JPH0733421A - Production of high purity carbon monoxide - Google Patents

Production of high purity carbon monoxide

Info

Publication number
JPH0733421A
JPH0733421A JP5195422A JP19542293A JPH0733421A JP H0733421 A JPH0733421 A JP H0733421A JP 5195422 A JP5195422 A JP 5195422A JP 19542293 A JP19542293 A JP 19542293A JP H0733421 A JPH0733421 A JP H0733421A
Authority
JP
Japan
Prior art keywords
carbon monoxide
reaction
formic acid
acid
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5195422A
Other languages
Japanese (ja)
Other versions
JP3041445B2 (en
Inventor
Kazuhisa Kamimura
和久 上村
Jun Okawa
旬 大川
Kenji Hamada
健児 濱田
Hiroyuki Hata
啓之 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP5195422A priority Critical patent/JP3041445B2/en
Publication of JPH0733421A publication Critical patent/JPH0733421A/en
Application granted granted Critical
Publication of JP3041445B2 publication Critical patent/JP3041445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To industrially favorably obtain high purity carbon monoxide low in hydrogen content by decomposing formic acid by heating in the presence of a mineral acid using a zeolite based catalyst. CONSTITUTION:In the production method for carbon monoxide by decomposition by heating of the formic acid, the reaction is executed in the presence of a mineral acid using the zeolite-based catalyst. As the zeolite based catalyst, among catalysts, H-mordenite and H-ZMS-5 are suitable because they are excellent in acid resistance. When the formic acid of 40-100% purity is used, the reaction is executed efficiently. When the purity is less than 40%, the reaction unfavorably requires heating energy because the remainder except the formic acid is water. When the method is used, the high purity carbon monoxide which is usable in the semiconductor production area such as an integrated circuit and has >=99.9% purity is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高純度一酸化炭素の製造
方法に関する。さらに詳しくは、集積回路等の半導体製
造分野で用いられる99.99%以上の純度を有する高
純度一酸化炭素の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing high-purity carbon monoxide. More specifically, the present invention relates to a method for producing high-purity carbon monoxide having a purity of 99.99% or higher, which is used in the field of semiconductor manufacturing such as integrated circuits.

【0002】[0002]

【従来の技術】従来、高純度一酸化炭素の製造方法とし
ては天然ガスを水蒸気改質して高濃度の一酸化炭素を発
生させ、それをさらに分離精製する方法、または蟻酸を
硫酸あるいは固体触媒を用いて分離、脱水し精製する方
法等が知られている。精製工程を考慮すると蟻酸分解法
の方が一酸化炭素を高い選択率で得られるために有利で
あるが、硫酸を用いて脱水反応を行った場合、反応で生
成した水が硫酸濃度を下げるので、反応速度を維持する
には多量の硫酸が必要となり、また硫酸を含む廃水の処
理の面からも工業的には好ましい方法とはいえない。一
方、固体触媒を用いて蟻酸を分解する方法は、前記の問
題点は生じないものの、一酸化炭素の生成反応以外に水
素と二酸化炭素を生成する副反応が起こる。
2. Description of the Related Art Conventionally, as a method for producing high-purity carbon monoxide, natural gas is steam-reformed to generate high-concentration carbon monoxide, which is further separated and purified, or formic acid is added to sulfuric acid or a solid catalyst. There is known a method of separating, dehydrating and purifying using the above. Considering the purification process, the formic acid decomposition method is advantageous because carbon monoxide can be obtained with a high selectivity, but when the dehydration reaction is performed using sulfuric acid, the water generated in the reaction lowers the sulfuric acid concentration. However, a large amount of sulfuric acid is required to maintain the reaction rate, and it is not an industrially preferable method from the viewpoint of treating wastewater containing sulfuric acid. On the other hand, the method of decomposing formic acid using a solid catalyst does not cause the above-mentioned problems, but causes a side reaction of producing hydrogen and carbon dioxide in addition to the carbon monoxide producing reaction.

【0003】[0003]

【発明が解決しようとする課題】固体触媒を用いる方法
において用いることができる触媒としては、一般にイオ
ン交換樹脂、アルミナ、アルミナ/五酸化燐、燐酸カル
シウム、硼燐酸カルシウム、クリプチノライト、H−Z
SM−5/アルミナ等が知られている。
The catalyst which can be used in the method using a solid catalyst is generally an ion exchange resin, alumina, alumina / phosphorus pentoxide, calcium phosphate, calcium borate, kryptinolite, H-. Z
SM-5 / alumina and the like are known.

【0004】しかしながら、イオン交換樹脂は使用でき
る温度が100〜130℃程度に制限され、この温度で
の蟻酸の転化率は高くない。アルミナは300℃以上で
高い転化率が得られるが、一酸化炭素の選択率は99.
7%以下でありかなりの量の水素が不純物として含まれ
てくる。アルミナ/五酸化燐、燐酸カルシウム、硼燐酸
カルシウム、クリプチノライトもアルミナの場合と同様
の傾向を示す。一方、H−ZSM−5/アルミナは反応
温度250℃の反応で転化率99.5%、選択率100
%で一酸化炭素を与え、水素を一切発生しないとされて
いる(Bull.Soc.Belg., 92,225(1983)) 。しかし、本発
明者らの追試によると、H−ZSM−5/アルミナ触媒
のロングラン・テストでは反応温度250℃で反応初期
より0.5vol%の水素が発生する。従って、H−Z
SM−5/アルミナも高純度一酸化炭素の製造のために
は優れた触媒とはいい難い。
However, the usable temperature of the ion exchange resin is limited to about 100 to 130 ° C., and the conversion rate of formic acid at this temperature is not high. Alumina gives a high conversion rate at 300 ° C. or higher, but the carbon monoxide selectivity is 99.
It is less than 7%, and a considerable amount of hydrogen is included as an impurity. Alumina / phosphorus pentoxide, calcium phosphate, calcium borophosphate, and kryptinolite also show the same tendency as in the case of alumina. On the other hand, H-ZSM-5 / alumina has a conversion of 99.5% and a selectivity of 100 in the reaction at a reaction temperature of 250 ° C.
It is said that carbon monoxide is given in% and hydrogen is not generated at all (Bull.Soc.Belg., 92,225 (1983)). However, according to an additional test by the present inventors, in the long-run test of the H-ZSM-5 / alumina catalyst, 0.5 vol% of hydrogen is generated at the reaction temperature of 250 ° C. from the initial stage of the reaction. Therefore, H-Z
SM-5 / alumina cannot be said to be an excellent catalyst for producing high-purity carbon monoxide.

【0005】[0005]

【課題を解決するための手段】上述のように、いずれの
触媒においても高転化率、高選択率を同時に達成するこ
とは困難であり、さらに触媒の単位体積あたりの一酸化
炭素の生産能力が低いことが問題点である。また、H−
ZSM−5/アルミナ触媒は、転化率の点ではほぼ満足
できるものの経時的に選択率が低下するので工業的には
決して好ましい触媒とはいい難い。そこで、本発明者ら
は高純度の一酸化炭素を効率よく工業的に有利に得る方
法を開発すべく、蟻酸を高転化率、高選択率で一酸化炭
素と水に分解する方法を探索した。その結果、ゼオライ
ト系触媒を用い蟻酸と一緒に鉱酸を加えて反応を行うと
反応速度が速くなり、しかも反応の選択率が著しく向上
することを見い出し本発明に到達した。
As described above, it is difficult to achieve high conversion and high selectivity at the same time with any of the catalysts, and further, the production capacity of carbon monoxide per unit volume of the catalyst is high. Low is a problem. Also, H-
The ZSM-5 / alumina catalyst is almost satisfactory in terms of conversion, but its selectivity decreases with time, so it is difficult to say that it is an industrially preferable catalyst. Therefore, the present inventors searched for a method of decomposing formic acid into carbon monoxide and water with high conversion and high selectivity in order to develop a method for efficiently obtaining industrially advantageous high-purity carbon monoxide. . As a result, they have found that when a reaction is carried out by adding a mineral acid together with formic acid using a zeolite-based catalyst, the reaction rate is increased and the selectivity of the reaction is remarkably improved.

【0006】即ち、本発明の要旨は、蟻酸を加熱分解し
て一酸化炭素を製造する方法において、ゼオライト系触
媒を用い、鉱酸の存在下に上記反応を行うことを特徴と
する高純度一酸化炭素の製造方法に関する。
[0006] That is, the gist of the present invention is a method of producing carbon monoxide by thermally decomposing formic acid, wherein the above reaction is carried out in the presence of a mineral acid using a zeolite-based catalyst. The present invention relates to a method for producing carbon oxide.

【0007】本発明における反応は蟻酸を気化器に通し
て気化させ、反応器に導くことにより反応を行わせる
が、この時、鉱酸を蟻酸と混合して同時に気化器に通し
てもよいし、鉱酸を別途、連続的に反応器に添加しても
よい。本発明で用いることのできる鉱酸としては、塩
酸、硫酸、燐酸、硼酸等を挙げることができ、なかでも
塩酸と硫酸は価格と廃水処理の容易さの点から好適に用
いることができる。塩酸の場合には塩化水素の形でガス
状で反応器に添加することもできるし、水溶液として反
応器に添加してもよい。硫酸の場合も蟻酸に混ぜて気化
器に導いてもよいし、直接反応器に加えてもよい。鉱酸
の濃度は特に限定されるものではないが、蟻酸に対して
通常0.05〜5wt%、好適には0.3〜3wt%で
加えればよい。0.05wt%より酸濃度が低いと副反
応を抑制する効果が小さくなり水素の発生量が増えてく
る。一方、酸濃度が5wt%より高くてもさしたるメリ
ットがない。
In the reaction of the present invention, formic acid is passed through a vaporizer to be vaporized and introduced into the reactor to carry out the reaction. At this time, mineral acid may be mixed with formic acid and passed through the vaporizer at the same time. Alternatively, the mineral acid may be separately and continuously added to the reactor. Examples of the mineral acid that can be used in the present invention include hydrochloric acid, sulfuric acid, phosphoric acid, boric acid and the like. Among them, hydrochloric acid and sulfuric acid can be preferably used in view of cost and ease of wastewater treatment. In the case of hydrochloric acid, it may be added to the reactor in the form of hydrogen chloride in a gaseous form, or may be added to the reactor as an aqueous solution. In the case of sulfuric acid, it may be mixed with formic acid and introduced into the vaporizer, or may be added directly to the reactor. The concentration of the mineral acid is not particularly limited, but it is usually 0.05 to 5 wt%, preferably 0.3 to 3 wt% with respect to formic acid. If the acid concentration is lower than 0.05 wt%, the effect of suppressing side reactions becomes small and the amount of hydrogen generated increases. On the other hand, even if the acid concentration is higher than 5 wt%, there is no merit.

【0008】本発明の方法は上記した公知の触媒につき
応用可能であるが、特にゼオライト系触媒に好適に用い
ることができる。ゼオライト系触媒の一例としてはH−
モルデナイト、H−ZSM−5、クリノプチロライト等
を挙げることができ、なかでもH−モルデナイトおよび
H−ZSM−5は耐酸性に優れているので本発明の目的
に適した触媒である。本発明で用いるH−モルデナイト
触媒としては、Si/Al原子比が5〜30であれば特に限
定されず、天然モルデナイト、合成モルデナイトのいず
れもが使用可能である。例えば、Si/Al 原子比は天然物
で5、合成品で約5 〜約30程度であり、いずれの比率で
も触媒として用いることができる。Si/Al 原子比が5よ
り小さいと、触媒活性が低下するため好ましくなく、3
0より大きいと触媒調製が繁雑となり経済的でない。ま
た、ゼオライト系触媒をその使用に先だって鉱酸で含浸
処理すると効果的な場合も多い。
The method of the present invention can be applied to the above-mentioned known catalysts, but can be particularly preferably used for zeolite catalysts. An example of a zeolite-based catalyst is H-
Examples thereof include mordenite, H-ZSM-5, clinoptilolite, etc. Among them, H-mordenite and H-ZSM-5 are catalysts suitable for the purpose of the present invention because they have excellent acid resistance. The H-mordenite catalyst used in the present invention is not particularly limited as long as the Si / Al atomic ratio is 5 to 30, and both natural mordenite and synthetic mordenite can be used. For example, the Si / Al atomic ratio is 5 for natural products and about 5 to about 30 for synthetic products, and any ratio can be used as a catalyst. If the Si / Al atomic ratio is less than 5, it is not preferable because the catalytic activity will decrease.
If it is greater than 0, the catalyst preparation becomes complicated and uneconomical. Further, it is often effective to impregnate the zeolite catalyst with a mineral acid prior to its use.

【0009】本発明で用いる蟻酸の濃度は特に限定され
るものではないが、40〜100%純度の蟻酸を用いる
と効率的に反応を行うことができる。純度が40%未満
となると、蟻酸以外の残りの部分は水であるため、加熱
にエネルギーを要するので得策ではない。
The concentration of formic acid used in the present invention is not particularly limited, but the reaction can be efficiently carried out by using 40-100% pure formic acid. If the purity is less than 40%, the remaining portion other than formic acid is water, which requires energy for heating, which is not a good idea.

【0010】本発明における反応は気化した蟻酸を前記
の触媒と接触させることにより行う。反応器としては反
応釜や触媒を充填した塔が用いられる。触媒と蟻酸と鉱
酸を反応釜に仕込み、加熱することにより一酸化炭素を
発生させてもよいが、反応効率を考慮すると触媒を充填
した塔に鉱酸と蟻酸の蒸気を通気する方が好ましい。こ
の場合、1塔式の反応器に蟻酸を通してもよいし、多管
式の反応器を用いてもよい。特に、多管式の反応器では
ガス通の片流れが防止でき、さらに加熱のための伝熱面
積を確保できるので好ましい。
The reaction in the present invention is carried out by bringing vaporized formic acid into contact with the above catalyst. As the reactor, a reaction vessel or a tower filled with a catalyst is used. Carbon monoxide may be generated by charging a catalyst, formic acid and mineral acid into a reaction kettle and heating them, but considering the reaction efficiency, it is preferable to ventilate the vapor of mineral acid and formic acid into the column packed with the catalyst. . In this case, formic acid may be passed through the one-column type reactor, or a multitubular type reactor may be used. In particular, a multi-tubular reactor is preferable because it can prevent one-way flow of gas and can secure a heat transfer area for heating.

【0011】本触媒を用いる反応は比較的低温で進み、
反応温度は通常150〜350℃である。反応温度が1
50℃未満になると反応が進み難くなり、転化率が低く
なるので好ましくなく、350℃を越えると副反応が顕
著になり、一酸化炭素中の水素濃度が高くなるので好ま
しくない。また、H−モルデナイトおよびH−ZSM−
5を触媒として用いた場合、3ヶ月以上の期間にわたっ
て高転化率、高選択率を保持して反応を継続することが
できる。
The reaction using this catalyst proceeds at a relatively low temperature,
The reaction temperature is usually 150 to 350 ° C. Reaction temperature is 1
If the temperature is lower than 50 ° C., the reaction becomes difficult to proceed and the conversion rate becomes low, which is not preferable, and if it exceeds 350 ° C., a side reaction becomes remarkable, and the hydrogen concentration in carbon monoxide becomes high, which is not preferable. In addition, H-mordenite and H-ZSM-
When 5 is used as a catalyst, the reaction can be continued while maintaining high conversion and high selectivity over a period of 3 months or more.

【0012】本反応で得られた一酸化炭素中には不純物
として水および極微量の水素、二酸化炭素および鉱酸が
含まれている。このガスにさらに精製工程を加えて高純
度の一酸化炭素を得る方法としては、公知の組み合わせ
を用いることが可能である。その一例としては、薄い苛
性ソーダで洗浄して、微量に残存する未反応の蟻酸と二
酸化炭素を取り除いた後、乾燥して水を取り除くと高純
度の一酸化炭素を得ることができる。このようにして得
られる一酸化炭素の純度は99.99%以上であり、半
導体製造分野のみならず種々の用途に利用可能である。
本発明で用いる反応器の材質としては、蟻酸および一酸
化炭素で腐食を受けず、かつ、反応に影響を及ぼさない
ものが求められるが、その要件を満たすものとしてアル
ミニウム、チタン、ジルコニウム、炭素等を好適に用い
ることができる。
The carbon monoxide obtained by this reaction contains water and a trace amount of hydrogen, carbon dioxide and a mineral acid as impurities. As a method of further purifying the gas to obtain high-purity carbon monoxide, known combinations can be used. As an example, high purity carbon monoxide can be obtained by washing with dilute caustic soda to remove a small amount of unreacted formic acid and carbon dioxide, and then drying to remove water. The carbon monoxide thus obtained has a purity of 99.99% or more, and can be used not only in the semiconductor manufacturing field but also in various applications.
As the material of the reactor used in the present invention, those that are not corroded by formic acid and carbon monoxide, and those that do not affect the reaction are required, but aluminum, titanium, zirconium, carbon, etc. that satisfy the requirements Can be preferably used.

【0013】[0013]

【実施例】以下に実施例および比較例を挙げて本発明を
さらに詳しく説明するが、本発明はここに示す実施例等
により何等制限をうけるものではない。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to the examples shown here.

【0014】実施例1 内径2.5cm、長さ60cmのカラムにH−モルデナ
イト(Si/Al 原子比7.6 )を11cmの長さに充填し
た。用いた触媒は50mlである。このカラムの前段に
蟻酸の気化器を設けた。35%塩酸水を市販の88%純
度の蟻酸に対して2wt%加えたものを原料として用
い、気化器を通して130℃の蒸気として45g/hの
速度で反応器上部に送り込んだ。反応は外部を加熱して
250℃にて行った。反応器下部より反応ガスを取り出
して分析を行い、反応の転化率、選択率を決定した。蟻
酸の転化率は未反応の蟻酸を定量することにより求め、
一酸化炭素への選択率は生成する水素の量をガスクロマ
トグラフ質量分析計(GC−MS)で定量することによ
り求めた。その結果、蟻酸の転化率99.9%、一酸化
炭素への選択率99.99%以上で反応が進んでいた。
得られた反応ガスを10%苛性ソーダ水溶液で洗浄して
微量に含まれる二酸化炭素を除去し、さらに水で洗浄し
た。このガスをゼオライトに通して乾燥した。この結果
99.99%以上の高純度の一酸化炭素が得られた。こ
のガス中には不純物として水素が3.4ppm含まれて
いた。
Example 1 A column having an inner diameter of 2.5 cm and a length of 60 cm was packed with H-mordenite (Si / Al atomic ratio 7.6) to a length of 11 cm. The catalyst used is 50 ml. A vaporizer of formic acid was provided in the preceding stage of this column. 35% hydrochloric acid water added to a commercially available 88% pure formic acid in an amount of 2 wt% was used as a raw material, and was sent to the upper portion of the reactor as vapor at 130 ° C. at a rate of 45 g / h through a vaporizer. The reaction was performed at 250 ° C. by heating the outside. The reaction gas was taken out from the lower part of the reactor and analyzed to determine the conversion and selectivity of the reaction. The conversion rate of formic acid is obtained by quantifying unreacted formic acid,
The selectivity to carbon monoxide was determined by quantifying the amount of hydrogen produced with a gas chromatograph mass spectrometer (GC-MS). As a result, the reaction proceeded at a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more.
The obtained reaction gas was washed with a 10% aqueous sodium hydroxide solution to remove a small amount of carbon dioxide, and further washed with water. The gas was passed through zeolite to dry. As a result, high-purity carbon monoxide of 99.99% or more was obtained. This gas contained 3.4 ppm of hydrogen as an impurity.

【0015】実施例2 35%塩酸水に替えて96%硫酸を蟻酸に対し0.5w
t%加えた以外は、実施例1と同様に反応を行った。そ
の結果、蟻酸の転化率99.9%、一酸化炭素への選択
率99.99%以上で反応が進んでいた。実施例1と同
様に精製の処理を行った結果、99.99%以上の高純
度の一酸化炭素が得られ、その中には水素が1.6pp
m含まれていた。
Example 2 In place of 35% hydrochloric acid water, 96% sulfuric acid was added to formic acid in an amount of 0.5 w.
The reaction was performed in the same manner as in Example 1 except that t% was added. As a result, the reaction proceeded at a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing the purification treatment in the same manner as in Example 1, 99.99% or more of high-purity carbon monoxide was obtained, in which hydrogen contained 1.6 pp.
m was included.

【0016】実施例3 35%塩酸水に替えて96%硫酸を蟻酸に対し1.0w
t%加えた以外は、実施例1と同様に反応を行った。そ
の結果、蟻酸の転化率99.9%、一酸化炭素への選択
率99.99%以上で反応が進んでいた。実施例1と同
様に精製の処理を行った結果、99.99%以上の高純
度の一酸化炭素が得られ、その中には水素が0.9pp
m含まれていた。
Example 3 In place of 35% hydrochloric acid water, 96% sulfuric acid was added to formic acid at 1.0 w.
The reaction was performed in the same manner as in Example 1 except that t% was added. As a result, the reaction proceeded at a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing the purification treatment in the same manner as in Example 1, 99.99% or more of high-purity carbon monoxide was obtained, in which hydrogen contained 0.9 pp.
m was included.

【0017】実施例4 反応温度を225℃とした以外は、実施例2と同様に行
った。その結果、蟻酸の転化率99.9%、一酸化炭素
への選択率99.99%以上で反応が進んでいた。実施
例1と同様に精製の処理を行った結果、99.99%以
上の高純度の一酸化炭素が得られ、その中には水素が
0.4ppm含まれていた。
Example 4 Example 4 was repeated except that the reaction temperature was 225 ° C. As a result, the reaction proceeded at a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing the purification treatment in the same manner as in Example 1, 99.99% or more of high-purity carbon monoxide was obtained, and 0.4 ppm of hydrogen was contained therein.

【0018】実施例5 反応温度を300℃とし、充填長を5cmとした以外
は、実施例2と同様に行った。その結果、蟻酸の転化率
99.9%、一酸化炭素への選択率99.99%以上で
反応が進んでいた。実施例1と同様に精製の処理を行っ
た結果、99.99%以上の高純度の一酸化炭素が得ら
れ、その中には水素が14.7ppm含まれていた。
Example 5 Example 5 was repeated except that the reaction temperature was 300 ° C. and the filling length was 5 cm. As a result, the reaction proceeded at a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing the purification treatment in the same manner as in Example 1, 99.99% or more of high-purity carbon monoxide was obtained, in which 14.7 ppm of hydrogen was contained.

【0019】実施例6 触媒としてH−ZSM−5を用いた以外は、実施例2と
同様に行った。その結果、蟻酸の転化率99.9%、一
酸化炭素への選択率99.99%以上で反応が進んでい
た。実施例1と同様に精製の処理を行った結果、99.
99%以上の高純度の一酸化炭素が得られ、その中には
水素が4.1ppm含まれていた。
Example 6 Example 6 was repeated except that H-ZSM-5 was used as the catalyst. As a result, the reaction proceeded at a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing the purification treatment in the same manner as in Example 1, 99.
High-purity carbon monoxide of 99% or more was obtained, and 4.1 ppm of hydrogen was contained therein.

【0020】実施例7 実施例1に引き続き同条件で反応を70日間(1680時
間)継続した。70日後の蟻酸の転化率は99.9%、
一酸化炭素への選択率は99.99%であり、触媒の経
時的な劣化は特に認められなかった。実施例1と同様に
精製の処理を行った結果、99.99%以上の高純度の
一酸化炭素が連続して得られ、その中には水素が3.7
ppm含まれていた。
Example 7 Following Example 1, the reaction was continued under the same conditions for 70 days (1680 hours). After 70 days, the conversion of formic acid is 99.9%,
The selectivity to carbon monoxide was 99.99%, and deterioration of the catalyst over time was not particularly recognized. As a result of performing the purification treatment in the same manner as in Example 1, 99.99% or more of high-purity carbon monoxide was continuously obtained, in which hydrogen was 3.7.
It was contained in ppm.

【0021】比較例1 内径2.5cm、長さ60cmのカラムにH−モルデナ
イト(Si/Al 原子比7.6 )を11cmの長さに充填し
た。用いた触媒は50mlである。このカラムの前段に
蟻酸の気化器を設けた。市販の88%純度の蟻酸を原料
として用い、気化器を通して130℃の蒸気として45
g/hの速度で反応器上部に送り込んだ。反応は外部を
加熱して250℃にて行った。反応器下部より反応ガス
を取り出して分析を行い、反応の転化率、選択率を決定
した。蟻酸の転化率は未反応の蟻酸を定量することによ
り求め、一酸化炭素への選択率は生成する水素の量をガ
スクロマトグラフ質量分析計(GC−MS)で定量する
ことにより求めた。その結果、蟻酸の転化率99.9
%、一酸化炭素への選択率99.99%以上で反応が進
んでいた。得られた反応ガスを10%苛性ソーダ水溶液
で洗浄して微量に含まれる二酸化炭素を除去し、さらに
水で洗浄した。このガスをゼオライトに通して乾燥し
た。この結果99.99%以上の高純度の一酸化炭素が
得られた。このガス中には不純物として水素が50pp
m含まれていた。
Comparative Example 1 A column having an inner diameter of 2.5 cm and a length of 60 cm was filled with H-mordenite (Si / Al atomic ratio 7.6) to a length of 11 cm. The catalyst used is 50 ml. A vaporizer of formic acid was provided in the preceding stage of this column. Commercially available 88% pure formic acid was used as a raw material and passed through a vaporizer to produce steam at 130 ° C.
It was fed into the upper part of the reactor at a rate of g / h. The reaction was performed at 250 ° C. by heating the outside. The reaction gas was taken out from the lower part of the reactor and analyzed to determine the conversion and selectivity of the reaction. The conversion rate of formic acid was determined by quantifying unreacted formic acid, and the selectivity to carbon monoxide was determined by quantifying the amount of hydrogen produced by a gas chromatograph mass spectrometer (GC-MS). As a result, the conversion rate of formic acid was 99.9.
%, The reaction proceeded at a selectivity to carbon monoxide of 99.99% or more. The obtained reaction gas was washed with a 10% aqueous sodium hydroxide solution to remove a small amount of carbon dioxide, and further washed with water. The gas was passed through zeolite to dry. As a result, high-purity carbon monoxide of 99.99% or more was obtained. Hydrogen is 50 pp as an impurity in this gas.
m was included.

【0022】比較例2 反応温度を225℃とした以外は、比較例1と同様に行
った。その結果、蟻酸の転化率63.2%、一酸化炭素
への選択率99.99%以上で反応が進んでいた。実施
例1と同様に精製の処理を行った結果、99.99%以
上の高純度の一酸化炭素が得られ、その中には水素が1
7ppm含まれていた。
Comparative Example 2 The procedure of Comparative Example 1 was repeated except that the reaction temperature was 225 ° C. As a result, the reaction proceeded with a conversion of formic acid of 63.2% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing the purification treatment in the same manner as in Example 1, 99.99% or more of high-purity carbon monoxide was obtained, in which hydrogen was 1%.
It was contained at 7 ppm.

【0023】[0023]

【発明の効果】蟻酸をゼオライト系触媒で触媒的に分解
して一酸化炭素を得るに際し、蟻酸に鉱酸を加えて反応
を行うことにより、反応速度が向上し、しかも高い選択
率で反応が進むため、水素含量の低い高純度の一酸化炭
素を工業的に有利に得ることができる。
EFFECT OF THE INVENTION When catalytically decomposing formic acid with a zeolite-based catalyst to obtain carbon monoxide, by adding a mineral acid to formic acid to carry out the reaction, the reaction rate is improved and the reaction can be performed with a high selectivity. Therefore, high-purity carbon monoxide having a low hydrogen content can be industrially advantageously obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑 啓之 兵庫県加古郡播磨町宮西346番地の1 住 友精化株式会社製造所別府工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroyuki Hata 1 346, Miyanishi, Harima-cho, Kako-gun, Hyogo Sumitomo Seika Co., Ltd. Beppu factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蟻酸を加熱分解して一酸化炭素を製造す
る方法において、ゼオライト系触媒を用い、鉱酸の存在
下に上記反応を行うことを特徴とする高純度一酸化炭素
の製造方法。
1. A process for producing carbon monoxide by thermally decomposing formic acid to produce carbon monoxide, which comprises performing the above reaction in the presence of a mineral acid using a zeolite catalyst.
【請求項2】 ゼオライト系触媒がH−ZSM−5また
はH−モルデナイトである請求項1記載の製造方法。
2. The method according to claim 1, wherein the zeolite-based catalyst is H-ZSM-5 or H-mordenite.
【請求項3】 鉱酸が塩酸または硫酸である請求項1記
載の製造方法。
3. The production method according to claim 1, wherein the mineral acid is hydrochloric acid or sulfuric acid.
【請求項4】 鉱酸の濃度が蟻酸に対して0.05〜5
wt%である請求項1記載の製造方法。
4. The concentration of mineral acid is 0.05 to 5 relative to formic acid.
The manufacturing method according to claim 1, which is wt%.
【請求項5】 加熱分解温度が150〜350℃である
請求項1記載の製造方法。
5. The production method according to claim 1, wherein the thermal decomposition temperature is 150 to 350 ° C.
JP5195422A 1993-07-12 1993-07-12 Method for producing high-purity carbon monoxide Expired - Lifetime JP3041445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5195422A JP3041445B2 (en) 1993-07-12 1993-07-12 Method for producing high-purity carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5195422A JP3041445B2 (en) 1993-07-12 1993-07-12 Method for producing high-purity carbon monoxide

Publications (2)

Publication Number Publication Date
JPH0733421A true JPH0733421A (en) 1995-02-03
JP3041445B2 JP3041445B2 (en) 2000-05-15

Family

ID=16340819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5195422A Expired - Lifetime JP3041445B2 (en) 1993-07-12 1993-07-12 Method for producing high-purity carbon monoxide

Country Status (1)

Country Link
JP (1) JP3041445B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813470A1 (en) * 2013-06-14 2014-12-17 Bayer Technology Services GmbH Method for decomposition of formic acid using zeolite catalysts
KR20200127225A (en) 2018-03-06 2020-11-10 스미토모 세이카 가부시키가이샤 Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas
US11198942B2 (en) * 2015-02-06 2021-12-14 Siemens Energy Global GmbH & Co. KG Electrolysis system for carbon dioxide
CN116273143A (en) * 2023-02-22 2023-06-23 中船(邯郸)派瑞特种气体股份有限公司 Catalyst for preparing high-purity carbon monoxide by formic acid dehydration and synthetic method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813470A1 (en) * 2013-06-14 2014-12-17 Bayer Technology Services GmbH Method for decomposition of formic acid using zeolite catalysts
WO2014198859A1 (en) 2013-06-14 2014-12-18 Bayer Technology Services Gmbh Method for decomposition of formic acid using zeolite catalysts
US11198942B2 (en) * 2015-02-06 2021-12-14 Siemens Energy Global GmbH & Co. KG Electrolysis system for carbon dioxide
KR20200127225A (en) 2018-03-06 2020-11-10 스미토모 세이카 가부시키가이샤 Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas
CN116273143A (en) * 2023-02-22 2023-06-23 中船(邯郸)派瑞特种气体股份有限公司 Catalyst for preparing high-purity carbon monoxide by formic acid dehydration and synthetic method and application thereof

Also Published As

Publication number Publication date
JP3041445B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
KR100192527B1 (en) Process for preparation of hydrogen rich gas
CN1895776B (en) Catalyst for producing dimethyl ether by methanol liquid-phase or mixed-phase dewatering method
JP2968182B2 (en) Phenol purification method
JPH0446252B2 (en)
CA2748189A1 (en) Production of acetates from acetic acid and alcohols
JP3041445B2 (en) Method for producing high-purity carbon monoxide
JP3856872B2 (en) Method for producing high purity carbon monoxide
RU99126656A (en) METHOD FOR Phenol and Acetone Production Using Acid Catalytic Decomposition of Cumene Hydroperoxide
JP3397370B2 (en) Method for producing high-purity carbon monoxide
US4582645A (en) Carbonate production
JPS6341431A (en) Production of isobutylene
JP3822981B2 (en) Method for producing high purity carbon monoxide
CN100562510C (en) The preparation method of fluoromethane and product
JP5162128B2 (en) Method for producing acrolein from glycerin
US4625061A (en) Process for preparing cyanamide
JPS63248701A (en) Thermochemical production of hydrogen utilizing high yield decomposition of hydrogen iodide
CA2183597A1 (en) Zeolites and processes employing them
JP4028342B2 (en) Method for removing higher hydrocarbons from natural gas
JPH0597757A (en) Production of trifluoroacetaldehyde
JPS61221141A (en) Production of cyclic alcohol
KR100321518B1 (en) PROCESS FOR RECOVERING PHENOL, CUMENE AND α-METHYL STYRENE FROM BYPRODUCT OF PHENOL PRODUCING PROCESS, AND THE APPARATUS THEREOF
JPS59157045A (en) Dehydration of hexafluoroacetone hydrate
KR20240046711A (en) Carbon monoxide production method and production device
US4695671A (en) Tetramethyltetrahydronaphthalene purification process
JPH08253434A (en) Production of high-purity 1,3-cyclohexadiene

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13