or both of a pair of a second transparent body and a first and third transparent body on both sides thereof are supported so as to be movable relative to the other in a direction orthogonal to the opposing direction; A light transmitting part and a light receiving part are arranged with a light transmitting body in between, the widths of the light transmitting part and the non-light transmitting part of the first and third light transmitting bodies are the same, and the width of the light transmitting part of the first and third light transmitting bodies is the same, and The arrangement pitch of the transparent parts is the above-mentioned first,
The arrangement pitch is the same as that of the third transparent part, and the width of the transparent part is smaller than the width of the non-transparent part, and the width of the light emitting part and the light receiving part is multiple times the pitch of the transparent part. 1. A photoelectric transmissive encoder, each having a light projecting element and a light receiving element over its entire width, and the light projected by the light projecting part is scattered light.
JP15106884A 1984-07-20 1984-07-20 Photoelectric transmission type encoder Granted JPS6129718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15106884A JPS6129718A (en) 1984-07-20 1984-07-20 Photoelectric transmission type encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15106884A JPS6129718A (en) 1984-07-20 1984-07-20 Photoelectric transmission type encoder

Publications (2)

Publication Number Publication Date
JPS6129718A JPS6129718A (en) 1986-02-10
JPH0253728B2 true JPH0253728B2 (en) 1990-11-19

Family

ID=15510601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15106884A Granted JPS6129718A (en) 1984-07-20 1984-07-20 Photoelectric transmission type encoder

Country Status (1)

Country Link
JP (1) JPS6129718A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426162A (en) * 1987-07-22 1989-01-27 Matsushita Electric Ind Co Ltd Position detector
JP2664648B2 (en) 1994-05-20 1997-10-15 株式会社日本触媒 Method for producing L-aspartic acid
EP0693557A3 (en) * 1994-07-19 1996-06-05 Mitsubishi Chem Corp Method of producing fumaric acid

Also Published As

Publication number Publication date
JPS6129718A (en) 1986-02-10

Similar Documents

Publication Publication Date Title
US8124928B2 (en) Optical encoder comprising two pattern arrays and several bell shaped light guides
US4465373A (en) Encoder
JP2862417B2 (en) Displacement measuring device and method
JP4358387B2 (en) Optical position measuring device
US7262714B2 (en) Interpolating encoder utilizing a frequency multiplier
US10317253B2 (en) Optical encoder
JPH04157319A (en) Encoder utilizing silhouette pattern
CN100487382C (en) Reflective optical encoder
JP4509615B2 (en) Encoder
JP2000230803A (en) Optical location measuring device
JP3509830B2 (en) Optical rotary encoder
JPH0253728B2 (en)
JPH04208812A (en) Method for detecting reference position and rotation detector
US6759647B2 (en) Projection encoder
JPS6051650B2 (en) Zero point detection device for photoelectric encoder
JPS5963517A (en) Photoelectric encoder
JPH0253727B2 (en)
CN86103140A (en) Reading device for laser angular rate sensor
JPS60140119A (en) Optical type encoder
JP2004029019A (en) Optical position sensing device
JP4343350B2 (en) Optical encoder
JPH11118422A (en) Dimension measuring device using moire fringe
JPS63148855A (en) Position detector for x-y linear motor
WO2019163199A1 (en) Laser scanning device
JPH01121723A (en) Optical encoder