JP5162128B2 - Method for producing acrolein from glycerin - Google Patents

Method for producing acrolein from glycerin Download PDF

Info

Publication number
JP5162128B2
JP5162128B2 JP2006351654A JP2006351654A JP5162128B2 JP 5162128 B2 JP5162128 B2 JP 5162128B2 JP 2006351654 A JP2006351654 A JP 2006351654A JP 2006351654 A JP2006351654 A JP 2006351654A JP 5162128 B2 JP5162128 B2 JP 5162128B2
Authority
JP
Japan
Prior art keywords
glycerin
catalyst
reaction
supply amount
acrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006351654A
Other languages
Japanese (ja)
Other versions
JP2008162908A (en
Inventor
洋人 春日
雅希 岡田
賢 桐敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006351654A priority Critical patent/JP5162128B2/en
Priority to EP07832694.9A priority patent/EP2103590A4/en
Priority to US12/312,883 priority patent/US7951978B2/en
Priority to CN200780044156.8A priority patent/CN101541727B/en
Priority to PCT/JP2007/072972 priority patent/WO2008066082A1/en
Publication of JP2008162908A publication Critical patent/JP2008162908A/en
Application granted granted Critical
Publication of JP5162128B2 publication Critical patent/JP5162128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、アクロレインの生産性に優れた、固体触媒を用いるグリセリンからのアクロレインを生成する気相反応方法に関するものである。   The present invention relates to a gas phase reaction method for producing acrolein from glycerin using a solid catalyst, which is excellent in acrolein productivity.

植物油から製造されるバイオディーゼルは、化石燃料の代替燃料としてだけではなく、二酸化炭素の排出量が少ない点でも注目され、需要の増大が見込まれている。このバイオディーゼルを製造するとグリセリンが副生するため、その有効利用を図る必要がある。グ
リセリンの利用の一態様としては、グリセリンをアクロレインの原料に使用することが挙げられる。
Biodiesel produced from vegetable oil is attracting attention not only as a substitute for fossil fuels but also because it emits less carbon dioxide, and demand is expected to increase. When this biodiesel is produced, glycerin is produced as a by-product, so it is necessary to make effective use of it. One embodiment of the use of glycerin includes the use of glycerin as a raw material for acrolein.

グリセリンから脱水反応によりアクロレインを製造するに際して、固体酸触媒を用いることは古くから知られている。   In the production of acrolein from glycerin by a dehydration reaction, it has long been known to use a solid acid catalyst.

酸強度関数H0が+2以下の固体酸触媒とグリセリン含有量が10〜40重量%のグリセリン水溶液を、250℃〜340℃の条件で接触気相反応によりグリセリンを脱水しアクロレインを製造することが開示され、実施例における触媒1L当り1時間当りのグリセリン供給量(以下、グリセリン単位供給量と称する事がある)については80〜160gグリセリン/hr/L−触媒と算出される(特許文献1参考)。   Disclosed is to produce acrolein by dehydrating a solid acid catalyst having an acid strength function H0 of +2 or less and a glycerol aqueous solution having a glycerol content of 10 to 40% by weight by catalytic gas phase reaction at 250 to 340 ° C. The glycerin supply amount per hour per 1 L of catalyst in the examples (hereinafter sometimes referred to as glycerin unit supply amount) is calculated as 80 to 160 g glycerin / hr / L-catalyst (see Patent Document 1). .

また、酸強度関数H0が−9〜−18の範囲の固体強酸性触媒を用いてグリセリンの気相脱水反応によるアクロレインの製造方法について開示され、10〜50重量%のグリセリン水溶液と前記固体強酸性触媒と接触気相反応を行うにあたり、好ましい反応温度が250℃〜350℃であることが記載されており、実施例におけるグリセリン単位供給量については230gグリセリン/hr/L−触媒と算出される(特許文献2参考)。   Also disclosed is a method for producing acrolein by gas phase dehydration reaction of glycerin using a solid strong acid catalyst having an acid strength function H0 in the range of -9 to -18. In carrying out the catalytic gas phase reaction with the catalyst, it is described that the preferable reaction temperature is 250 ° C. to 350 ° C., and the glycerin unit supply amount in the examples is calculated as 230 g glycerin / hr / L-catalyst ( Reference 2).

これらのグリセリン単位供給量のレベルは、工業的生産を想定した場合、まだまだ低い値であり、低いと生産性が悪く、従って反応装置が大きくなるという課題があることを見出し、生産性を高くする工夫を本願発明者は鋭意検討した。   The level of supply of these glycerin units is still low when assuming industrial production, and if it is low, the productivity will be poor, and therefore there will be a problem that the reactor will be large, and the productivity will be increased. The inventor of the present application diligently studied the device.

アクロレインはプロピレンの接触気相酸化により工業的に広く製造されており、例えば、プロピレンの単位触媒量あたりの単位時間でのプロピレンの負荷として、90〜160NL/L−触媒の条件下でのプロピレンの接触部分気相酸化方法が開示されており、該条件をグリセリン単位供給量に換算すると360〜658gグリセリン/hr/L−触媒に相当する(特許文献3)。   Acrolein is widely produced industrially by catalytic gas phase oxidation of propylene. For example, as a load of propylene per unit time per unit amount of propylene, the load of propylene under conditions of 90 to 160 NL / L-catalyst. A catalytic partial gas phase oxidation method is disclosed, and this condition corresponds to 360 to 658 g glycerin / hr / L-catalyst when converted to a glycerin unit supply amount (Patent Document 3).

特開平06−211724号公報Japanese Patent Laid-Open No. 06-211724 国際公開WO2006−087083号公報International Publication WO2006-070883 特表2006−521317号公報JP-T-2006-521317

本発明は、上記事情に鑑み、実用的なグリセリン負荷条件でアクロレインの収率を損なわずに製造する方法を提供することを目的とする。   An object of this invention is to provide the method of manufacturing without impairing the yield of acrolein on practical glycerol load conditions in view of the said situation.

本発明者らはグリセリンからのアクロレインの合成反応について鋭意検討した結果、実用的な負荷条件でアクロレインを製造するためには、反応温度が350℃〜460℃の範囲で、さらに接触時間が0.1〜7.2秒の範囲であるとアクロレインの収率を損なわずに製造できることを見出した。   As a result of intensive studies on the synthesis reaction of acrolein from glycerin, the present inventors have found that acrolein can be produced under practical load conditions, with a reaction temperature of 350 ° C. to 460 ° C. and a contact time of 0. It discovered that it could manufacture, without impairing the yield of acrolein in the range of 1 to 7.2 seconds.

即ち、前記課題を解決する手段として、下記方法を発明した。
(1)グリセリンを含むガスを固体酸触媒に接触させてアクロレインを合成する接触気相脱水反応において、単位触媒あたり単位時間あたりのグリセリン転化量が300〜15000gグリセリン/hr/L−触媒、かつ反応温度が350〜460℃の条件で反応を行うことを特徴とするアクロレインの製造方法。
That is, the following method was invented as means for solving the above-mentioned problems.
(1) In a catalytic gas phase dehydration reaction in which a gas containing glycerin is brought into contact with a solid acid catalyst to synthesize acrolein, the amount of glycerin converted per unit time per unit catalyst is 300 to 15000 g glycerin / hr / L-catalyst, and the reaction A process for producing acrolein, wherein the reaction is carried out at a temperature of 350 to 460 ° C.

(2)接触時間が0.1〜7.2秒の条件で行うことを特徴とする、(1)記載のアクロレインの製造方法。   (2) The method for producing acrolein according to (1), wherein the contact time is 0.1 to 7.2 seconds.

本発明によれば、グリセリンの脱水反応によるアクロレインの製造において、反応温度350〜460℃で気相反応を行うと、実用的な高負荷条件でアクロレインの収率を損なうことなく製造することが出来る。   According to the present invention, in the production of acrolein by dehydration reaction of glycerin, when a gas phase reaction is performed at a reaction temperature of 350 to 460 ° C., it can be produced without impairing the yield of acrolein under practical high load conditions. .

本実施形態におけるアクロレインの製造方法は、固定床反応器、移動床反応器、流動層反応器等から任意に選択した反応器内でグリセリンを含んだ原料ガスと触媒を接触させる気相脱水反応によりアクロレインを製造するものである。   The production method of acrolein in the present embodiment is a gas phase dehydration reaction in which a raw material gas containing glycerin is brought into contact with a catalyst in a reactor arbitrarily selected from a fixed bed reactor, a moving bed reactor, a fluidized bed reactor and the like. Acrolein is produced.

固体酸触媒としては、固体酸性を有する化合物であれば良く、(1)結晶性メタロシリケート、(2)金属酸化物、(3)粘土鉱物、(4)鉱酸をα−アルミナやシリカ、酸化ジルコニウム、酸化チタン等の無機担体に担持したもの、(5)リン酸や硫酸の金属塩およびそれらをα−アルミナやシリカ、酸化ジルコニウム、酸化チタン等の無機担体に担持したもの、等が上げられる。   The solid acid catalyst may be any compound having solid acidity. (1) Crystalline metallosilicate, (2) Metal oxide, (3) Clay mineral, (4) Mineral acid with α-alumina, silica, oxidation (5) Metal salts of phosphoric acid and sulfuric acid and those supported on an inorganic carrier such as α-alumina, silica, zirconium oxide, titanium oxide, etc. .

(1)結晶性メタロシリケートとしては、Al、B、Fe、Ga等から選ばれる1種または2種以上の元素をT原子とし、その結晶構造としては、LTA、CHA、FER、MFI、MOR、BEA、MTW等があり、(2)金属酸化物としては、Al2O3、TiO2、ZrO2、SnO2、V2O5、などの単独金属酸化物以外に、SiO2−Al2O3、SiO2−TiO2、TiO2−WO3、WO3−ZrO2等の複合酸化物があり、(3)粘土鉱物としては、ベントナイト、カオリン、モンモリロナイトなどがあり、(4)鉱酸を無機担体に担持したものとして、リン酸や硫酸をアルミナやシリカ、ジルコニアなどに担持したもの等があり、(5)リン酸や硫酸の金属塩としては、MgSO4、Al2(SO4)3、K2SO4、AlPO4、Zr3(PO4)4等が例示される。   (1) As a crystalline metallosilicate, one or more elements selected from Al, B, Fe, Ga and the like are T atoms, and the crystal structure thereof is LTA, CHA, FER, MFI, MOR, There are BEA, MTW, etc. (2) As the metal oxide, in addition to single metal oxides such as Al2O3, TiO2, ZrO2, SnO2, V2O5, SiO2-Al2O3, SiO2-TiO2, TiO2-WO3, WO3-ZrO2 (3) Clay minerals include bentonite, kaolin, montmorillonite, etc. (4) As mineral acid is supported on an inorganic carrier, phosphoric acid and sulfuric acid are alumina, silica, zirconia, etc. (5) Metal salts of phosphoric acid and sulfuric acid include MgSO4, Al2 (SO4) 3, K2SO4 AlPO4, Zr3 (PO4) 4 and the like.

具体的には、国際公開WO2006/087083号公報およびWO2006/087084号公報に開示されている固体酸(リン酸、硫酸または酸化タングステンを担持している酸化ジルコニウムなど)を使用することも出来る。   Specifically, solid acids (such as zirconium oxide carrying phosphoric acid, sulfuric acid or tungsten oxide) disclosed in International Publications WO2006 / 087083 and WO2006 / 087084 can also be used.

これらの中で、脱水反応時や再生処理時において高温で、酸化や還元雰囲気に曝される事から、安定性の良い固体触媒が好ましく、結晶性メタロシリケート、金属酸化物および粘土鉱物等が好適であり、結晶性メタロシリケートとしては、T原子がAlでMFI構造のZSM5が特に好適である。   Among these, since they are exposed to an oxidizing or reducing atmosphere at a high temperature during dehydration or regeneration, a solid catalyst having good stability is preferable, and crystalline metallosilicates, metal oxides, clay minerals, and the like are preferable. As the crystalline metallosilicate, ZSM5 having a TFI of Al and an MFI structure is particularly suitable.

単位触媒あたり単位時間あたりのグリセリン供給量とは、触媒1Lに対して1時間あたりのグリセリン供給量(グリセリン単位供給量)を言い、触媒上へ供給した1時間当りのグリセリン重量を該触媒の反応器内の容積(L)で除した値である。   The amount of glycerin supplied per unit catalyst per unit time means the amount of glycerin supplied per hour per 1 L of catalyst (glycerin unit supply amount), and the weight of glycerin per hour supplied onto the catalyst is the reaction of the catalyst. It is the value divided by the volume (L) in the vessel.

グリセリン単位供給量は300〜15000gグリセリン/hr/L−触媒であり、好ましくは、400〜12000gグリセリン/hr/L−触媒、より好ましくは500〜10000gグリセリン/hr/L−触媒である。   The glycerin unit supply amount is 300 to 15000 g glycerin / hr / L-catalyst, preferably 400 to 12000 g glycerin / hr / L-catalyst, more preferably 500 to 10,000 g glycerin / hr / L-catalyst.

接触時間とは、触媒容積を1秒あたりのガス流量で除した値である。
接触時間は、0.1〜7.2秒が好ましく、より好ましくは、0.2〜7.0秒、更に好ましくは0.3〜6.0秒である。
The contact time is a value obtained by dividing the catalyst volume by the gas flow rate per second.
The contact time is preferably 0.1 to 7.2 seconds, more preferably 0.2 to 7.0 seconds, and still more preferably 0.3 to 6.0 seconds.

グリセリン単位供給量と接触時間と温度には相関関係があり性能面を考慮すれば次の範囲がより好ましい。好ましいグリセリン供給量と接触時間は、例えば反応温度350℃以上380℃未満ではグリセリン供給量が300〜3000gグリセリン/hr/L−触媒で接触時間は0.1〜7.2秒、同じく380℃以上410℃未満では300〜7000gグリセリン/hr/L−触媒で0.1〜7.2秒、同じく410℃以上440℃未満では700〜10000gグリセリン/hr/L−触媒で0.1〜3.5秒、同じく440℃以上460℃未満では2000〜15000gグリセリン/hr/L−触媒で0.1〜2.0秒である。より好ましくは、反応温度350℃以上380℃未満では300〜2000gグリセリン/hr/L−触媒で0.3〜7.2秒、380℃以上410℃未満では600〜4000gグリセリン/hr/L−触媒で0.3〜6.0秒、同じく410℃以上440℃未満では、1000〜7500gグリセリン/hr/L−触媒で0.1〜2.5秒、同じく440℃以上460℃未満では、2500〜10000gグリセリン/hr/L−触媒で0.1〜1.0秒である。   The glycerin unit supply amount, contact time, and temperature are correlated, and the following range is more preferable in consideration of performance. For example, when the reaction temperature is 350 ° C. or higher and lower than 380 ° C., the glycerin supply amount is 300 to 3000 g glycerin / hr / L-catalyst and the contact time is 0.1 to 7.2 seconds, similarly 380 ° C. or higher. Below 410 ° C, 300 to 7000 g glycerin / hr / L-catalyst is used for 0.1 to 7.2 seconds, and when 410 ° C or more and below 440 ° C, 700 to 10000 g glycerin / hr / L-catalyst is used at 0.1 to 3.5. 2 seconds, also from 440 ° C. to below 460 ° C., 0.1 to 2.0 seconds with 2000 to 15000 g glycerin / hr / L-catalyst. More preferably, when the reaction temperature is 350 ° C. or higher and lower than 380 ° C., 300 to 2000 g glycerin / hr / L-catalyst is used for 0.3 to 7.2 seconds, and when 380 ° C. or higher and lower than 410 ° C. is 600 to 4000 g glycerin / hr / L-catalyst. 0.3 to 6.0 seconds, also from 410 ° C. to less than 440 ° C., from 1000 to 7500 g glycerol / hr / L-catalyst for 0.1 to 2.5 seconds, and from 440 ° C. to less than 460 ° C. It is 0.1 to 1.0 second with 10000 g glycerin / hr / L-catalyst.

反応温度は、350〜460℃が好ましく、より好ましくは、350〜450℃である。反応温度が低いと、未転化のグリセリンが増えてアクロレインの収量が低下するため、実質的にはグリセリン単位供給量を下げたことになるだけでなく、未転化のグリセリンを回収するための装置が必要になり、アクロレインの製造コストを増加させる事になる。また反応温度が高すぎると、アクロレインの収率が大幅に低下し、好ましくない。   The reaction temperature is preferably 350 to 460 ° C, more preferably 350 to 450 ° C. When the reaction temperature is low, unconverted glycerin increases and the yield of acrolein decreases, so not only the glycerol unit supply amount is substantially reduced, but also an apparatus for recovering unconverted glycerin. This increases the production cost of acrolein. On the other hand, if the reaction temperature is too high, the yield of acrolein is greatly reduced, which is not preferable.

この反応原料ガス中におけるグリセリン濃度は0.1〜100モル%であれば良いが、特にグリセリン単位供給量の多い条件では希釈ガス使用量の削減や反応系の圧力損失の低減、生成したアクロレインの捕集効率などの経済的観点から、1モル%以上であるとより好ましい。   The glycerin concentration in the reaction raw material gas may be 0.1 to 100 mol%. However, particularly under conditions where the glycerin unit supply amount is large, the amount of dilution gas used is reduced, the pressure loss of the reaction system is reduced, and the generated acrolein is reduced. From an economic viewpoint such as collection efficiency, it is more preferably 1 mol% or more.

原料グリセリンは、精製品でも、粗製品でも、水溶液でもかまわない。反応原料ガスは、グリセリンのみで構成されているガスであっても良く、反応原料ガス中のグリセリン濃度を調整するためにグリセリン脱水反応に不活性なガスを含んでいても良い。不活性ガスには、水蒸気や窒素ガス、空気を例示することができ、特に水蒸気を添加すると触媒の寿命やアクロレインの収率に対して有利な効果が見られ、好適である。   The raw material glycerin may be a purified product, a crude product, or an aqueous solution. The reaction raw material gas may be a gas composed only of glycerin, and may contain a gas inert to the glycerin dehydration reaction in order to adjust the glycerin concentration in the reaction raw material gas. Examples of the inert gas include water vapor, nitrogen gas, and air. Particularly, when water vapor is added, advantageous effects are seen with respect to the life of the catalyst and the yield of acrolein.

反応圧力は、グリセリンが凝縮しない範囲の圧力であれば特に限定されない。通常、0.001〜1MPaであると良く、好ましくは、0.01〜0.5MPaである。   The reaction pressure is not particularly limited as long as glycerin is not condensed. Usually, it is good that it is 0.001 to 1 MPa, and preferably 0.01 to 0.5 MPa.

以下、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらの実施例のみに限定されるものではない。なお、以下ことわりのない場合、「%」は「質量%」を、「部」は「質量部」をそれぞれ示すものとする。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the scope of the present invention is not limited only to these Examples. Unless otherwise specified, “%” indicates “mass%” and “part” indicates “mass part”.

(触媒調製例1)
0.58gのNaOHと1.95gのNaAlO2を蒸留水15.00gに順次溶解し、更に、10.15gの40質量%水酸化テトラ−n−プロヒルアンモニウム水溶液を蒸留水に添加した。そして、この溶液に蒸留水を加えて、全量が30mlの含浸液を調製した。
(Catalyst Preparation Example 1)
0.58 g of NaOH and 1.95 g of NaAlO2 were dissolved in 15.00 g of distilled water sequentially, and 10.15 g of 40% by mass tetra-n-prohilammonium hydroxide aqueous solution was added to the distilled water. Then, distilled water was added to this solution to prepare an impregnating solution having a total amount of 30 ml.

次に、シリカ成形体としてシリカビーズ(富士シリシア化学社製「キャリアクトQ−50」、10〜20メッシュ、平均細孔径50nm)を使用し、120℃で1日間乾燥した30gのシリカビーズを含浸液に1時間含浸させた。その後、含浸したシリカビーズを100℃の湯浴上に設置した蒸発皿上で乾燥させた後、更に80℃、窒素気流下で5時間乾燥して、結晶化に必要なNa、Al結晶化剤をシリカビーズに担持させ、結晶性メタノシリケート前駆体を得た。   Next, silica beads ("Caractect Q-50" manufactured by Fuji Silysia Chemical Ltd., 10 to 20 mesh, average pore diameter 50 nm) are used as the silica molded body, and impregnated with 30 g silica beads dried at 120 ° C for 1 day. The liquid was impregnated for 1 hour. Thereafter, the impregnated silica beads are dried on an evaporating dish placed on a 100 ° C. hot water bath, and further dried at 80 ° C. under a nitrogen stream for 5 hours to obtain Na and Al crystallization agents necessary for crystallization. Was supported on silica beads to obtain a crystalline methanosilicate precursor.

担持工程で得た前駆体を容積100mlのテトラフルオロエチレン製のジャケット付坩堝の中空部に配置し、坩堝の底部に1.00gの蒸留水を入れ、この坩堝を180℃の電気炉に8時間静置した。   The precursor obtained in the supporting step is placed in the hollow part of a tetrafluoroethylene jacketed crucible having a volume of 100 ml, and 1.00 g of distilled water is placed at the bottom of the crucible, and this crucible is placed in an electric furnace at 180 ° C. for 8 hours. Left to stand.

結晶化工程を経た固形物を、60℃の1mol/L硝酸アンモニウム水溶液300gに浸潰して1時間援持した後、上澄み液を廃棄した。この操作を複数回繰り返した。その後、固形物を水洗した。   The solid material that had undergone the crystallization step was immersed in 300 g of a 1 mol / L aqueous ammonium nitrate solution at 60 ° C. for 1 hour, and then the supernatant was discarded. This operation was repeated several times. Thereafter, the solid was washed with water.

イオン交換工程後の固形物を、空気気流中において540℃で3.5時間焼成した。この焼成により、H型MFIである触媒Aを得た。   The solid after the ion exchange step was baked at 540 ° C. for 3.5 hours in an air stream. By this calcination, catalyst A which is H-type MFI was obtained.

(触媒調製例2)
市販の顆粒状活性アルミナ(メルク社製「ALUMINIUMOXIDE90 Active acidic(0.063−0.200mm)(Activity STAGE I)」、製造番号101078)を、内径3cm、高さ5mmの塩化ビニル製の筒に充填して加圧成形を行い、得られた成型体を破砕して、0.7〜1.4mmに分級することにより、触媒Bを得た。
(Catalyst preparation example 2)
A commercially available granular activated alumina ("ALUMINIUMOXIDE 90 Active acid (0.063-0.200 mm) (Activity Stage I)" manufactured by Merck & Co., production number 101078) is filled into a vinyl chloride tube having an inner diameter of 3 cm and a height of 5 mm. Then, pressure forming was carried out, and the resulting molded body was crushed and classified into 0.7 to 1.4 mm to obtain catalyst B.

(触媒調製例3)
イオン交換水350gとSiO2粉末40gを混合・撹拌して混合液を調製し、混合液を80℃まで加熱した。次に少量のイオン交換水で溶解した7.1573gのZrO(NO3)2・2H2Oと、85質量%のオルトリン酸水溶液6.1507gを添加した。80℃のままペースト状になるまで加熱・撹拌を継続し、得られたペースト状物を、100℃で乾燥後、600℃、5時間、空気雰囲気下で焼成し、得られた固形物を破砕して、0.7〜1.4mmに分級することにより、触媒Cを得た。
(Catalyst Preparation Example 3)
350 g of ion-exchanged water and 40 g of SiO2 powder were mixed and stirred to prepare a mixed solution, and the mixed solution was heated to 80 ° C. Next, 7.1573 g of ZrO (NO 3) 2 .2H 2 O dissolved in a small amount of ion-exchanged water and 6.1507 g of 85 mass% orthophosphoric acid aqueous solution were added. Heating and stirring are continued until it becomes a paste at 80 ° C., and the obtained paste is dried at 100 ° C. and then fired in an air atmosphere at 600 ° C. for 5 hours, and the resulting solid is crushed. Then, catalyst C was obtained by classification to 0.7 to 1.4 mm.

実施例1
先ず、触媒15mlを充填したステンレス製反応管(内径10mm、長さ500mm)を固定床反応器として準備し、この反応器を360℃の塩浴に浸漬し、その後、80質量%グリセリン水溶液の気化ガスと窒素からなる反応ガス(反応ガス組成:グリセリン27mol%、水34mol%、窒素39mol%)を632hr−1の流量で流通させた。この条件でのグリセリン単位供給量は701gグリセリン/hr/L−触媒、接触時間は5.7秒である。反応器内に反応ガスを流通させてから30〜60分および150〜180分の各30分間における流出ガスを冷却液化して捕集した(以下、「捕集した流出ガスの冷却液化物」を「流出物」と称する)。
Example 1
First, a stainless steel reaction tube (inner diameter 10 mm, length 500 mm) filled with 15 ml of catalyst was prepared as a fixed bed reactor, and this reactor was immersed in a salt bath at 360 ° C., and then an 80% by mass glycerin aqueous solution was vaporized. A reaction gas composed of a gas and nitrogen (reaction gas composition: glycerin 27 mol%, water 34 mol%, nitrogen 39 mol%) was circulated at a flow rate of 632 hr-1. The glycerin unit supply amount under these conditions is 701 g glycerin / hr / L-catalyst, and the contact time is 5.7 seconds. The effluent gas for 30 to 60 minutes and 150 to 180 minutes after flowing the reaction gas through the reactor was cooled and liquefied and collected (hereinafter referred to as “cooled liquefied product of the collected effluent gas”). Referred to as “spill”).

そして、ガスクロマトグラフィ(GC)により、流出物の定性および定量分析を行った。GCによる定性分析の結果、グリセリン、アクロレインと共に1−ヒドロキシアセトンが検出された。また、定量分析結果から、転化率、アクロレイン収率を算出した。ここで、転化率は、(1−(捕集流出物中のグリセリンのモル数)/(30分間で反応器に流入させたグリセリンのモル数))×100、で算出される値である。また、アクロレインの収率は、((アクロレインのモル数)/(30分間に反応器に流入させたグリセリンのモル数))×100、で算出される値である。結果を表1に示す。   Then, qualitative and quantitative analysis of the effluent was performed by gas chromatography (GC). As a result of qualitative analysis by GC, 1-hydroxyacetone was detected together with glycerin and acrolein. Moreover, the conversion rate and the acrolein yield were calculated from the quantitative analysis results. Here, the conversion rate is a value calculated by (1− (number of moles of glycerin in the collected effluent) / (number of moles of glycerin introduced into the reactor in 30 minutes)) × 100. The yield of acrolein is a value calculated by ((molar number of acrolein) / (molar number of glycerin introduced into the reactor in 30 minutes)) × 100. The results are shown in Table 1.

実施例2
実施例1において、触媒量を15mlから7.5mlに変えた以外は実施例1と同様に行った。この時のグリセリン単位供給量は1400gグリセリン/hr/L−触媒、接触時間は2.8秒であった。結果を表1に示す。
Example 2
In Example 1, it carried out like Example 1 except having changed the catalyst amount from 15 ml to 7.5 ml. At this time, the glycerin unit supply amount was 1400 g glycerin / hr / L-catalyst, and the contact time was 2.8 seconds. The results are shown in Table 1.

実施例3
実施例1において、塩浴温度を360℃から390℃に変えた以外は実施例1と同様に行った。結果を表1に示す。
Example 3
In Example 1, it carried out like Example 1 except having changed salt bath temperature from 360 degreeC to 390 degreeC. The results are shown in Table 1.

実施例4
実施例1において、塩浴温度を360℃から390℃に、触媒量を15mlから4mlに変えた以外は実施例1と同様に行った。この時のグリセリン単位供給量は2625gグリセリン/hr/L−触媒、接触時間は1.5秒であった。結果を表1に示す。
Example 4
In Example 1, it carried out like Example 1 except having changed the salt bath temperature from 360 degreeC to 390 degreeC, and changing the catalyst amount from 15 ml to 4 ml. At this time, the supply amount of glycerol unit was 2625 g glycerol / hr / L-catalyst, and the contact time was 1.5 seconds. The results are shown in Table 1.

実施例5
実施例1において、塩浴温度を360℃から420℃に、触媒量を15mlから4mlに変えた以外は実施例1と同様に行った。この時のグリセリン単位供給量は2625gグリセリン/hr/L−触媒、接触時間は1.5秒であった。結果を表1に示す。
Example 5
In Example 1, it carried out like Example 1 except having changed the salt bath temperature from 360 degreeC to 420 degreeC, and changing the catalyst amount from 15 ml to 4 ml. At this time, the supply amount of glycerol unit was 2625 g glycerol / hr / L-catalyst, and the contact time was 1.5 seconds. The results are shown in Table 1.

実施例6
実施例1において、塩浴温度を360℃から420℃に、触媒量を15mlから2mlに変えた以外は実施例1と同様に行った。この時のグリセリン単位供給量は5250gグリセリン/hr/L−触媒、接触時間は0.76秒であった。結果を表1に示す。
Example 6
In Example 1, it carried out like Example 1 except having changed the salt bath temperature from 360 degreeC to 420 degreeC, and changing the catalyst amount from 15 ml to 2 ml. At this time, the glycerin unit supply amount was 5250 g glycerin / hr / L-catalyst, and the contact time was 0.76 seconds. The results are shown in Table 1.

実施例7
実施例1において、塩浴温度を360℃から450℃に、触媒量を15mlから2mlに変えた以外は実施例1と同様に行った。この時のグリセリン単位供給量は5250gグリセリン/hr/L−触媒、接触時間は0.76秒であった。結果を表1に示す。
Example 7
In Example 1, it carried out like Example 1 except having changed the salt bath temperature from 360 degreeC to 450 degreeC, and having changed the catalyst amount from 15 ml to 2 ml. At this time, the glycerin unit supply amount was 5250 g glycerin / hr / L-catalyst, and the contact time was 0.76 seconds. The results are shown in Table 1.

実施例8
実施例1において、塩浴温度を360℃から450℃に、触媒量を15mlから1mlに変えた以外は実施例1と同様に行った。この時のグリセリン単位供給量は10500gグリセリン/hr/L−触媒、接触時間は0.38秒であった。結果を表1に示す。
Example 8
In Example 1, it carried out like Example 1 except having changed the salt bath temperature from 360 degreeC to 450 degreeC, and changing the catalyst amount from 15 ml to 1 ml. At this time, the supply amount of glycerol unit was 10500 g glycerol / hr / L-catalyst, and the contact time was 0.38 seconds. The results are shown in Table 1.

実施例9
実施例1において、触媒Aを触媒Bに変えた以外は実施例1と同様に行った。結果を表1に示す。
Example 9
In Example 1, it carried out like Example 1 except having changed the catalyst A into the catalyst B. The results are shown in Table 1.

実施例10
実施例1において、触媒Aを触媒Cに変えた以外は実施例1と同様に行った。結果を表1に示す。
Example 10
In Example 1, it carried out like Example 1 except having changed the catalyst A into the catalyst C. The results are shown in Table 1.

比較例1
実施例1において、塩浴温度を300℃にした以外は実施例1と同様に行った。結果を表1に示す。
Comparative Example 1
In Example 1, it carried out like Example 1 except having made salt bath temperature into 300 degreeC. The results are shown in Table 1.

比較例2
実施例8において、塩浴温度を480℃にした以外は実施例8と同様に行った。結果を表1に示す。
Comparative Example 2
In Example 8, it carried out like Example 8 except having made salt bath temperature into 480 degreeC. The results are shown in Table 1.

比較例3
実施例1において、塩浴温度を390℃に、反応ガス組成をグリセリン6.2mol%、水7.9mol%、窒素85.9mol%とした以外は実施例1と同様に行った。結果を表1に示す。
Comparative Example 3
In Example 1, it carried out like Example 1 except having made the salt bath temperature into 390 degreeC and making the reaction gas composition 6.2 mol% of glycerol, 7.9 mol% of water, and 85.9 mol% of nitrogen. The results are shown in Table 1.

Figure 0005162128
Figure 0005162128

比較例1に示すように反応温度が300℃では急激な活性低下が見られ、また比較例2の反応温度480℃ではほとんどアクロレインが得られていない。さらに、比較例3では、グリセリン単位供給量が低いまま反応温度を高めてもアクロレインの収率が低下しているのが分かる。一方、本発明の反応条件下では、良好なアクロレインの収率が示される事が分かる。   As shown in Comparative Example 1, a rapid decrease in activity was observed at a reaction temperature of 300 ° C., and almost no acrolein was obtained at a reaction temperature of 480 ° C. in Comparative Example 2. Furthermore, in Comparative Example 3, it can be seen that the yield of acrolein is reduced even when the reaction temperature is increased while the glycerin unit supply amount is low. On the other hand, it can be seen that a good acrolein yield is exhibited under the reaction conditions of the present invention.

本発明を用いれば、反応装置のコンパクト化が可能で、グリセリンからアクロレインを生産性良く製造することができる。   By using the present invention, the reactor can be made compact, and acrolein can be produced from glycerin with high productivity.

Claims (7)

グリセリンを含むガスを固体酸触媒に接触させてアクロレインを合成する接触気相脱水反応において、単位触媒あたり単位時間あたりのグリセリン供給量が300〜15000gグリセリン/hr/L−触媒、かつ反応温度が350〜460℃の条件で反応を行うことを特徴とするアクロレインの製造方法。   In the catalytic gas phase dehydration reaction in which a gas containing glycerin is brought into contact with a solid acid catalyst to synthesize acrolein, the glycerin supply amount per unit catalyst is 300 to 15000 g glycerin / hr / L-catalyst, and the reaction temperature is 350 A process for producing acrolein, wherein the reaction is carried out at a temperature of ˜460 ° C. さらに、接触時間が0.1〜7.2秒の条件で行うことを特徴とする、請求項1記載のアクロレインの製造方法。 The method for producing acrolein according to claim 1, wherein the contact time is 0.1 to 7.2 seconds. 反応温度を350℃以上380℃未満、グリセリン供給量を300〜3000gグリセリン/hr/L−触媒とする請求項1または2に記載のアクロレインの製造方法。The method for producing acrolein according to claim 1 or 2, wherein the reaction temperature is 350 ° C or higher and lower than 380 ° C, and the glycerin supply amount is 300 to 3000 g glycerin / hr / L-catalyst. 反応温度を380℃以上410℃未満、グリセリン供給量を300〜7000gグリセリン/hr/L−触媒とする請求項1または2に記載のアクロレインの製造方法。The method for producing acrolein according to claim 1 or 2, wherein the reaction temperature is 380 ° C or higher and lower than 410 ° C, and the glycerin supply amount is 300 to 7000 g glycerin / hr / L-catalyst. 反応温度を410℃以上440℃未満、グリセリン供給量を700〜10000gグリセリン/hr/L−触媒、接触時間を0.1〜3.5秒とする請求項1または2に記載のアクロレインの製造方法。The method for producing acrolein according to claim 1 or 2, wherein the reaction temperature is 410 ° C or higher and lower than 440 ° C, the glycerin supply amount is 700 to 10000 g glycerin / hr / L-catalyst, and the contact time is 0.1 to 3.5 seconds. . 反応温度を440℃以上460℃未満、グリセリン供給量を2000〜15000gグリセリン/hr/L−触媒、接触時間を0.1〜2.0秒とする請求項1または2に記載のアクロレインの製造方法。The method for producing acrolein according to claim 1 or 2, wherein the reaction temperature is 440 ° C or higher and lower than 460 ° C, the glycerin supply amount is 2000 to 15000 g glycerin / hr / L-catalyst, and the contact time is 0.1 to 2.0 seconds. . 固体酸触媒が、結晶性メタロシリケート、金属酸化物、粘土鉱物、鉱酸を無機担体に担持したもの、リン酸または硫酸の金属塩、またはリン酸または硫酸の金属塩を無機担体に担持したものである請求項1から6のいずれかに記載のアクロレインの製造方法。Solid acid catalyst with crystalline metallosilicate, metal oxide, clay mineral, mineral acid supported on inorganic support, phosphoric acid or sulfuric acid metal salt, or phosphoric acid or sulfuric acid metal salt supported on inorganic support The method for producing acrolein according to any one of claims 1 to 6.
JP2006351654A 2006-12-01 2006-12-27 Method for producing acrolein from glycerin Expired - Fee Related JP5162128B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006351654A JP5162128B2 (en) 2006-12-27 2006-12-27 Method for producing acrolein from glycerin
EP07832694.9A EP2103590A4 (en) 2006-12-01 2007-11-28 Method for producing acrolein and glycerin-containing composition
US12/312,883 US7951978B2 (en) 2006-12-01 2007-11-28 Process for producing acrolein and glycerin-containing composition
CN200780044156.8A CN101541727B (en) 2006-12-01 2007-11-28 Method for producing acrolein and glycerin-containing composition
PCT/JP2007/072972 WO2008066082A1 (en) 2006-12-01 2007-11-28 Method for producing acrolein and glycerin-containing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351654A JP5162128B2 (en) 2006-12-27 2006-12-27 Method for producing acrolein from glycerin

Publications (2)

Publication Number Publication Date
JP2008162908A JP2008162908A (en) 2008-07-17
JP5162128B2 true JP5162128B2 (en) 2013-03-13

Family

ID=39692868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351654A Expired - Fee Related JP5162128B2 (en) 2006-12-01 2006-12-27 Method for producing acrolein from glycerin

Country Status (1)

Country Link
JP (1) JP5162128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169346B2 (en) 2008-10-09 2015-10-27 Ventec Electronics (Suzhou) Company Epoxy resin varnishes, laminates and printed circuit boards

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274976B2 (en) * 2008-10-17 2013-08-28 株式会社日本触媒 Method for producing acrolein and method for producing acrolein derivatives
DE102009027420A1 (en) 2009-07-02 2011-01-05 Evonik Degussa Gmbh Preparation of acrolein or aqueous acrolein solution comprises dehydration of a cyclic acetal of glycerol in the presence of a solid catalyst comprising acidic oxides or mixed oxides, natural or synthetic silicate materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW476746B (en) * 1997-07-23 2002-02-21 Shell Int Research Hydrogenolysis of glycerol
FR2882053B1 (en) * 2005-02-15 2007-03-23 Arkema Sa METHOD FOR DEHYDRATING GLYCEROL IN ACROLENE
FR2882052B1 (en) * 2005-02-15 2007-03-23 Arkema Sa PROCESS FOR THE DEHYDRATION OF GLYCEROL IN ACROLEIN
TWI438187B (en) * 2005-02-28 2014-05-21 Evonik Degussa Gmbh Acrylic and water-absorbing polymer structures based upon renewable raw materials and process for their preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169346B2 (en) 2008-10-09 2015-10-27 Ventec Electronics (Suzhou) Company Epoxy resin varnishes, laminates and printed circuit boards

Also Published As

Publication number Publication date
JP2008162908A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5993084B2 (en) Catalytic conversion of lactic acid to acrylic acid
US7951978B2 (en) Process for producing acrolein and glycerin-containing composition
EP2709979B1 (en) An improved process for catalytic dehydration of lactic acid to acrylic acid
JPWO2013125389A1 (en) Method for producing 1,3-butadiene
RU2656599C2 (en) Process for carbonylation of dimethyl ether
CN103717306A (en) Catalyst for manufacture of acrolein and acrylic acid by means of dehydration of glycerin, and manufacturing method for same
JP2008088149A (en) Catalyst for production of acrolein and method for producing acrolein by using the same
CN109890782A (en) Produce the single-stage process of butadiene
JP5846388B2 (en) Novel glycerin dehydration catalyst and process for producing the same
TW201602071A (en) Process for the co-production of acetic acid and dimethyl ether
JP5162128B2 (en) Method for producing acrolein from glycerin
JP4041513B2 (en) Glycerol dehydration catalyst, glycerin dehydration catalyst production method, acrolein production method, and acrolein derivative production method
JP2010042344A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP4224097B2 (en) Acrolein production method
JP5305614B2 (en) Acrolein production method
JP4791247B2 (en) Glycerin dehydration catalyst and method for producing acrolein
JP5069977B2 (en) Method for producing acrolein from glycerin
JP4399790B2 (en) Propylene production method
JP5069900B2 (en) Pretreatment method for acrolein production catalyst
JP2010155183A (en) Method for producing acrolein
KR102052708B1 (en) Catalyst for dehydration of glycerin, preparing method thereof and production method of acrolein using the catalyst
WO2015012392A1 (en) Catalyst for manufacturing acrylic acid and/or acrylate from lactic acid and/or derivative thereof, and method for manufacturing acrylic acid and/or acrylate
JP6384731B2 (en) Method for producing isobutyraldehyde
JP2010095484A (en) Method for producing acrolein and acrylic acid
JP2008195643A (en) Method for producing acrolein from glycerol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees