WO2015012392A1 - Catalyst for manufacturing acrylic acid and/or acrylate from lactic acid and/or derivative thereof, and method for manufacturing acrylic acid and/or acrylate - Google Patents

Catalyst for manufacturing acrylic acid and/or acrylate from lactic acid and/or derivative thereof, and method for manufacturing acrylic acid and/or acrylate Download PDF

Info

Publication number
WO2015012392A1
WO2015012392A1 PCT/JP2014/069712 JP2014069712W WO2015012392A1 WO 2015012392 A1 WO2015012392 A1 WO 2015012392A1 JP 2014069712 W JP2014069712 W JP 2014069712W WO 2015012392 A1 WO2015012392 A1 WO 2015012392A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
lactic acid
acrylic acid
reaction
alkali metal
Prior art date
Application number
PCT/JP2014/069712
Other languages
French (fr)
Japanese (ja)
Inventor
真則 野々口
晃士 新宮原
夕希子 斎藤
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2015012392A1 publication Critical patent/WO2015012392A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • B01J35/30

Definitions

  • the present invention relates to a catalyst for producing acrylic acid and / or an acrylic ester, and a method for producing acrylic acid and / or an acrylic ester.
  • a catalyst for producing acrylic acid and / or an acrylate ester by using lactic acid and / or a derivative thereof as a raw material and subjecting it to a dehydration reaction and acrylic acid and / or an acrylate ester using the catalyst It relates to the manufacturing method.
  • a polyacrylic acid (salt) water-absorbing resin using acrylic acid and / or a salt thereof as a monomer has high water absorption performance, so that it can absorb absorbent articles such as paper diapers and sanitary napkins, and a water retention agent for agriculture and horticulture.
  • Industrial water-stopping materials are often used industrially.
  • the current method for producing acrylic acid is generally a method in which propylene is oxidized in air, but this method is produced by converting propylene to acrolein by catalytic gas phase oxidation and converting it to acrylic acid in catalytic gas phase oxidation.
  • the production method uses propylene obtained by refining crude oil, which is a fossil resource, as a raw material, and a production method that can reduce raw material costs and environmental burden in view of problems such as recent rise in crude oil prices and global warming. An alternative to is desired.
  • This method is generally a method of obtaining acrylic acid or acrylic acid ester by intramolecular dehydration reaction such as lactic acid or lactic acid ester on a solid catalyst such as zeolite under a high temperature condition of 300 ° C. or more (Non-patent Documents 1, 2, Patent Document 1).
  • the present inventors conducted extensive research and found that by using a catalyst containing a phosphate compound containing both alkali metal and alkaline earth metal elements as one of the catalyst components, lactic acid It has been found that acrylic acid and / or acrylic ester can be produced with high selectivity from and / or derivatives thereof. That is, the catalyst of the present invention is a catalyst for producing acrylic acid and / or an acrylate ester from lactic acid and / or a derivative thereof by dehydration reaction, and contains both elements of alkali metal and alkaline earth metal. It is characterized by containing a phosphate compound.
  • the present invention also provides a method for producing acrylic acid and / or acrylate ester, which comprises a step of obtaining acrylic acid and / or acrylate ester from lactic acid and / or a derivative thereof by dehydration reaction using the catalyst of the present invention. .
  • acrylic acid and / or acrylate ester is highly selected from lactic acid and / or its derivatives by using a catalyst containing a phosphate compound containing both alkali metal and alkaline earth metal elements. It can be manufactured with sex. That is, when the catalyst of the present invention is used, the alkali metal, the alkaline earth metal, and phosphoric acid in the phosphate compound contained in the catalyst are present in an ion pair and are strongly bonded to each other. It is possible to exist stably in the inside. Thereby, it is possible to prevent the alkali metal element from being scattered in the reaction gas and to prevent the structural change of the catalyst. Therefore, acrylic acid and / or acrylic ester can be produced with high selectivity.
  • FIG. 2 is an XRD chart of the catalyst obtained in Catalyst Preparation Example 1.
  • FIG. It is an enlarged view of FIG.
  • FIG. 4 is an XRD chart of the catalyst obtained in Catalyst Preparation Example 2. It is a figure of the XRD chart of the catalyst obtained in the catalyst preparation example 3.
  • FIG. 5 is an enlarged view of FIG. 4. It is a figure showing the change of the conversion rate of a lactic acid with respect to the reaction time (TOS) of Example 2, and the selectivity of a production
  • TOS reaction time
  • the catalyst of the present invention is a catalyst for producing acrylic acid and / or an acrylate ester by dehydration reaction from lactic acid and / or a derivative thereof, and a phosphate containing both alkali metal and alkaline earth metal elements It contains a compound.
  • the catalyst of the present invention contains a phosphate compound containing both alkali metal and alkaline earth metal elements as one of the catalyst components.
  • alkali metal examples include Li, Na, K, Rb, and Cs. Among them, Na is preferable because it improves the selectivity of acrylic acid. These alkali metals may be used alone or in combination of two or more.
  • alkaline earth metal examples include Be, Mg, Ca, Sr, and Ba, and Mg, Ca, and Sr are preferably used. Of these, Ca is preferable in terms of improving the selectivity and stability of the catalyst. These alkaline earth metals may be used alone or in combination of two or more.
  • phosphate examples include orthophosphate, pyrophosphate, and metaphosphate.
  • orthophosphate and pyrophosphate are preferable in that both alkali metal and alkaline earth metal are stabilized at the same time, and orthophosphate is particularly preferable.
  • These phosphates may be used alone or in combination of two or more.
  • phosphate compounds containing both alkali metal and alkaline earth metal elements compounds represented by the general formulas: AXPO 4 and ABXP 2 O 7 are preferable.
  • a and B represent alkali metal elements
  • X represents an alkaline earth metal.
  • a and B may be the same element or a combination of different elements.
  • the phosphate compound containing both alkali metal and alkaline earth metal elements may contain one or more of these compounds.
  • NaCaPO 4 and Na 2 CaP 2 O 7 are preferable, and NaCaPO 4 is particularly preferable.
  • the compound represented by the general formula can be identified by an X-ray diffraction method (XRD method) or a nuclear magnetic resonance method (NMR method).
  • the compound in the case of the XRD method, can be identified by comparing the X-ray diffraction peaks of the measurement species and the standard substance.
  • the type of phosphate is identified by measuring the NMR of the 31P nuclide. Is possible.
  • the method for synthesizing the phosphate compound containing both the alkali metal and alkaline earth metal elements is not particularly limited, and a general method for synthesizing the phosphate compound may be used.
  • a precipitation method in which a phosphorus source, an alkali metal source and / or an alkaline earth metal source are mixed in the form of an aqueous solution to precipitate a precipitate, or a carbonate or oxidation of an alkali metal source and / or an alkaline earth metal source It can synthesize
  • an alkaline earth phosphate is synthesized first, an alkaline metal salt aqueous solution is added to an alkaline earth phosphate solid, impregnated, and then fired.
  • a method of obtaining a phosphate compound containing both elements of the alkali metal and the alkaline earth metal by subjecting part or all to an ion exchange reaction with the alkali metal is also a preferable synthesis method.
  • the ratio of changing to an alkali metal can be appropriately adjusted by changing the amount and concentration of the aqueous solution of the alkali metal salt to be added.
  • the alkaline earth phosphate a compound having an apatite structure can also be suitably used.
  • alkali metal source alkali metal nitrates, phosphates, sulfates, carbonates, chlorides, oxides, and the like can be used.
  • alkaline earth metal source alkaline earth metal nitrates, phosphates, sulfates, carbonates, chlorides, oxides, and the like can be used.
  • phosphorus source phosphoric acid, pyrophosphoric acid, or a sodium salt or ammonium salt thereof, or an oxide such as diphosphorus pentoxide can be used.
  • the phosphate compound containing both the alkali metal and alkaline earth metal elements may be used alone as a catalyst for dehydration of lactic acid and / or its derivatives. Or you may use together with the other catalyst component which has the dehydrating ability of the derivative (s), for example, a sulfate, nitrate, a zeolite compound, a phosphate, an apatite compound, etc.
  • Examples of the sulfate include Na 2 SO 4 , K 2 SO 4 , CaSO 4 , and Al 2 (SO 4 ) 3 .
  • nitrate examples include NaNO 3 , KNO 3 , and Ca (NO 3 ) 2 .
  • the zeolite compound refers to a crystalline hydrous aluminosilicate having a network structure in which SiO 4 and AlO 4 tetrahedra share apex oxygen in the structure and are connected infinitely in three dimensions.
  • the crystal structure of zeolite is given by the International Zeolite Society as a structure code consisting of three alphabetic capital letters.
  • Zeolite compounds preferably used in the present invention include those represented by LTA, FER, MWW, MFI, MOR, LTL, FAU, BEA, MEL, TON, MTW and the like as structure codes.
  • the names of the zeolite compounds include A type zeolite, ferrierite, MCM-22, ZSM-5, mordenite, L type zeolite, Y type zeolite, X type zeolite, beta zeolite, ZSM-11, theta 1, what is called ZSM-12.
  • a so-called metallosilicate in which other metal atoms are introduced into the crystal lattice instead of Al atoms of the AlO 4 tetrahedron is also one of the preferable zeolite compounds.
  • an ion-type proton present on the zeolite and ion-exchanged with a cationic metal ion such as an alkali metal or alkaline earth metal is also preferably used.
  • Examples of the phosphate include Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 , CaHPO 4 , Ca 3 (PO 4 ) 2 , AlPO 4 , Examples thereof include CaH 2 P 2 O 7 and Ca 2 P 2 O 7 .
  • the apatite compound is a compound represented by the general formula X a (MO b ) c Z 2 , where X is Ca, Sr, Pb, Mg, Cd, Fe, Co, Ni, Cu, Zn, La, H, etc. 1 type or 2 types or more of these may be sufficient.
  • X Ca and Sr are preferable, and Ca is particularly preferable.
  • M represents P, V, As, C, S or the like, and among them, P is preferable.
  • Z represents OH (hydroxyl group), F, or Cl, and OH is particularly preferable.
  • O represents an oxygen atom.
  • Examples of basic apatite compounds include Mg 10 (PO 4 ) 6 (OH) 2 , Ca 10 (PO 4 ) 6 (OH) 2 , Sr 10 (PO 4 ) 6 (OH) 2, etc. Of these, Ca 10 (PO 4 ) 6 (OH) 2 is preferred.
  • the phosphate compound containing both alkali metal and alkaline earth metal elements is used in combination with other catalyst components capable of dehydrating lactic acid and / or its derivatives to carry out the reaction of lactic acid and / or its derivatives.
  • the catalyst containing the phosphate compound and the catalyst containing the other catalyst component are mixed and filled in the reactor, or the respective catalysts are stacked and used, so that the effect of the combined use of the catalyst can be obtained. Obtainable.
  • the catalyst of the present invention contains other catalyst components capable of dehydrating lactic acid and / or its derivatives in addition to the phosphate compound containing both the alkali metal and alkaline earth metal elements. May be.
  • the catalyst of the present invention can be obtained by mixing and calcining the phosphate compound containing both the alkali metal and alkaline earth metal elements and the other catalyst component to be used in combination. it can.
  • the two components to be mixed may be a solid mixture, a solid mixture and a liquid mixture, or a liquid mixture.
  • the catalyst of the present invention may be one in which a phosphate compound containing both the alkali metal and alkaline earth metal elements is supported on a carrier.
  • the carrier include silica, diatomaceous earth, alumina, silica alumina, silica magnesia, zirconia, titania, magnesia, niobia, ceria, zeolite, apatite compound, silicon carbide, activated carbon, etc. You may carry
  • the shape of the catalyst is not particularly limited, such as a spherical shape, a ring shape, a cylindrical shape, a tablet shape, a honeycomb shape, or a pulverized product thereof. You can choose.
  • the proportion of the phosphate compound containing both alkali metal and alkaline earth metal elements in the entire catalyst is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, 1 mass% or more is more preferable, 99.9 mass% or less is preferable, 95 mass% or less is more preferable, and 90 mass% or less is further more preferable.
  • the entire catalyst means a component constituting the catalyst, that is, a phosphate compound containing both elements of the alkali metal and alkaline earth metal constituting the catalyst, and lactic acid and / or a derivative thereof other than that.
  • a carrier, an inorganic binder, and the like it means a sum of these components.
  • the size of the catalyst is appropriately determined in consideration of the size and shape of the reactor, pressure loss, etc., but is usually 1 mm or more.
  • the upper limit of the size of the catalyst is not particularly limited, and is appropriately determined in consideration of the size and shape of the reactor, the catalyst effectiveness factor, and the like.
  • the size of the catalyst is usually 50 mm or less, preferably 30 mm or less, more preferably 10 mm or less.
  • the alkali metal, alkaline earth metal and phosphorus in the phosphate compound contained in the catalyst are used.
  • the acid is present as an ion pair and is firmly bonded, and the alkali metal can be stably present in the catalyst.
  • the presence of the alkaline earth metal allows the alkali metal to be firmly fixed in the phosphate as compared with the case where the alkali metal phosphate is used.
  • the catalyst of the present invention it is possible to prevent an undesirable side reaction such as coking as a result of preventing the structural change of the catalyst.
  • an undesirable side reaction such as coking
  • a catalyst regeneration process called aeration is performed to burn and remove the carbon after the reaction.
  • the catalyst performance can be recovered.
  • the activity is reduced in a short time of several hours. Therefore, it is necessary to frequently perform the catalyst regeneration treatment, which leads to a decrease in productivity.
  • catalyst constituent elements can be prevented from being scattered in the reaction gas, and undesirable side reactions such as coking can be suppressed, so that the activity and selectivity of the catalyst can be maintained for a long time.
  • acrylic acid and / or an acrylate ester can be produced from lactic acid and / or its derivatives stably for a long time with high productivity.
  • a phosphate compound when used as a molding catalyst, there is an advantage that collapse and pulverization hardly occur.
  • an inorganic binder such as silica sol or alumina sol is used as a catalyst molding aid, for example, when an alkali metal is added from the outside, the added alkali metal escapes from the catalytic activity point and reacts with the inorganic binder, so that the molded catalyst becomes It tends to collapse.
  • the catalyst of the present invention since the alkali metal is firmly bonded in the phosphate compound, it is difficult for the alkali metal to transfer from the phosphate compound to the inorganic binder, and the molded catalyst is not collapsed or pulverized. It can be suppressed. As a result, it is possible to prevent an increase in pressure loss of the reaction tube filled with the catalyst and blockage of the reaction tube.
  • acrylic acid and / or acrylate ester is used as a raw material by using lactic acid and / or its derivative as a raw material.
  • the method for producing acrylic acid and / or acrylic ester of the present invention comprises a step of obtaining acrylic acid and / or acrylic ester from lactic acid and / or a derivative thereof by dehydration reaction in the presence of the catalyst of the present invention. is there. That is, the method for producing acrylic acid and / or acrylic ester of the present invention uses a catalyst containing a phosphate compound containing both alkali metal and alkaline earth metal elements to dehydrate lactic acid and / or its derivatives. It has the process of obtaining acrylic acid and / or acrylic ester by reaction.
  • the catalyst of the present invention can be used for producing acrylic acid and / or an acrylate ester by dehydration reaction from lactic acid and / or a derivative thereof. Details of the catalyst are as described above. According to the production method of the present invention, acrylic acid and / or an acrylic ester can be produced with high selectivity from lactic acid and / or a derivative thereof.
  • reaction raw materials The lactic acid and / or derivative thereof used as a reaction raw material can be either produced using a fermentation method which is a general production method or produced by a chemical method. Lactic acid and / or derivatives thereof may be derived from biomass, which leads to a reduction in environmental burden.
  • Lactic acid is usually distributed in the form of an aqueous solution, and may be used as it is, may be further diluted with water, or may be used by appropriately concentrating after removing moisture using an operation such as evaporation. Good.
  • water used for the dilution ion exchange water, pure water, normal tap water, or the like may be used, or waste water generated in the manufacturing process may be recycled.
  • the lactic acid used in the reaction may contain a lactic acid derivative.
  • the lactic acid derivative include lactic acid oligomers and condensates of lactic acid such as lactide, lactic acid salts, and lactic acid. Examples include esters.
  • lactate examples include ammonium lactate, lithium lactate, sodium lactate, potassium lactate, magnesium lactate, and calcium lactate.
  • lactate examples include methyl lactate, ethyl lactate, butyl lactate, and 2-ethylhexyl lactate.
  • guide_body of lactic acid is not limited to this illustration. Lactic acid derivatives may be used with addition of water or other solvents, or may be used as they are, and are appropriately selected and used.
  • the concentration of lactic acid in the solution is preferably 10% by mass or more, more preferably 30% by mass or more from the viewpoint of process efficiency.
  • the concentration of lactic acid is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the concentration of lactic acid is a concentration containing a lactic acid monomer and an oligomer of lactic acid, lactide, a salt thereof, and a lactic acid ester, and is a concentration determined by the method described in JIS K 8726.
  • the dehydration reaction of lactic acid and / or its derivative is preferably carried out by introducing lactic acid and / or its derivative into a reactor provided with the catalyst of the present invention.
  • the type of the reactor is not particularly limited, and examples thereof include a stirring reactor, a fixed bed reactor, a fluidized bed reactor, a spouted bed reactor, and the like, and a fixed bed reactor is preferably used.
  • the fixed bed reactor includes a reaction tube filled with a solid catalyst, and gaseous lactic acid and / or a derivative thereof is introduced into the reaction tube, and the lactic acid and / or the derivative thereof is obtained by a gas phase catalytic reaction. It is dehydrated to obtain acrylic acid and / or an acrylic ester.
  • Gaseous lactic acid and / or its derivative can be produced, for example, by heating an aqueous solution containing lactic acid and / or its derivative at the inlet side of the reaction tube or upstream of the reaction tube.
  • the fixed bed reactor includes, for example, a raw material gas inlet provided at the reactor inlet, a product outlet provided at the reactor outlet, and a heat medium for heating or removing the reaction tube from the outside of the reactor. And a heat medium outlet for discharging the heat medium and a heat medium outlet for discharging the heat medium. Further, the reaction tube may be heated with an electric heater or the like instead of the heat medium.
  • the reaction tube provided in the fixed bed reactor may be a single reaction tube or a plurality of reaction tubes.
  • the reaction tubes are usually metal tubes having substantially the same shape.
  • the reaction tube may be coiled or the like, but a straight straight tube is usually used.
  • the straight pipe may be either a horizontal arrangement or a vertical arrangement, but is usually a vertical type that is arranged in the vertical direction and allows the source gas to pass in the vertical direction.
  • the reaction temperature may be appropriately determined according to the catalyst used and the conversion and selectivity of the reaction, but in order to obtain a sufficient reaction rate, it is usually 250 ° C. or higher, more preferably 300 ° C. or higher, more preferably 350 ° C. or higher. Moreover, in order to suppress the side reaction and to obtain sufficient selectivity of the target compound, the reaction temperature is preferably 500 ° C. or lower, more preferably 450 ° C. or lower, and further preferably 400 ° C. or lower.
  • the reaction temperature means the temperature of a heat medium or heater for controlling the temperature of the reactor.
  • the pressure in the reactor is not particularly limited, it is preferably 30 kPa or more, more preferably 60 kPa or more from the viewpoint of equipment required for decompression and cooling of the reaction gas. In addition, from the viewpoint of materials required for high pressure equipment and reactors, 200 kPa or less is preferable, and 150 kPa or less is more preferable.
  • an inert gas can be used, preferably nitrogen, argon or helium, and more preferably nitrogen from an economical viewpoint.
  • water vapor can be used as the carrier gas.
  • water vapor obtained by evaporating water in an aqueous solution such as lactic acid as a raw material can be used as it is, or water vapor can be additionally used.
  • the flow rate of the reaction gas may be appropriately adjusted in consideration of the raw material concentration, the amount of carrier gas, the performance of the catalyst, the productivity, etc., but when expressed in terms of gas space velocity per unit volume of catalyst (GHSV), it is usually 50 to 20000 h. ⁇ 1 , preferably 100 to 10000 h ⁇ 1 , more preferably 150 to 6000 h ⁇ 1 .
  • GHSV gas space velocity per unit volume of catalyst
  • acrylic acid can be obtained by dehydrating lactic acid.
  • a lactic acid ester is used as a raw material, an acrylic acid ester can be obtained through a dehydration reaction, and the resulting acrylic acid ester can be further hydrolyzed to obtain acrylic acid.
  • the acrylate ester include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like, but are not limited to such examples.
  • the production method of the present invention it is possible to obtain the effect of suppressing the accumulation on the catalyst such as coke.
  • the catalyst may be regenerated by a known method such as aeration. Good.
  • the reaction gas obtained by the dehydration reaction contains by-products such as water, acetaldehyde, propionic acid, 2,3-pentanedione, hydroxyacetone, and acetic acid in addition to the main products such as acrylic acid and acrylic ester.
  • these by-products can be appropriately separated and removed by a general purification method to obtain high-purity acrylic acid or acrylic acid ester.
  • a compound having a low boiling point such as acetaldehyde can be separated as a light boiling gas by gas-liquid separation by appropriately adjusting the condensation temperature of the reaction gas.
  • the condensed high-boiling liquid can be separated and removed by-products by appropriately using a separation operation such as distillation or crystallization to obtain high-purity acrylic acid or acrylic acid ester.
  • Catalyst preparation example 1 Preparation of catalyst containing NaCaPO 4 1890 g of an aqueous solution in which 250 g of trisodium phosphate dodecahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved was stirred at 60 ° C. Then, 813 g of an aqueous solution in which 155 g of calcium chloride dihydrate (manufactured by Kanto Chemical Co., Ltd.) was dissolved was dropped over 15 minutes. The mixture was stirred as it was for 1 hour, air-cooled to 40 ° C. or lower, and then filtered under reduced pressure to obtain a white precipitate. The operation of adding 1000 g of water to the precipitate, stirring and washing for 30 minutes, and filtering under reduced pressure was repeated twice. This precipitate was dried in an air atmosphere at 120 ° C. for 24 hours to obtain Intermediate 1.
  • Intermediate 1 (60.7 g) and Intermediate 2 (60.7 g) were suspended and mixed in 700 mL of water for 1 hour, and filtered under reduced pressure.
  • the obtained mixture was dried at 120 ° C. for 24 hours in an air atmosphere, and then fired at 500 ° C. for 6 hours to obtain a fired product.
  • the fired product was analyzed using an X-ray diffractometer (XRD, X'Pert PRO MPD manufactured by PANalytical), and was found to be a mixture containing Na 2 CaP 2 O 7 and calcium hydroxyapatite.
  • XRD analysis results are shown in FIG. In FIG. 3, the main peaks corresponding to Na 2 CaP 2 O 7 are indicated by arrows.
  • the fired product obtained is compressed and molded by a hydraulic press and crushed, and then sieved using a sieve having an opening of 0.85 mm and 2.0 mm, and the fired product is classified to a range of 0.85 to 2.0 mm.
  • a sieve having an opening of 0.85 mm and 2.0 mm was used as a catalyst.
  • the obtained fired product is compression-molded with a hydraulic press and crushed, and then sieved using a sieve having an opening of 0.85 mm and 2.0 mm, and the fired product is classified into a range of 0.85 to 2.0 mm.
  • reaction gas composition 7.6 mol% lactic acid, water consisting of a vaporized gas of 36 mass% lactic acid aqueous solution and nitrogen gas
  • GHSV flow rate
  • the sampled effluent was collected by a gas chromatography (GC) apparatus (GC-2010 manufactured by Shimadzu Corporation) equipped with a FID in the detector and a liquid chromatography (LC) apparatus (UPLC manufactured by Waters) equipped with a PDA in the detector. Quantitative analysis was performed. An internal standard method was adopted for quantitative analysis. From the quantitative analysis by LC, the lactic acid conversion rate, and from the quantitative analysis result by GC, acrylic acid selectivity, acetaldehyde selectivity, propionic acid selectivity, 2,3-pentanedione selectivity, and hydroxyacetone selectivity were calculated. These calculation formulas are as follows.
  • Example 1 using a catalyst containing NaCaPO 4 has a reaction time of 3. compared with a comparative example using a Ca 10 (PO 4 ) 6 (OH) 2 catalyst containing no alkali metal.
  • the acrylic acid selectivity was lower than 40% at the reaction time of 3.0 hours, whereas in Example 2 using the catalyst containing Na 2 CaP 2 O 7 , Table 1 and FIG.
  • the acrylic acid selectivity of 55% or more was maintained even at a reaction time of 98.5 hours.

Abstract

 This catalyst is for manufacturing acrylic acid and/or an acrylate from lactic acid and/or a derivative thereof by dehydration, wherein the catalyst contains a phosphate compound including both an alkali metal and an alkaline-earth metal. This method for manufacturing acrylic acid and/or an acrylate has a step for obtaining the acrylic acid and/or acrylate from lactic acid and/or a derivative thereof by dehydration using this catalyst.

Description

乳酸および/またはその誘導体からアクリル酸および/またはアクリル酸エステルを製造するための触媒、ならびに、アクリル酸および/またはアクリル酸エステルの製造方法Catalyst for producing acrylic acid and / or acrylic ester from lactic acid and / or its derivative, and method for producing acrylic acid and / or acrylic ester
 本発明は、アクリル酸および/またはアクリル酸エステルを製造するための触媒、およびアクリル酸および/またはアクリル酸エステルの製造方法に関する。詳細には、乳酸および/またはその誘導体を原料として用い、これを脱水反応させてアクリル酸および/またはアクリル酸エステルを製造するための触媒、およびこの触媒を用いたアクリル酸および/またはアクリル酸エステルの製造方法に関する。 The present invention relates to a catalyst for producing acrylic acid and / or an acrylic ester, and a method for producing acrylic acid and / or an acrylic ester. Specifically, a catalyst for producing acrylic acid and / or an acrylate ester by using lactic acid and / or a derivative thereof as a raw material and subjecting it to a dehydration reaction, and acrylic acid and / or an acrylate ester using the catalyst It relates to the manufacturing method.
 アクリル酸および/またはその塩を単量体として用いたポリアクリル酸(塩)系吸水性樹脂は、その吸水性能の高さから、紙オムツ、生理用ナプキン等の吸収物品、農園芸用保水剤、工業用止水材等、工業的に多く用いられている。 A polyacrylic acid (salt) water-absorbing resin using acrylic acid and / or a salt thereof as a monomer has high water absorption performance, so that it can absorb absorbent articles such as paper diapers and sanitary napkins, and a water retention agent for agriculture and horticulture. Industrial water-stopping materials are often used industrially.
 現行のアクリル酸の製造法はプロピレンを空気酸化する方法が一般的であるが、この方法はプロピレンを接触気相酸化によりアクロレインへ変換し、これを接触気相酸化においてアクリル酸に変換して製造されている。しかし、当該製造方法は化石資源である原油を精製して得られるプロピレンを原料としており、近年の原油価格の高騰や地球温暖化などの問題に鑑みると原料コストや環境負荷を低減可能な製造方法への代替が望まれる。 The current method for producing acrylic acid is generally a method in which propylene is oxidized in air, but this method is produced by converting propylene to acrolein by catalytic gas phase oxidation and converting it to acrylic acid in catalytic gas phase oxidation. Has been. However, the production method uses propylene obtained by refining crude oil, which is a fossil resource, as a raw material, and a production method that can reduce raw material costs and environmental burden in view of problems such as recent rise in crude oil prices and global warming. An alternative to is desired.
 このような現行の製造方法に取って代わりうる製造方法としてカーボンニュートラルなバイオマス原料からの合成法が盛んに研究されており、その一つとして乳酸またはその誘導体から分子内脱水反応によりアクリル酸またはアクリル酸エステルを得る方法の研究が進められている。この方法は一般に300℃以上の高温条件の下、ゼオライトなどの固体触媒上で乳酸または乳酸エステル等の分子内脱水反応によりアクリル酸またはアクリル酸エステルを得る方法である(非特許文献1,2、特許文献1参照)。 As a production method that can replace such a current production method, a synthesis method from a carbon-neutral biomass raw material has been actively researched. Research on methods for obtaining acid esters is ongoing. This method is generally a method of obtaining acrylic acid or acrylic acid ester by intramolecular dehydration reaction such as lactic acid or lactic acid ester on a solid catalyst such as zeolite under a high temperature condition of 300 ° C. or more (Non-patent Documents 1, 2, Patent Document 1).
国際公開第2011/052178号International Publication No. 2011/052178
 先行技術文献に記載の乳酸または乳酸エステルの脱水反応では、原料の乳酸または乳酸エステルの転化率やアクリル酸またはアクリル酸エステルの選択率がまだ十分であるとは言えない。先行技術文献では、選択性を改善する目的で触媒にアルカリ金属を担持やイオン交換などの手法で添加するなどの改良をしているものの、触媒成分との結合が弱いため反応ガス中に飛散して触媒自身の組成や構造が変化して、触媒の活性や選択性が急速に低下してしまうことがある。また、触媒の成型助剤として一般的に用いられるシリカゾルやアルミナゾル等の無機バインダーが触媒中に存在する場合は、添加したアルカリ金属が触媒活性点から抜け出てバインダー成分上に移行してしまい、コーキング等の望ましくない副反応を引き起こす原因となることがある。また、先行技術文献の追試を行った結果、反応中に副生する炭素分による触媒活性点の被覆や触媒細孔の閉塞が生じ、また触媒の構成元素の一部が反応基質と共に反応ガス中に飛散して触媒自身の組成や構造が変化することによって、触媒の活性や選択性が数時間で急速に低下してしまうことが判明した。 In the dehydration reaction of lactic acid or lactic acid ester described in the prior art document, it cannot be said that the conversion rate of raw lactic acid or lactic acid ester and the selectivity of acrylic acid or acrylate ester are still sufficient. Although prior art documents have been improved by adding an alkali metal to the catalyst by means such as loading or ion exchange for the purpose of improving selectivity, it is scattered in the reaction gas due to its weak bond with the catalyst component. As a result, the composition and structure of the catalyst itself may change, and the activity and selectivity of the catalyst may rapidly decrease. In addition, when an inorganic binder such as silica sol or alumina sol, which is commonly used as a catalyst molding aid, is present in the catalyst, the added alkali metal escapes from the catalyst active point and moves onto the binder component, causing coking. May cause undesirable side reactions such as In addition, as a result of a supplementary examination of the prior art documents, the catalytic active sites were covered or the catalyst pores were clogged by carbon components produced during the reaction, and some of the constituent elements of the catalyst were contained in the reaction gas together with the reaction substrate. It has been found that the activity and selectivity of the catalyst rapidly decrease in a few hours due to changes in the composition and structure of the catalyst itself by scattering.
 本発明は前記事情に鑑みてなされたものであり、その目的は、乳酸および/またはその誘導体を原料としてアクリル酸および/またはアクリル酸エステルを高い選択性で製造することができる触媒、およびこの触媒を用いたアクリル酸および/またはアクリル酸エステルの製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is a catalyst capable of producing acrylic acid and / or an acrylate ester with high selectivity using lactic acid and / or a derivative thereof as a raw material, and the catalyst. Another object of the present invention is to provide a method for producing acrylic acid and / or acrylic ester using
 上記課題に鑑み、本発明者らが鋭意研究を行ったところ、アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を触媒構成成分の1つとして含む触媒を用いることにより、乳酸および/またはその誘導体から高い選択性でアクリル酸および/またはアクリル酸エステルを製造できることを見出した。すなわち本発明の触媒は、乳酸および/またはその誘導体から、脱水反応により、アクリル酸および/またはアクリル酸エステルを製造するための触媒であって、アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を含有するところに特徴を有する。本発明はまた、本発明の触媒を用いて、乳酸および/またはその誘導体から脱水反応によりアクリル酸および/またはアクリル酸エステルを得る工程を有するアクリル酸および/またはアクリル酸エステルの製造方法も提供する。 In view of the above-mentioned problems, the present inventors conducted extensive research and found that by using a catalyst containing a phosphate compound containing both alkali metal and alkaline earth metal elements as one of the catalyst components, lactic acid It has been found that acrylic acid and / or acrylic ester can be produced with high selectivity from and / or derivatives thereof. That is, the catalyst of the present invention is a catalyst for producing acrylic acid and / or an acrylate ester from lactic acid and / or a derivative thereof by dehydration reaction, and contains both elements of alkali metal and alkaline earth metal. It is characterized by containing a phosphate compound. The present invention also provides a method for producing acrylic acid and / or acrylate ester, which comprises a step of obtaining acrylic acid and / or acrylate ester from lactic acid and / or a derivative thereof by dehydration reaction using the catalyst of the present invention. .
 本発明によれば、アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を含有する触媒を用いることにより、乳酸および/またはその誘導体からアクリル酸および/またはアクリル酸エステルを高い選択性で製造することができる。すなわち、本発明の触媒を用いれば、触媒に含まれる該リン酸塩化合物中のアルカリ金属とアルカリ土類金属とリン酸がイオン対となって強固に結合して存在するので、アルカリ金属が触媒中で安定に存在することが可能となる。それにより、アルカリ金属元素が反応ガス中に飛散することを防いで触媒の構造変化を防ぐことができる。そのため、アクリル酸および/またはアクリル酸エステルを高い選択性で製造することができる。 According to the present invention, acrylic acid and / or acrylate ester is highly selected from lactic acid and / or its derivatives by using a catalyst containing a phosphate compound containing both alkali metal and alkaline earth metal elements. It can be manufactured with sex. That is, when the catalyst of the present invention is used, the alkali metal, the alkaline earth metal, and phosphoric acid in the phosphate compound contained in the catalyst are present in an ion pair and are strongly bonded to each other. It is possible to exist stably in the inside. Thereby, it is possible to prevent the alkali metal element from being scattered in the reaction gas and to prevent the structural change of the catalyst. Therefore, acrylic acid and / or acrylic ester can be produced with high selectivity.
触媒調製例1で得られた触媒のXRDチャートの図である。2 is an XRD chart of the catalyst obtained in Catalyst Preparation Example 1. FIG. 図1の拡大図である。It is an enlarged view of FIG. 触媒調製例2で得られた触媒のXRDチャートの図である。FIG. 4 is an XRD chart of the catalyst obtained in Catalyst Preparation Example 2. 触媒調製例3で得られた触媒のXRDチャートの図である。It is a figure of the XRD chart of the catalyst obtained in the catalyst preparation example 3. FIG. 図4の拡大図である。FIG. 5 is an enlarged view of FIG. 4. 実施例2の反応時間(TOS)に対する、乳酸の転化率と生成成分の選択率の変化を表す図である。It is a figure showing the change of the conversion rate of a lactic acid with respect to the reaction time (TOS) of Example 2, and the selectivity of a production | generation component.
 〔触媒〕
 本発明の触媒は、乳酸および/またはその誘導体から脱水反応によりアクリル酸および/またはアクリル酸エステルを製造するための触媒であって、アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を含有するものである。本発明の触媒は、触媒構成成分の1つとして、アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を含有している。
〔catalyst〕
The catalyst of the present invention is a catalyst for producing acrylic acid and / or an acrylate ester by dehydration reaction from lactic acid and / or a derivative thereof, and a phosphate containing both alkali metal and alkaline earth metal elements It contains a compound. The catalyst of the present invention contains a phosphate compound containing both alkali metal and alkaline earth metal elements as one of the catalyst components.
 前記アルカリ金属としては、Li、Na、K、Rb、Csが挙げられ、中でもNaがアクリル酸の選択性を向上させる点で好ましい。これらのアルカリ金属は、それぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the alkali metal include Li, Na, K, Rb, and Cs. Among them, Na is preferable because it improves the selectivity of acrylic acid. These alkali metals may be used alone or in combination of two or more.
 前記アルカリ土類金属としては、Be、Mg、Ca、Sr、Baが挙げられ、Mg、Ca、Srが好ましく用いられ、中でもCaが触媒の選択性および安定性を向上させる点で好ましい。これらのアルカリ土類金属は、それぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the alkaline earth metal include Be, Mg, Ca, Sr, and Ba, and Mg, Ca, and Sr are preferably used. Of these, Ca is preferable in terms of improving the selectivity and stability of the catalyst. These alkaline earth metals may be used alone or in combination of two or more.
 前記リン酸塩としては、オルトリン酸塩やピロリン酸塩またはメタリン酸塩が挙げられる。中でもオルトリン酸塩とピロリン酸塩がアルカリ金属とアルカリ土類金属の両方を同時に安定化させる点で好ましく、特にオルトリン酸塩が好ましい。これらのリン酸塩は、それぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the phosphate include orthophosphate, pyrophosphate, and metaphosphate. Among them, orthophosphate and pyrophosphate are preferable in that both alkali metal and alkaline earth metal are stabilized at the same time, and orthophosphate is particularly preferable. These phosphates may be used alone or in combination of two or more.
 前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物の中で好ましいものは一般式:AXPO4、ABXP27で表される化合物である。式中AおよびBはアルカリ金属元素を表し、Xはアルカリ土類金属を表す。AおよびBは同じ元素でもよく、異なる元素の組合せであってもよい。前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物は、これらの化合物の1種または2種以上を含んでいてもよい。前記一般式で表される化合物の中でも、NaCaPO4とNa2CaP27が好ましく、特にNaCaPO4が好ましい。前記一般式で表される化合物の同定法としては、X線回折法(XRD法)もしくは核磁気共鳴法(NMR法)により行うことができる。XRD法の場合は測定種と標準物質のX線回折ピークを比較することで化合物の同定が可能であり、NMR法の場合は31Pの核種のNMRを測定することでリン酸塩の種類を同定することが可能である。 Among the phosphate compounds containing both alkali metal and alkaline earth metal elements, compounds represented by the general formulas: AXPO 4 and ABXP 2 O 7 are preferable. In the formula, A and B represent alkali metal elements, and X represents an alkaline earth metal. A and B may be the same element or a combination of different elements. The phosphate compound containing both alkali metal and alkaline earth metal elements may contain one or more of these compounds. Among the compounds represented by the general formula, NaCaPO 4 and Na 2 CaP 2 O 7 are preferable, and NaCaPO 4 is particularly preferable. The compound represented by the general formula can be identified by an X-ray diffraction method (XRD method) or a nuclear magnetic resonance method (NMR method). In the case of the XRD method, the compound can be identified by comparing the X-ray diffraction peaks of the measurement species and the standard substance. In the case of the NMR method, the type of phosphate is identified by measuring the NMR of the 31P nuclide. Is possible.
 前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物の合成法としては特に限定されず、一般的なリン酸塩化合物の合成法を用いればよい。例えば、リン源と、アルカリ金属源および/またはアルカリ土類金属源をそれぞれ水溶液の状態で混合して沈殿を析出させる沈殿法や、アルカリ金属源および/またはアルカリ土類金属源の炭酸塩や酸化物等を固体の状態のまま混合して焼成する固相法等で合成することができる。 The method for synthesizing the phosphate compound containing both the alkali metal and alkaline earth metal elements is not particularly limited, and a general method for synthesizing the phosphate compound may be used. For example, a precipitation method in which a phosphorus source, an alkali metal source and / or an alkaline earth metal source are mixed in the form of an aqueous solution to precipitate a precipitate, or a carbonate or oxidation of an alkali metal source and / or an alkaline earth metal source It can synthesize | combine with the solid-phase method etc. which mix and bake a thing etc. in a solid state.
 リン酸塩化合物の合成法としては、先にアルカリ土類リン酸塩を合成して、アルカリ土類リン酸塩の固体に対してアルカリ金属塩の水溶液を加えて含浸させてから焼成することで、アルカリ土類リン酸塩の一部又は全部を前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物に変化させる方法や、アルカリ土類リン酸塩のアルカリ土類金属の一部または全部を前記アルカリ金属でイオン交換反応することによって前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を得る方法も、好ましい合成法である。この場合、アルカリ金属に変化させる割合は、加えるアルカリ金属塩の水溶液の量や濃度を変えることによって、適宜調節することが可能である。前記アルカリ土類リン酸塩としては、アパタイト構造を有する化合物も好適に用いることができる。 As a method for synthesizing a phosphate compound, an alkaline earth phosphate is synthesized first, an alkaline metal salt aqueous solution is added to an alkaline earth phosphate solid, impregnated, and then fired. A method in which a part or all of alkaline earth phosphate is changed to a phosphate compound containing both the alkali metal and alkaline earth metal elements, and one alkaline earth metal of alkaline earth phosphate. A method of obtaining a phosphate compound containing both elements of the alkali metal and the alkaline earth metal by subjecting part or all to an ion exchange reaction with the alkali metal is also a preferable synthesis method. In this case, the ratio of changing to an alkali metal can be appropriately adjusted by changing the amount and concentration of the aqueous solution of the alkali metal salt to be added. As the alkaline earth phosphate, a compound having an apatite structure can also be suitably used.
 前記アルカリ金属源としては、アルカリ金属の硝酸塩、リン酸塩、硫酸塩、炭酸塩、塩化物、酸化物等を用いることができる。 As the alkali metal source, alkali metal nitrates, phosphates, sulfates, carbonates, chlorides, oxides, and the like can be used.
 前記アルカリ土類金属源としては、アルカリ土類金属の硝酸塩、リン酸塩、硫酸塩、炭酸塩、塩化物、酸化物等を用いることができる。 As the alkaline earth metal source, alkaline earth metal nitrates, phosphates, sulfates, carbonates, chlorides, oxides, and the like can be used.
 前記リン源としてはリン酸、ピロリン酸やそれらのナトリウム塩やアンモニウム塩、五酸化二リン等の酸化物を用いることができる。 As the phosphorus source, phosphoric acid, pyrophosphoric acid, or a sodium salt or ammonium salt thereof, or an oxide such as diphosphorus pentoxide can be used.
 本発明において、前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物は、単独で乳酸および/またはその誘導体の脱水用触媒として用いてもよいし、それ以外に、乳酸および/またはその誘導体の脱水能を有する他の触媒成分、例えば硫酸塩、硝酸塩、ゼオライト化合物、リン酸塩やアパタイト化合物等と併用してもよい。 In the present invention, the phosphate compound containing both the alkali metal and alkaline earth metal elements may be used alone as a catalyst for dehydration of lactic acid and / or its derivatives. Or you may use together with the other catalyst component which has the dehydrating ability of the derivative (s), for example, a sulfate, nitrate, a zeolite compound, a phosphate, an apatite compound, etc.
 硫酸塩としては、例えば、Na2SO4、K2SO4、CaSO4、Al2(SO43などが挙げられる。 Examples of the sulfate include Na 2 SO 4 , K 2 SO 4 , CaSO 4 , and Al 2 (SO 4 ) 3 .
 硝酸塩としては、例えば、NaNO3、KNO3、Ca(NO32などが挙げられる。 Examples of the nitrate include NaNO 3 , KNO 3 , and Ca (NO 3 ) 2 .
 ゼオライト化合物とは、構造中にSiO4およびAlO4四面体が頂点酸素を共有し3次元に無限に連なった網目状構造を有する結晶性含水アルミノケイ酸塩のことを指す。ゼオライトの結晶構造は国際ゼオライト学会によりアルファベット大文字3個からなる構造コードが与えられている。本発明に好ましく用いられるゼオライト化合物としては、構造コードとしてLTA、FER、MWW、MFI、MOR、LTL、FAU、BEA、MEL、TON、MTW等で表されるものが挙げられる。また、ゼオライト化合物としては、その名称としては、A型ゼオライト、フェリエライト、MCM-22、ZSM-5、モルデナイト、L型ゼオライト、Y型ゼオライト、X型ゼオライト、ベータゼオライト、ZSM-11、シータ-1、ZSM-12と呼ばれるもの等が挙げられる。また、AlO4四面体のAl原子の代わりに他の金属原子が結晶格子中に導入されたメタロシリケートと呼ばれるものも好ましいゼオライト化合物の1つである。また、ゼオライト化合物の場合は、ゼオライト上に存在する酸型のプロトンをアルカリ金属やアルカリ土類金属等のカチオン性金属イオンでイオン交換したものも好適に用いられる。 The zeolite compound refers to a crystalline hydrous aluminosilicate having a network structure in which SiO 4 and AlO 4 tetrahedra share apex oxygen in the structure and are connected infinitely in three dimensions. The crystal structure of zeolite is given by the International Zeolite Society as a structure code consisting of three alphabetic capital letters. Zeolite compounds preferably used in the present invention include those represented by LTA, FER, MWW, MFI, MOR, LTL, FAU, BEA, MEL, TON, MTW and the like as structure codes. The names of the zeolite compounds include A type zeolite, ferrierite, MCM-22, ZSM-5, mordenite, L type zeolite, Y type zeolite, X type zeolite, beta zeolite, ZSM-11, theta 1, what is called ZSM-12. A so-called metallosilicate in which other metal atoms are introduced into the crystal lattice instead of Al atoms of the AlO 4 tetrahedron is also one of the preferable zeolite compounds. In the case of a zeolite compound, an ion-type proton present on the zeolite and ion-exchanged with a cationic metal ion such as an alkali metal or alkaline earth metal is also preferably used.
 リン酸塩としては、Na3PO4、Na2HPO4、NaH2PO4、K3PO4、K2HPO4、KH2PO4、CaHPO4、Ca3(PO42、AlPO4、CaH227、Ca227などが挙げられる。 Examples of the phosphate include Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 , CaHPO 4 , Ca 3 (PO 4 ) 2 , AlPO 4 , Examples thereof include CaH 2 P 2 O 7 and Ca 2 P 2 O 7 .
 アパタイト化合物としては、一般式Xa(MObc2で表される化合物であり、XはCa、Sr、Pb、Mg、Cd、Fe、Co、Ni、Cu、Zn、La、H等を表し、これらの1種または2種以上であってもよい。XとしてはCa、Srが好ましく、中でもCaが好ましい。MはP、V、As、C、S等を表し、中でもPが好ましい。ZはOH(水酸基)、F、Clを表し、中でもOHが好ましい。Oは酸素原子を表す。基本的なアパタイト化合物の場合、a=10、b=4、c=6であり、X原子とM原子の比(a/c)は1.67であるが、固溶体などの場合はa/cの値は1.67とならない場合もある。 The apatite compound is a compound represented by the general formula X a (MO b ) c Z 2 , where X is Ca, Sr, Pb, Mg, Cd, Fe, Co, Ni, Cu, Zn, La, H, etc. 1 type or 2 types or more of these may be sufficient. As X, Ca and Sr are preferable, and Ca is particularly preferable. M represents P, V, As, C, S or the like, and among them, P is preferable. Z represents OH (hydroxyl group), F, or Cl, and OH is particularly preferable. O represents an oxygen atom. In the case of a basic apatite compound, a = 10, b = 4, c = 6, and the ratio of X atom to M atom (a / c) is 1.67, but in the case of a solid solution or the like, a / c The value of may not be 1.67.
 基本的なアパタイト化合物の例としては、Mg10(PO46(OH)2、Ca10(PO46(OH)2、Sr10(PO46(OH)2等が挙げられ、この中ではCa10(PO46(OH)2が好ましい。 Examples of basic apatite compounds include Mg 10 (PO 4 ) 6 (OH) 2 , Ca 10 (PO 4 ) 6 (OH) 2 , Sr 10 (PO 4 ) 6 (OH) 2, etc. Of these, Ca 10 (PO 4 ) 6 (OH) 2 is preferred.
 前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を、乳酸および/またはその誘導体の脱水能を有する他の触媒成分と併用して、乳酸および/またはその誘導体の反応を行う場合、リン酸塩化合物を含む触媒と前記他の触媒成分を含む触媒とを混合して反応器に充填して用いたり、それぞれの触媒を積層充填して用いることにより、触媒の併用の効果を得ることができる。 The phosphate compound containing both alkali metal and alkaline earth metal elements is used in combination with other catalyst components capable of dehydrating lactic acid and / or its derivatives to carry out the reaction of lactic acid and / or its derivatives. In this case, the catalyst containing the phosphate compound and the catalyst containing the other catalyst component are mixed and filled in the reactor, or the respective catalysts are stacked and used, so that the effect of the combined use of the catalyst can be obtained. Obtainable.
 あるいは、本発明の触媒は、前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物に加え、乳酸および/またはその誘導体の脱水能を有する他の触媒成分を含有するものであってもよい。この場合、例えば、前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物と、併用する他の触媒成分とを、混合して焼成することにより、本発明の触媒を得ることができる。ここで、混合する両成分は固体状のもの同士の混合であっても、固体状のものと液状のものの混合であっても、または液状のもの同士の混合であってもよい。 Alternatively, the catalyst of the present invention contains other catalyst components capable of dehydrating lactic acid and / or its derivatives in addition to the phosphate compound containing both the alkali metal and alkaline earth metal elements. May be. In this case, for example, the catalyst of the present invention can be obtained by mixing and calcining the phosphate compound containing both the alkali metal and alkaline earth metal elements and the other catalyst component to be used in combination. it can. Here, the two components to be mixed may be a solid mixture, a solid mixture and a liquid mixture, or a liquid mixture.
 本発明の触媒は、前記アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物が、担体に担持されているものでもよい。担体としては、シリカ、珪藻土、アルミナ、シリカアルミナ、シリカマグネシア、ジルコニア、チタニア、マグネシア、ニオビア、セリア、ゼオライト、アパタイト化合物、炭化ケイ素、活性炭等が挙げられ、この中から適宜選択して1種の担体に担持してもよく、また2種以上の複合体や混合物からなる担体に担持してもよい。また乳酸および/またはその誘導体の脱水能を有する他の触媒成分として挙げた化合物を担体として用いることも、好ましい形態の1つである。 The catalyst of the present invention may be one in which a phosphate compound containing both the alkali metal and alkaline earth metal elements is supported on a carrier. Examples of the carrier include silica, diatomaceous earth, alumina, silica alumina, silica magnesia, zirconia, titania, magnesia, niobia, ceria, zeolite, apatite compound, silicon carbide, activated carbon, etc. You may carry | support to a support | carrier and you may carry | support to the support | carrier which consists of 2 or more types of composite_body | complexes or a mixture. It is also one of preferred forms to use as a carrier the compounds mentioned as other catalyst components capable of dehydrating lactic acid and / or derivatives thereof.
 触媒の形状は、球状、リング状、円柱状、錠剤型、ハニカム状等に成型されたものや、それらの粉砕物等、特に限定されないが、反応器の形状や圧力損失等を考慮して適宜選択できる。 The shape of the catalyst is not particularly limited, such as a spherical shape, a ring shape, a cylindrical shape, a tablet shape, a honeycomb shape, or a pulverized product thereof. You can choose.
 本発明の触媒において、触媒全体に占めるアルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物の割合は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がさらに好ましく、また99.9質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。ここで、触媒全体とは、触媒を構成する成分、すなわち触媒を構成しているアルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物と、それ以外に乳酸および/またはその誘導体の脱水能を有する他の触媒成分や担体や無機バインダー等を含む場合は、これらの各成分を合計したものを意味する。 In the catalyst of the present invention, the proportion of the phosphate compound containing both alkali metal and alkaline earth metal elements in the entire catalyst is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, 1 mass% or more is more preferable, 99.9 mass% or less is preferable, 95 mass% or less is more preferable, and 90 mass% or less is further more preferable. Here, the entire catalyst means a component constituting the catalyst, that is, a phosphate compound containing both elements of the alkali metal and alkaline earth metal constituting the catalyst, and lactic acid and / or a derivative thereof other than that. When other catalyst components having dehydrating ability, a carrier, an inorganic binder, and the like are included, it means a sum of these components.
 触媒の大きさは、反応器のサイズや形状、圧力損失等を考慮して適宜決定されるが、通常1mm以上である。触媒の大きさの上限は特に限定されず、反応器のサイズや形状、および触媒有効係数等を考慮して適宜決定される。触媒の大きさは、通常50mm以下であり、好ましくは30mm以下、より好ましくは10mm以下である。 The size of the catalyst is appropriately determined in consideration of the size and shape of the reactor, pressure loss, etc., but is usually 1 mm or more. The upper limit of the size of the catalyst is not particularly limited, and is appropriately determined in consideration of the size and shape of the reactor, the catalyst effectiveness factor, and the like. The size of the catalyst is usually 50 mm or less, preferably 30 mm or less, more preferably 10 mm or less.
 本発明によれば、アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を触媒として用いているため、触媒に含まれるリン酸塩化合物中のアルカリ金属とアルカリ土類金属とリン酸がイオン対となって強固に結合して存在し、アルカリ金属が触媒中で安定に存在することが可能となる。特に、アルカリ土類金属が存在することによって、アルカリ金属リン酸塩を用いる場合と比較して、アルカリ金属が強固にリン酸塩中に固定化されるようになる。そのため、乳酸および/または乳酸エステルの脱水反応に特に寄与するアルカリ金属元素が反応ガス中に飛散することが抑えられ、触媒の構造変化を防ぐことができる。従って、触媒の活性や選択性の低下を防ぐことができ、乳酸および/またはその誘導体からアクリル酸および/またはアクリル酸エステルを高い選択性で製造することができる。 According to the present invention, since the phosphate compound containing both alkali metal and alkaline earth metal elements is used as the catalyst, the alkali metal, alkaline earth metal and phosphorus in the phosphate compound contained in the catalyst are used. The acid is present as an ion pair and is firmly bonded, and the alkali metal can be stably present in the catalyst. In particular, the presence of the alkaline earth metal allows the alkali metal to be firmly fixed in the phosphate as compared with the case where the alkali metal phosphate is used. Therefore, it is possible to suppress the alkali metal element that particularly contributes to the dehydration reaction of lactic acid and / or lactic acid ester from being scattered in the reaction gas, and to prevent the structural change of the catalyst. Therefore, the catalyst activity and selectivity can be prevented from being lowered, and acrylic acid and / or an acrylate ester can be produced with high selectivity from lactic acid and / or a derivative thereof.
 また本発明の触媒によれば、触媒の構造変化を防ぐことができる結果、コーキング等の望ましくない副反応を抑制することも可能となる。例えば、触媒反応においては、反応中に副生する炭素分によって触媒活性点の被覆や触媒細孔の閉塞が生じた場合に、反応後にエアレーションと呼ばれる炭素分を燃焼除去する触媒再生処理を行うことで、触媒性能を回復できる場合がある。しかし、例えば先行技術文献に記載の触媒では、数時間という短い時間で活性が低下するため、頻繁に触媒再生処理を行う必要があり、生産性の低下に繋がる。流動床型反応器を用いた場合には、乳酸および/またはその誘導体の脱水反応を行いながら一部触媒再生処理を行うことが可能であるが、装置が複雑で高価となり、設備費の増大に繋がる。また、触媒構成元素の一部が反応基質と共に反応ガス中に飛散して触媒自身の組成や構造が変化してしまった場合は、元素の欠落によって触媒の構造が本質的に変化するため、エアレーションによって触媒の性能を回復することができなくなることも想定される。しかし本発明の触媒によれば、触媒構成元素が反応ガス中に飛散することが抑えられ、コーキング等の望ましくない副反応を抑制することができるため、触媒の活性や選択性を長時間維持して、高い生産性で長時間安定して乳酸および/またはその誘導体からアクリル酸および/またはアクリル酸エステルを製造することができる。 In addition, according to the catalyst of the present invention, it is possible to prevent an undesirable side reaction such as coking as a result of preventing the structural change of the catalyst. For example, in a catalytic reaction, when the catalyst active sites are covered or the catalyst pores are clogged by carbon generated as a by-product during the reaction, a catalyst regeneration process called aeration is performed to burn and remove the carbon after the reaction. In some cases, the catalyst performance can be recovered. However, for example, in the catalyst described in the prior art document, the activity is reduced in a short time of several hours. Therefore, it is necessary to frequently perform the catalyst regeneration treatment, which leads to a decrease in productivity. When a fluidized bed reactor is used, it is possible to perform part of the catalyst regeneration process while dehydrating the lactic acid and / or its derivatives, but the equipment becomes complicated and expensive, resulting in an increase in equipment costs. Connected. In addition, if a part of the catalyst constituent element is scattered in the reaction gas together with the reaction substrate and the composition or structure of the catalyst itself is changed, the structure of the catalyst is essentially changed due to the lack of the element. It is also assumed that the performance of the catalyst cannot be recovered due to this. However, according to the catalyst of the present invention, catalyst constituent elements can be prevented from being scattered in the reaction gas, and undesirable side reactions such as coking can be suppressed, so that the activity and selectivity of the catalyst can be maintained for a long time. Thus, acrylic acid and / or an acrylate ester can be produced from lactic acid and / or its derivatives stably for a long time with high productivity.
 さらに、リン酸塩化合物を成型触媒として用いた場合は、崩壊や粉化が起こりにくくなるという利点もある。触媒の成型助剤としてシリカゾルやアルミナゾル等の無機バインダーが用いられる場合、例えば外部からアルカリ金属を添加した場合は、添加したアルカリ金属が触媒活性点から抜け出て無機バインダーと反応して、成型触媒が崩壊しやすくなる。しかし本発明の触媒は、アルカリ金属がリン酸塩化合物中に強固に結合して存在しているため、アルカリ金属がリン酸塩化合物から無機バインダーに移行しにくく、成型触媒の崩壊や粉化が抑えられる。その結果、触媒が充填された反応管の圧力損失の上昇や反応管の閉塞を防ぐことができる。 Furthermore, when a phosphate compound is used as a molding catalyst, there is an advantage that collapse and pulverization hardly occur. When an inorganic binder such as silica sol or alumina sol is used as a catalyst molding aid, for example, when an alkali metal is added from the outside, the added alkali metal escapes from the catalytic activity point and reacts with the inorganic binder, so that the molded catalyst becomes It tends to collapse. However, in the catalyst of the present invention, since the alkali metal is firmly bonded in the phosphate compound, it is difficult for the alkali metal to transfer from the phosphate compound to the inorganic binder, and the molded catalyst is not collapsed or pulverized. It can be suppressed. As a result, it is possible to prevent an increase in pressure loss of the reaction tube filled with the catalyst and blockage of the reaction tube.
 以上の通り、本発明の触媒によれば、触媒の活性や選択性を長時間高い状態で維持できるため、乳酸および/またはその誘導体を原料としてアクリル酸および/またはアクリル酸エステルを従来よりもはるかに長期間にわたって安定して高い収率で生産することが可能となる。 As described above, according to the catalyst of the present invention, since the activity and selectivity of the catalyst can be maintained in a high state for a long time, acrylic acid and / or acrylate ester is used as a raw material by using lactic acid and / or its derivative as a raw material. In addition, it is possible to produce a stable and high yield over a long period of time.
 〔アクリル酸および/またはアクリル酸エステルの製造方法〕
 次に、本発明のアクリル酸および/またはアクリル酸エステルの製造方法について説明する。本発明のアクリル酸および/またはアクリル酸エステルの製造方法は、本発明の触媒の存在下において、乳酸および/またはその誘導体から脱水反応によりアクリル酸および/またはアクリル酸エステルを得る工程を有するものである。すなわち本発明のアクリル酸および/またはアクリル酸エステルの製造方法は、アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を含有する触媒を用いて、乳酸および/またはその誘導体から脱水反応によりアクリル酸および/またはアクリル酸エステルを得る工程を有するものである。本発明の触媒は、乳酸および/またはその誘導体から脱水反応によりアクリル酸および/またはアクリル酸エステルを製造するのに用いることができる。触媒の詳細については、上記に説明した通りである。本発明の製造方法によれば、乳酸および/またはその誘導体からアクリル酸および/またはアクリル酸エステルを高い選択性で製造することができる。
[Method for producing acrylic acid and / or acrylic ester]
Next, the manufacturing method of acrylic acid and / or acrylic acid ester of this invention is demonstrated. The method for producing acrylic acid and / or acrylic ester of the present invention comprises a step of obtaining acrylic acid and / or acrylic ester from lactic acid and / or a derivative thereof by dehydration reaction in the presence of the catalyst of the present invention. is there. That is, the method for producing acrylic acid and / or acrylic ester of the present invention uses a catalyst containing a phosphate compound containing both alkali metal and alkaline earth metal elements to dehydrate lactic acid and / or its derivatives. It has the process of obtaining acrylic acid and / or acrylic ester by reaction. The catalyst of the present invention can be used for producing acrylic acid and / or an acrylate ester by dehydration reaction from lactic acid and / or a derivative thereof. Details of the catalyst are as described above. According to the production method of the present invention, acrylic acid and / or an acrylic ester can be produced with high selectivity from lactic acid and / or a derivative thereof.
 (反応原料)
 反応原料として使用する乳酸および/またはその誘導体は、一般的な製造法である発酵法を利用して製造されたものでも、化学法で製造されたものでも、どちらでも使用できる。乳酸および/またはその誘導体はバイオマス由来のものであってもよく、これにより環境負荷の低減に繋がる。
(Reaction raw materials)
The lactic acid and / or derivative thereof used as a reaction raw material can be either produced using a fermentation method which is a general production method or produced by a chemical method. Lactic acid and / or derivatives thereof may be derived from biomass, which leads to a reduction in environmental burden.
 乳酸は通常水溶液の形態で流通しており、そのまま使用してもよいし、水でさらに希釈してもよく、また蒸発等の操作を利用して水分を除去して適宜濃縮して用いてもよい。前記希釈に用いる水としては、イオン交換水、純水、通常の水道水などを使用してよいし、製造工程で発生する廃水をリサイクル使用してもよい。また、反応に使用する乳酸は乳酸単量体のほかに乳酸の誘導体を含んでいてもよく、乳酸の誘導体としては、乳酸のオリゴマーやラクチドなどの乳酸同士の縮合物や、乳酸の塩、乳酸エステル等が挙げられる。乳酸塩としては、乳酸アンモニウム、乳酸リチウム、乳酸ナトリウム、乳酸カリウム、乳酸マグネシウム、乳酸カルシウム等が挙げられ、該乳酸エステルとしては、乳酸メチル、乳酸エチル、乳酸ブチル、乳酸2-エチルへキシル等が挙げられる。なお、乳酸の誘導体はかかる例示に限定されるものではない。乳酸の誘導体は、水や他の溶媒を加えて使用してもよいし、そのまま用いてもよく、適宜選択して使用される。 Lactic acid is usually distributed in the form of an aqueous solution, and may be used as it is, may be further diluted with water, or may be used by appropriately concentrating after removing moisture using an operation such as evaporation. Good. As the water used for the dilution, ion exchange water, pure water, normal tap water, or the like may be used, or waste water generated in the manufacturing process may be recycled. In addition to the lactic acid monomer, the lactic acid used in the reaction may contain a lactic acid derivative. Examples of the lactic acid derivative include lactic acid oligomers and condensates of lactic acid such as lactide, lactic acid salts, and lactic acid. Examples include esters. Examples of the lactate include ammonium lactate, lithium lactate, sodium lactate, potassium lactate, magnesium lactate, and calcium lactate. Examples of the lactate include methyl lactate, ethyl lactate, butyl lactate, and 2-ethylhexyl lactate. Can be mentioned. In addition, the derivative | guide_body of lactic acid is not limited to this illustration. Lactic acid derivatives may be used with addition of water or other solvents, or may be used as they are, and are appropriately selected and used.
 乳酸等を水溶液などの溶液として扱う場合、溶液中の乳酸の濃度はプロセス効率の観点から10質量%以上、さらに言えば30質量%以上であることが好ましい。また、高い反応収率を得るために、乳酸の濃度は90質量%以下、さらに言えば80質量%以下であることが好ましい。なお、乳酸の濃度とは、乳酸単量体と乳酸のオリゴマー、ラクチド、それらの塩、乳酸エステルを含む濃度で、JIS K 8726に記載の方法により定量される濃度のことを指す。 When lactic acid or the like is handled as a solution such as an aqueous solution, the concentration of lactic acid in the solution is preferably 10% by mass or more, more preferably 30% by mass or more from the viewpoint of process efficiency. In order to obtain a high reaction yield, the concentration of lactic acid is preferably 90% by mass or less, more preferably 80% by mass or less. The concentration of lactic acid is a concentration containing a lactic acid monomer and an oligomer of lactic acid, lactide, a salt thereof, and a lactic acid ester, and is a concentration determined by the method described in JIS K 8726.
 (反応器)
 乳酸および/またはその誘導体の脱水反応は、本発明の触媒が配された反応器に、乳酸および/またはその誘導体を導入することにより行うことが好ましい。反応器の種類は特に限定されないが、撹拌式反応器、固定床反応器、流動床反応器、噴流床反応器などが挙げられ、好ましくは固定床反応器が用いられる。
(Reactor)
The dehydration reaction of lactic acid and / or its derivative is preferably carried out by introducing lactic acid and / or its derivative into a reactor provided with the catalyst of the present invention. The type of the reactor is not particularly limited, and examples thereof include a stirring reactor, a fixed bed reactor, a fluidized bed reactor, a spouted bed reactor, and the like, and a fixed bed reactor is preferably used.
 固定床反応器は、固体触媒が充填された反応管を備えており、該反応管に、ガス状の乳酸および/またはその誘導体を導入して、気相接触反応により乳酸および/またはその誘導体を脱水させ、アクリル酸および/またはアクリル酸エステルを得るものである。ガス状の乳酸および/またはその誘導体は、例えば、反応管の入口側あるいは反応管より前段で、乳酸および/またはその誘導体を含有する水溶液を加熱することにより生成することができる。 The fixed bed reactor includes a reaction tube filled with a solid catalyst, and gaseous lactic acid and / or a derivative thereof is introduced into the reaction tube, and the lactic acid and / or the derivative thereof is obtained by a gas phase catalytic reaction. It is dehydrated to obtain acrylic acid and / or an acrylic ester. Gaseous lactic acid and / or its derivative can be produced, for example, by heating an aqueous solution containing lactic acid and / or its derivative at the inlet side of the reaction tube or upstream of the reaction tube.
 固定床反応器は、例えば、反応器入口部に設けられた原料ガス入口と、反応器出口部に設けられた生成物出口と、反応器外部から反応管を加熱または除熱するための熱媒体を導入する熱媒体入口と、熱媒体を排出する熱媒体出口とを有して概略構成される。また、熱媒体の代わりに電気ヒーター等で反応管を加熱するものでもよい。 The fixed bed reactor includes, for example, a raw material gas inlet provided at the reactor inlet, a product outlet provided at the reactor outlet, and a heat medium for heating or removing the reaction tube from the outside of the reactor. And a heat medium outlet for discharging the heat medium and a heat medium outlet for discharging the heat medium. Further, the reaction tube may be heated with an electric heater or the like instead of the heat medium.
 固定床反応器に備わる反応管は、単数であってもよく、複数配置されていてもよい。反応管が複数配置される場合、通常、反応管は実質的に同一形状の金属管である。反応管は、コイル状等であってもよいが、通常は直線状の直管が使用される。直管は水平配置、垂直配置のいずれでもよいが、通常は垂直方向に配置され、原料ガスを垂直方向に通過させる縦型である。 The reaction tube provided in the fixed bed reactor may be a single reaction tube or a plurality of reaction tubes. When a plurality of reaction tubes are arranged, the reaction tubes are usually metal tubes having substantially the same shape. The reaction tube may be coiled or the like, but a straight straight tube is usually used. The straight pipe may be either a horizontal arrangement or a vertical arrangement, but is usually a vertical type that is arranged in the vertical direction and allows the source gas to pass in the vertical direction.
 (反応条件)
 反応温度は、用いる触媒と反応の転化率及び選択率に応じて適宜決定すればよいが、充分な反応速度を得るためには、通常、250℃以上、より好ましくは300℃以上、さらに好ましくは350℃以上である。また、副反応を抑えて目的化合物の選択率を十分に得るためには、反応温度は500℃以下が好ましく、より好ましくは450℃以下、さらに好ましくは400℃以下である。なお反応温度とは、反応器の温度制御を行うための熱媒やヒーター等の温度を意味する。
(Reaction conditions)
The reaction temperature may be appropriately determined according to the catalyst used and the conversion and selectivity of the reaction, but in order to obtain a sufficient reaction rate, it is usually 250 ° C. or higher, more preferably 300 ° C. or higher, more preferably 350 ° C. or higher. Moreover, in order to suppress the side reaction and to obtain sufficient selectivity of the target compound, the reaction temperature is preferably 500 ° C. or lower, more preferably 450 ° C. or lower, and further preferably 400 ° C. or lower. The reaction temperature means the temperature of a heat medium or heater for controlling the temperature of the reactor.
 反応器内の圧力は特に限定されないが、減圧や反応ガスの冷却に要する設備の観点から30kPa以上が好ましく、より好ましくは60kPa以上である。また、高圧に要する設備や反応器などの材質の観点から、200kPa以下が好ましく、150kPa以下がより好ましい。 Although the pressure in the reactor is not particularly limited, it is preferably 30 kPa or more, more preferably 60 kPa or more from the viewpoint of equipment required for decompression and cooling of the reaction gas. In addition, from the viewpoint of materials required for high pressure equipment and reactors, 200 kPa or less is preferable, and 150 kPa or less is more preferable.
 キャリアガスを用いる場合は、不活性ガスを使用することができ、好ましくは窒素、アルゴン、ヘリウムであり、経済的な観点からより好ましくは窒素である。また、キャリアガスとして水蒸気を用いることもでき、この場合、原料の乳酸等の水溶液中の水分が気化した水蒸気をそのまま用いることもできるし、新たに水蒸気を追加して用いてもよい。 In the case of using a carrier gas, an inert gas can be used, preferably nitrogen, argon or helium, and more preferably nitrogen from an economical viewpoint. Also, water vapor can be used as the carrier gas. In this case, water vapor obtained by evaporating water in an aqueous solution such as lactic acid as a raw material can be used as it is, or water vapor can be additionally used.
 反応ガスの流量は、原料濃度やキャリアガス量、触媒の性能、生産性などを考慮して適宜調整すればよいが、触媒単位体積あたりのガス空間速度(GHSV)で表すと、通常50~20000h-1、好ましくは100~10000h-1であり、より好ましくは150~6000h-1である。なお、GHSVは下記の式による算出される(下記式において、24800は標準状態(SATP)での1モルあたりの理想気体の体積(mL/mol)を表す):
 GHSV(h-1)={(供給する乳酸量(mol/h)+供給する水の量(mol/h))×24800+キャリアガスの流量(mL/h)}/触媒充填体積(mL)。
The flow rate of the reaction gas may be appropriately adjusted in consideration of the raw material concentration, the amount of carrier gas, the performance of the catalyst, the productivity, etc., but when expressed in terms of gas space velocity per unit volume of catalyst (GHSV), it is usually 50 to 20000 h. −1 , preferably 100 to 10000 h −1 , more preferably 150 to 6000 h −1 . In addition, GHSV is calculated by the following formula (in the following formula, 24800 represents the volume (mL / mol) of ideal gas per mole in the standard state (SATP)):
GHSV (h −1 ) = {(Amount of lactic acid to be supplied (mol / h) + Amount of water to be supplied (mol / h)) × 24800 + flow rate of carrier gas (mL / h)} / catalyst filling volume (mL).
 本発明の製造方法によれば、乳酸を脱水反応させることによりアクリル酸を得ることができる。乳酸エステルを原料に用いる場合は、脱水反応を経ることによりアクリル酸エステルを得ることができ、得られたアクリル酸エステルはさらに加水分解することでアクリル酸を得ることも可能である。該アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルへキシル等が挙げられるが、かかる例示にのみ限定されるものではない。 According to the production method of the present invention, acrylic acid can be obtained by dehydrating lactic acid. When a lactic acid ester is used as a raw material, an acrylic acid ester can be obtained through a dehydration reaction, and the resulting acrylic acid ester can be further hydrolyzed to obtain acrylic acid. Examples of the acrylate ester include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like, but are not limited to such examples.
 また、本発明の製造方法によれば、コーク等の触媒上への蓄積抑制効果を得ることも可能であるが、コークが生じた場合にはエアレーション等の公知の方法により触媒を再生してもよい。 Further, according to the production method of the present invention, it is possible to obtain the effect of suppressing the accumulation on the catalyst such as coke. However, when coke occurs, the catalyst may be regenerated by a known method such as aeration. Good.
 (精製)
 脱水反応で得られた反応ガスには、主生成物であるアクリル酸やアクリル酸エステルの他に、水やアセトアルデヒド、プロピオン酸、2,3-ペンタンジオン、ヒドロキシアセトン、酢酸等の副生成物が含まれるが、これらの副生成物は、一般的な精製方法で適宜分離除去することで、高純度のアクリル酸やアクリル酸エステルを得ることができる。例えば、アセトアルデヒド等の沸点の低い化合物は、反応ガスの凝縮温度を適宜調節することで、気液分離により軽沸点ガスとして分離することができる。凝縮した高沸点液は、適宜蒸留や晶析等の分離操作を用いることで、副生成物を分離除去して高純度のアクリル酸やアクリル酸エステルを得ることができる。
(Purification)
The reaction gas obtained by the dehydration reaction contains by-products such as water, acetaldehyde, propionic acid, 2,3-pentanedione, hydroxyacetone, and acetic acid in addition to the main products such as acrylic acid and acrylic ester. Although included, these by-products can be appropriately separated and removed by a general purification method to obtain high-purity acrylic acid or acrylic acid ester. For example, a compound having a low boiling point such as acetaldehyde can be separated as a light boiling gas by gas-liquid separation by appropriately adjusting the condensation temperature of the reaction gas. The condensed high-boiling liquid can be separated and removed by-products by appropriately using a separation operation such as distillation or crystallization to obtain high-purity acrylic acid or acrylic acid ester.
 本願は、2013年7月25日に出願された日本国特許出願第2013-155055号に基づく優先権の利益を主張するものである。2013年7月25日に出願された日本国特許出願第2013-155055号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2013-155055 filed on July 25, 2013. The entire contents of the specification of Japanese Patent Application No. 2013-155055 filed on July 25, 2013 are incorporated herein by reference.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は下記の実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
 (1)触媒の調製
 (1-1)触媒調製例1:NaCaPO4を含む触媒の調製
 リン酸三ナトリウム12水和物(和光純薬社製)250gを溶解した水溶液1890gを60℃で撹拌しながら塩化カルシウム2水和物(関東化学社製)155gを溶解した水溶液813gを15分間かけて滴下した。そのまま1時間撹拌し、40℃以下になるまで空冷した後、減圧ろ過して白色の析出物を得た。この析出物に対し、水1000gを加え、30分間撹拌洗浄し、減圧ろ過する操作を2回繰り返した。この析出物を空気雰囲気下、120℃で24時間乾燥し、中間体1を得た。
(1) Preparation of catalyst (1-1) Catalyst preparation example 1: Preparation of catalyst containing NaCaPO 4 1890 g of an aqueous solution in which 250 g of trisodium phosphate dodecahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved was stirred at 60 ° C. Then, 813 g of an aqueous solution in which 155 g of calcium chloride dihydrate (manufactured by Kanto Chemical Co., Ltd.) was dissolved was dropped over 15 minutes. The mixture was stirred as it was for 1 hour, air-cooled to 40 ° C. or lower, and then filtered under reduced pressure to obtain a white precipitate. The operation of adding 1000 g of water to the precipitate, stirring and washing for 30 minutes, and filtering under reduced pressure was repeated twice. This precipitate was dried in an air atmosphere at 120 ° C. for 24 hours to obtain Intermediate 1.
 次に、中間体1(25.0g)に対し、硝酸ナトリウム(和光純薬社製)0.249gを溶解した水溶液17.9gを加えて混練し、90℃で蒸発乾固した。さらに空気雰囲気下、120℃で24時間乾燥した後、500℃で6時間焼成することにより焼成物を得た。焼成物はX線回折装置(XRD、PANalytical社製X’Pert PRO MPD)を用いて分析することにより、NaCaPO4とカルシウムヒドロキシアパタイトを含む混合物であることがわかった。XRD分析結果を図1、その拡大図を図2に示す。なお、図2にNaCaPO4に対応する主なピークを矢印で示した。得られた焼成物は油圧プレスで圧縮成型して破砕した後、目開き0.85mmおよび2.0mmの篩を用いて篩い分けし、0.85~2.0mmの範囲に分級された焼成物を触媒とした。 Next, 17.9 g of an aqueous solution in which 0.249 g of sodium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved was added to intermediate 1 (25.0 g), kneaded, and evaporated to dryness at 90 ° C. Furthermore, after drying for 24 hours at 120 ° C. in an air atmosphere, a fired product was obtained by firing at 500 ° C. for 6 hours. The fired product was analyzed using an X-ray diffractometer (XRD, X'Pert PRO MPD manufactured by PANalytical), and was found to be a mixture containing NaCaPO 4 and calcium hydroxyapatite. The XRD analysis result is shown in FIG. 1, and its enlarged view is shown in FIG. In FIG. 2, main peaks corresponding to NaCaPO 4 are indicated by arrows. The fired product obtained is compressed and molded by a hydraulic press and crushed, and then sieved using a sieve having an opening of 0.85 mm and 2.0 mm, and the fired product is classified to a range of 0.85 to 2.0 mm. Was used as a catalyst.
 (1-2)触媒調製例2:Na2CaP27を含む触媒の調製
 二リン酸四ナトリウム100g(和光純薬社製)を溶解した水溶液871gを50℃で撹拌しながら塩化カルシウム2水和物(関東化学社製)122gを溶解した水溶液430gを15分間かけて滴下した。そのまま1時間撹拌し、40℃以下になるまで空冷した後、減圧ろ過し白色の析出物を得た。この析出物に対し、水700gを加え、30分間撹拌洗浄し、減圧ろ過する操作を2回繰り返した。この析出物を空気雰囲気下、120℃で24時間乾燥し、中間体2を得た。
(1-2) Catalyst Preparation Example 2: Preparation of a catalyst containing Na 2 CaP 2 O 7 Calcium chloride 2 water while stirring 871 g of an aqueous solution in which 100 g of tetrasodium diphosphate (Wako Pure Chemical Industries, Ltd.) was dissolved was stirred at 50 ° C. 430 g of an aqueous solution in which 122 g of a Japanese product (manufactured by Kanto Chemical Co., Ltd.) was dissolved was dropped over 15 minutes. The mixture was stirred as it was for 1 hour, air-cooled to 40 ° C. or lower, and then filtered under reduced pressure to obtain a white precipitate. The operation of adding 700 g of water to the precipitate, stirring and washing for 30 minutes, and filtering under reduced pressure was repeated twice. This precipitate was dried at 120 ° C. for 24 hours in an air atmosphere to obtain Intermediate 2.
 次に、中間体1(60.7g)と中間体2(60.7g)を水700mL中に懸濁させた状態で1時間撹拌混合し、減圧ろ過した。得られた混合物を空気雰囲気下、120℃で24時間乾燥した後、500℃で6時間焼成することにより焼成物を得た。焼成物はX線回折装置(XRD、PANalytical社製X’Pert PRO MPD)を用いて分析することにより、Na2CaP27とカルシウムヒドロキシアパタイトを含む混合物であることがわかった。XRD分析結果を図3に示す。なお、図3にNa2CaP27に対応する主なピークを矢印で示した。得られた焼成物は油圧プレスで圧縮成型して破砕した後、目開き0.85mmおよび2.0mmの篩を用いて篩い分けし、0.85~2.0mmの範囲に分級された焼成物を触媒とした。 Next, Intermediate 1 (60.7 g) and Intermediate 2 (60.7 g) were suspended and mixed in 700 mL of water for 1 hour, and filtered under reduced pressure. The obtained mixture was dried at 120 ° C. for 24 hours in an air atmosphere, and then fired at 500 ° C. for 6 hours to obtain a fired product. The fired product was analyzed using an X-ray diffractometer (XRD, X'Pert PRO MPD manufactured by PANalytical), and was found to be a mixture containing Na 2 CaP 2 O 7 and calcium hydroxyapatite. The XRD analysis results are shown in FIG. In FIG. 3, the main peaks corresponding to Na 2 CaP 2 O 7 are indicated by arrows. The fired product obtained is compressed and molded by a hydraulic press and crushed, and then sieved using a sieve having an opening of 0.85 mm and 2.0 mm, and the fired product is classified to a range of 0.85 to 2.0 mm. Was used as a catalyst.
 (1-3)触媒調製例3:カルシウムヒドロキシアパタイト(Ca10(PO46(OH)2)触媒の調製
 水500gを70℃に加熱し、撹拌しながら、硝酸カルシウム四水和物226gを溶解した水溶液531g、リン酸水素二アンモニウム83.5gを含む水溶液527g、28質量%アンモニア水192gをそれぞれ5時間かけて同時滴下した後、15時間熟成し、加圧ろ過し白色の析出物を得た。この析出物に対し、水700gを加え、30分間撹拌洗浄し、加圧ろ過する操作を2回繰り返した。この析出物を空気雰囲気下、120℃で24時間乾燥し、中間体3を得た。500℃で6時間焼成することにより焼成物を得た。焼成物はX線回折装置(XRD、PANalytical社製X’Pert PRO MPD)を用いて分析することにより、カルシウムヒドロキシアパタイトであることを確認した。XRD分析結果を図4に、その拡大図を図5に示す。得られた焼成物を油圧プレスで圧縮成型して破砕した後、目開き0.85mmおよび2.0mmの篩を用いて篩い分けし、0.85~2.0mmの範囲に分級された焼成物を触媒とした。
(1-3) Catalyst Preparation Example 3: Preparation of Calcium Hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) Catalyst While heating 500 g of water to 70 ° C. and stirring, 226 g of calcium nitrate tetrahydrate was added. 531 g of a dissolved aqueous solution, 527 g of an aqueous solution containing 83.5 g of diammonium hydrogen phosphate, and 192 g of 28% by mass ammonia water were simultaneously added dropwise over 5 hours, and then aged for 15 hours, followed by pressure filtration to obtain a white precipitate. It was. The operation of adding 700 g of water to the precipitate, stirring and washing for 30 minutes, and filtration under pressure was repeated twice. This precipitate was dried at 120 ° C. for 24 hours in an air atmosphere to obtain Intermediate 3. A fired product was obtained by firing at 500 ° C. for 6 hours. The fired product was confirmed to be calcium hydroxyapatite by analysis using an X-ray diffractometer (XRD, X'Pert PRO MPD manufactured by PANalytical). The XRD analysis result is shown in FIG. 4, and its enlarged view is shown in FIG. The obtained fired product is compression-molded with a hydraulic press and crushed, and then sieved using a sieve having an opening of 0.85 mm and 2.0 mm, and the fired product is classified into a range of 0.85 to 2.0 mm. Was used as a catalyst.
 (2)乳酸からアクリル酸の製造例
 (2-1)方法
 上記触媒調製例1~3で製造した触媒を使用して、次に示す常圧気相固定床流通反応形式により、乳酸を脱水してアクリル酸を製造した。触媒10mLをステンレス製反応管(内径10mm、長さ310mm)に充填して固定床反応器を準備し、この反応器を所定の反応温度に制御したナイターバスに浸漬した。その後、反応器内に窒素ガスを流量157mL/minで30分間流通させた後、36質量%乳酸水溶液の気化ガスと窒素ガスとからなる反応ガス(反応ガス組成:乳酸7.6モル%、水68.0モル%、窒素24.4モル%)を流量(GHSV)3900h-1で流通させた。反応器に反応ガスを流通させて反応開始してからサンプリングのために反応ガスを捕集開始するまでの時間を反応時間とし、サンプリングの際は反応器からの流出ガスを捕集開始後30分間にわたって水中に冷却吸収して捕集した。以下、捕集した流出ガスの冷却吸収物を「流出物」と称する。
(2) Production Example of Acrylic Acid from Lactic Acid (2-1) Method Using the catalyst produced in the above Catalyst Preparation Examples 1 to 3, lactic acid was dehydrated by the following atmospheric pressure fixed bed flow reaction mode. Acrylic acid was produced. A fixed bed reactor was prepared by filling 10 mL of a catalyst in a stainless steel reaction tube (inner diameter 10 mm, length 310 mm), and this reactor was immersed in a night bath controlled at a predetermined reaction temperature. Thereafter, nitrogen gas was allowed to flow through the reactor at a flow rate of 157 mL / min for 30 minutes, and then a reaction gas (reaction gas composition: 7.6 mol% lactic acid, water consisting of a vaporized gas of 36 mass% lactic acid aqueous solution and nitrogen gas) 68.0 mol%, nitrogen 24.4 mol%) was allowed to flow at a flow rate (GHSV) of 3900 h −1 . The reaction time is defined as the time from when the reaction gas is circulated through the reactor to the start of the reaction until the reaction gas is collected for sampling. During sampling, the effluent gas from the reactor is collected for 30 minutes. And collected by cooling and absorbing in water. Hereinafter, the cooling absorption material of the collected outflow gas is referred to as “outflow”.
 サンプリングした流出物は、検出器にFIDを備えるガスクロマトグラフィー(GC)装置(島津製作所社製GC-2010)、および検出器にPDAを備える液体クロマトグラフィー(LC)装置(Waters社製UPLC)により、定量分析を行った。定量分析には、内部標準法を採用した。LCによる定量分析から乳酸転化率、GCによる定量分析結果から、アクリル酸選択率、アセトアルデヒド選択率、プロピオン酸選択率、2,3-ペンタンジオン選択率、およびヒドロキシアセトン選択率を算出した。これらの算出式は、以下の通りである。 The sampled effluent was collected by a gas chromatography (GC) apparatus (GC-2010 manufactured by Shimadzu Corporation) equipped with a FID in the detector and a liquid chromatography (LC) apparatus (UPLC manufactured by Waters) equipped with a PDA in the detector. Quantitative analysis was performed. An internal standard method was adopted for quantitative analysis. From the quantitative analysis by LC, the lactic acid conversion rate, and from the quantitative analysis result by GC, acrylic acid selectivity, acetaldehyde selectivity, propionic acid selectivity, 2,3-pentanedione selectivity, and hydroxyacetone selectivity were calculated. These calculation formulas are as follows.
 乳酸転化率(%)=(1-(流出物中の乳酸のモル数/30分間に反応器に流入させた乳酸のモル数))×100;
 アクリル酸選択率(%)=(流出物中のアクリル酸のモル数/(30分間に反応器に流入させた乳酸のモル数×乳酸転化率(%)/100))×100;
 アセトアルデヒド選択率(%)=(流出物中のアセトアルデヒドのモル数/(30分間に反応器に流入させた乳酸のモル数×乳酸転化率(%)/100))×100;
 プロピオン酸選択率(%)=(流出物中のプロピオン酸のモル数/(30分間に反応器に流入させた乳酸のモル数×乳酸転化率(%)/100))×100;
 2,3-ペンタンジオン選択率(%)=(流出物中の2,3-ペンタンジオンのモル数/(30分間に反応器に流入させた乳酸のモル数×乳酸転化率(%)/100))×100;
 ヒドロキシアセトン選択率(%)=(流出物中のヒドロキシアセトンのモル数/(30分間に反応器に流入させた乳酸のモル数×乳酸転化率(%)/100))×100。
Lactic acid conversion (%) = (1− (moles of lactic acid in the effluent / moles of lactic acid introduced into the reactor in 30 minutes)) × 100;
Acrylic acid selectivity (%) = (moles of acrylic acid in the effluent / (moles of lactic acid introduced into the reactor in 30 minutes × lactic acid conversion (%) / 100)) × 100;
Acetaldehyde selectivity (%) = (moles of acetaldehyde in the effluent / (moles of lactic acid introduced into the reactor in 30 minutes × lactic acid conversion (%) / 100)) × 100;
Propionic acid selectivity (%) = (moles of propionic acid in the effluent / (moles of lactic acid introduced into the reactor in 30 minutes × lactic acid conversion (%) / 100)) × 100;
2,3-pentanedione selectivity (%) = (number of moles of 2,3-pentanedione in the effluent / (number of moles of lactic acid introduced into the reactor in 30 minutes × lactic acid conversion (%) / 100 )) × 100;
Hydroxyacetone selectivity (%) = (number of moles of hydroxyacetone in the effluent / (number of moles of lactic acid introduced into the reactor in 30 minutes × lactic acid conversion (%) / 100)) × 100.
 (2-2)結果
 触媒調製例1で得られた触媒を用いて乳酸からアクリル酸を製造した例を実施例1、触媒調製例2で得られた触媒を用いて乳酸からアクリル酸を製造した例を実施例2、触媒調製例3で得られた触媒を用いて乳酸からアクリル酸を製造した例を比較例として、実施例1、2および比較例の各結果を表1に示した。また実施例2における反応時間(TOS)に対する乳酸の転化率と上記各成分の反応選択率の変化について図6に結果を示す。
(2-2) Results An example in which acrylic acid was produced from lactic acid using the catalyst obtained in Catalyst Preparation Example 1, acrylic acid was produced from lactic acid using the catalyst obtained in Example 1 and Catalyst Preparation Example 2. The results of Examples 1 and 2 and Comparative Example are shown in Table 1 as an example in which acrylic acid was produced from lactic acid using the catalyst obtained in Example 2 and Catalyst Preparation Example 3. FIG. 6 shows the results of changes in the conversion rate of lactic acid and the reaction selectivity of each of the above components with respect to the reaction time (TOS) in Example 2.
 表1から分かるとおり、NaCaPO4を含む触媒を用いた実施例1は、アルカリ金属を含んでいないCa10(PO46(OH)2触媒を用いた比較例と比べて、反応時間3.0時間において乳酸転化率とアクリル酸選択率が高く、かつ、副生成物の選択率が低く抑えられた。また、比較例では反応時間3.0時間においてアクリル酸選択率が40%よりも低くなっていたのに対し、Na2CaP27を含む触媒を用いた実施例2では、表1および図6からも明らかなように、反応時間98.5時間においても55%以上のアクリル酸選択率を維持する結果となった。  As can be seen from Table 1, Example 1 using a catalyst containing NaCaPO 4 has a reaction time of 3. compared with a comparative example using a Ca 10 (PO 4 ) 6 (OH) 2 catalyst containing no alkali metal. At 0 hour, the conversion of lactic acid and the selectivity of acrylic acid were high, and the selectivity of by-products was kept low. Further, in the comparative example, the acrylic acid selectivity was lower than 40% at the reaction time of 3.0 hours, whereas in Example 2 using the catalyst containing Na 2 CaP 2 O 7 , Table 1 and FIG. As is clear from FIG. 6, the acrylic acid selectivity of 55% or more was maintained even at a reaction time of 98.5 hours.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 

Claims (8)

  1.  乳酸および/またはその誘導体から、脱水反応により、アクリル酸および/またはアクリル酸エステルを製造するための触媒であって、
     アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を含有することを特徴とする触媒。
    A catalyst for producing acrylic acid and / or an acrylic ester from lactic acid and / or a derivative thereof by a dehydration reaction,
    A catalyst comprising a phosphate compound containing both alkali metal and alkaline earth metal elements.
  2.  前記リン酸塩化合物がオルトリン酸塩化合物および/またはピロリン酸塩化合物である請求項1に記載の触媒。 The catalyst according to claim 1, wherein the phosphate compound is an orthophosphate compound and / or a pyrophosphate compound.
  3.  前記アルカリ金属がナトリウムである請求項1または2に記載の触媒。 The catalyst according to claim 1 or 2, wherein the alkali metal is sodium.
  4.  前記アルカリ土類金属がカルシウムである請求項1~3のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 3, wherein the alkaline earth metal is calcium.
  5.  アルカリ金属およびアルカリ土類金属の両方の元素を含むリン酸塩化合物を含有する触媒を用いて、乳酸および/またはその誘導体から、脱水反応により、アクリル酸および/またはアクリル酸エステルを得る工程を有することを特徴とするアクリル酸および/またはアクリル酸エステルの製造方法。 Using a catalyst containing a phosphate compound containing both alkali metal and alkaline earth metal elements, a step of obtaining acrylic acid and / or an acrylic ester from lactic acid and / or its derivative by dehydration reaction A method for producing acrylic acid and / or acrylic ester characterized by the above.
  6.  前記リン酸塩化合物がオルトリン酸塩化合物および/またはピロリン酸塩化合物である請求項5に記載の製造方法。 The production method according to claim 5, wherein the phosphate compound is an orthophosphate compound and / or a pyrophosphate compound.
  7.  前記アルカリ金属がナトリウムである請求項5または6に記載の製造方法。 The method according to claim 5 or 6, wherein the alkali metal is sodium.
  8.  前記アルカリ土類金属がカルシウムである請求項5~7のいずれか一項に記載の製造方法。 The production method according to any one of claims 5 to 7, wherein the alkaline earth metal is calcium.
PCT/JP2014/069712 2013-07-25 2014-07-25 Catalyst for manufacturing acrylic acid and/or acrylate from lactic acid and/or derivative thereof, and method for manufacturing acrylic acid and/or acrylate WO2015012392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013155055A JP2016169162A (en) 2013-07-25 2013-07-25 Method for producing acrylic acid and/or acrylic ester
JP2013-155055 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015012392A1 true WO2015012392A1 (en) 2015-01-29

Family

ID=52393424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069712 WO2015012392A1 (en) 2013-07-25 2014-07-25 Catalyst for manufacturing acrylic acid and/or acrylate from lactic acid and/or derivative thereof, and method for manufacturing acrylic acid and/or acrylate

Country Status (2)

Country Link
JP (1) JP2016169162A (en)
WO (1) WO2015012392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371461A (en) * 2023-03-31 2023-07-04 北京化工大学 Zeolite catalyst for preparing acrylic ester by catalyzing lactic acid ester dehydration and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115686A (en) * 1974-02-22 1975-09-10
JP2006525106A (en) * 2003-05-27 2006-11-09 エルジー・ケム・リミテッド Hydrocarbon steam cracking catalyst, process for producing the same, and process for producing light olefins by hydrocarbon steam cracking using the catalyst
WO2011052178A1 (en) * 2009-10-29 2011-05-05 株式会社サンギ Method for synthesizing unsaturated carboxylic acid and/or derivative of same
WO2012156921A1 (en) * 2011-05-16 2012-11-22 Council Of Scientific & Industrial Research An improved process for catalytic dehydration of lactic acid to acrylic acid
WO2013155295A1 (en) * 2012-04-11 2013-10-17 The Procter & Gamble Company Catalytic conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115686A (en) * 1974-02-22 1975-09-10
JP2006525106A (en) * 2003-05-27 2006-11-09 エルジー・ケム・リミテッド Hydrocarbon steam cracking catalyst, process for producing the same, and process for producing light olefins by hydrocarbon steam cracking using the catalyst
WO2011052178A1 (en) * 2009-10-29 2011-05-05 株式会社サンギ Method for synthesizing unsaturated carboxylic acid and/or derivative of same
WO2012156921A1 (en) * 2011-05-16 2012-11-22 Council Of Scientific & Industrial Research An improved process for catalytic dehydration of lactic acid to acrylic acid
WO2013155295A1 (en) * 2012-04-11 2013-10-17 The Procter & Gamble Company Catalytic conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUMIKO MATSUURA ET AL.: "Alkali Kinzoku o Gan'yu suru Appetite Shokubai o Mochiita Nyusan kara Acryl-san eno Dassui Hanno", DAI 112 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 11 September 2013 (2013-09-11), pages 212 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371461A (en) * 2023-03-31 2023-07-04 北京化工大学 Zeolite catalyst for preparing acrylic ester by catalyzing lactic acid ester dehydration and preparation method thereof

Also Published As

Publication number Publication date
JP2016169162A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6417009B2 (en) Catalyst for glycerol dehydration reaction, method for producing the same, and method for producing acrolein
US7683220B2 (en) Process for production of acrolein
JP5762963B2 (en) Method for producing acrolein from glycerol
KR101818242B1 (en) Process for manufacturing acrolein or acrylic acid from glycerin
US7910771B2 (en) Method for producing acrylic acid from glycerol
JP2015517905A (en) Catalytic conversion of lactic acid to acrylic acid
Lee et al. Efficient dehydration of methyl lactate to acrylic acid using Ca3 (PO4) 2–SiO2 catalyst
WO1999038822A1 (en) Process for the synthesis of chemical industrial feedstock and high-octane fuel, and high-octane fuel composition
RU2658005C2 (en) Carbonylation method
JP2016522825A (en) Method for producing vinylidenecarboxylic acid (ester) by reacting formaldehyde with alkylcarboxylic acid (ester)
CN107921423B (en) Catalytic dehydration of hydroxypropionic acid and derivatives thereof
US20120022291A1 (en) Catalyst for production of acrolein and acrylic acid by means of dehydration reaction of glycerin, and process for producing same
WO2015012392A1 (en) Catalyst for manufacturing acrylic acid and/or acrylate from lactic acid and/or derivative thereof, and method for manufacturing acrylic acid and/or acrylate
JP5162128B2 (en) Method for producing acrolein from glycerin
JP6405507B2 (en) Catalyst and method for synthesis of unsaturated carboxylic acid and / or derivative thereof
KR101606191B1 (en) Catalyst for dehydration of glycerin, method of preparing the same, and preparing method of acrolein
JP6533621B2 (en) Catalyst for glycerin dehydration reaction, method for producing the same, and method for producing acrolein using the catalyst
JP2012245433A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
WO2014024782A2 (en) Catalyst for production of acrylic acid from glycerin, and method for producing same
JP6384664B2 (en) Method for producing isobutanol
JP4957010B2 (en) Method for producing oxetane compound
US11427524B2 (en) Process for dehydrating methanol to dimethyl ether product
JP5785910B2 (en) Method for producing (meth) acrylic acid or ester thereof
JP4501494B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
WO2012010923A1 (en) Process for manufacturing acrolein from glycerol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14829059

Country of ref document: EP

Kind code of ref document: A1