JPH07333613A - Rubbing method - Google Patents

Rubbing method

Info

Publication number
JPH07333613A
JPH07333613A JP12531994A JP12531994A JPH07333613A JP H07333613 A JPH07333613 A JP H07333613A JP 12531994 A JP12531994 A JP 12531994A JP 12531994 A JP12531994 A JP 12531994A JP H07333613 A JPH07333613 A JP H07333613A
Authority
JP
Japan
Prior art keywords
film
rubbing
removing device
ultrasonic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12531994A
Other languages
Japanese (ja)
Inventor
Jun Sasaki
純 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP12531994A priority Critical patent/JPH07333613A/en
Publication of JPH07333613A publication Critical patent/JPH07333613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove particulates adhered on a long-sized film substrate and to improve a yield by passing this substrate through an electric removing device and an ultrasonic dust removing device at the time of continuously rubbing the surface of the oriented film of the substrate described above by a rubbing roll. CONSTITUTION:The film delivered from a film substrate delivery 1 is subjected to removal of static electricity, such as electrification by peeling, in the electric removing device 2 and is sent to the ultrasonic dust removing device 3. The ultrasonic dust removing device 3 consists of a wind blow-off port 4 and wind suction port 5 which are ultrasonic oscillators. These ports are so formed that the balance of blowing off and sucking is obtd. in a casing hood 6. The air having ultrasonic vibration energy blows off the particles adhered on the film surface at the time the film substrate passes these ports. Next, the film is subjected to a rubbing treatment by the rubbing roll 7. The dust of the rubbing cloth, etc., adheres to the film on account of the static electricity by the rubbing in this treatment. The dust is removed by passing the film substrate through the ultrasonic dust removing device 8 and the final static electricity removing device 9 in succession thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、液晶を用いた光学フ
ィルムにおける液晶分子の配向処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for aligning liquid crystal molecules in an optical film using liquid crystals.

【0002】[0002]

【従来の技術】液晶セル等における液晶分子の配向処理
方法には、基盤の表面に配向膜を形成し、この配向膜の
表面をラビングロールによって一方向にラビングする方
法が知られている。ところで基盤としてフィルム基盤を
用いて液晶分子をその表面に配向させる場合、液晶セル
の様に個々のサイズの基盤毎にラビング処理を施すこと
は非効率的であるため、通常長尺フィルム基盤をロール
・ツー・ロールで連続処理によるラビングを行う方が効
率的である。
2. Description of the Related Art As a method of aligning liquid crystal molecules in a liquid crystal cell or the like, there is known a method of forming an alignment film on the surface of a substrate and rubbing the surface of the alignment film in one direction with a rubbing roll. By the way, when aligning liquid crystal molecules on the surface using a film substrate as a substrate, it is inefficient to perform rubbing treatment for each substrate of each size like a liquid crystal cell. -It is more efficient to perform rubbing by continuous processing with two rolls.

【0003】一方、ラビング処理では微細な粉塵が基盤
に付着してラビング時にキズを生じてその結果液晶配向
に欠陥を生じ、製品歩留まりを低下させることが問題と
なっている。これら粉塵を除去する方法として、基板表
面の静電気除電を行い、エアーナイフで吹き飛ばして除
去する方法が知られている。しかしこの方式では空気の
粘性抵抗により、境界層以下に付着している微細な粒子
はエアーナイフの効果が及ばず、除去できない。これに
対して、基板を直接超音波振動させて付着微粒子を弾き
飛ばす方法が行われているが、ラビング時点での振動は
ラビング方向の乱れを生じてしまうため実施できず、事
前の処理ではその効果は十分ではない。
On the other hand, in the rubbing treatment, fine dust adheres to the substrate and causes scratches during rubbing, resulting in defects in the liquid crystal alignment, which lowers the product yield. As a method of removing these dusts, a method is known in which static electricity is removed from the surface of the substrate and the dust is blown off with an air knife. However, in this method, due to the viscous resistance of air, the fine particles adhering to the boundary layer and below cannot be removed because the effect of the air knife is not exerted. On the other hand, there is a method of directly ultrasonically vibrating the substrate to fly off the adhered fine particles, but the vibration at the time of rubbing cannot be carried out because the disturbance in the rubbing direction occurs, and it is not possible in the pretreatment. The effect is not enough.

【0004】[0004]

【発明が解決しようとする課題】近年液晶表示板の大型
化にともない、これらダストによる欠損が原因の歩留ま
り低下が大きな問題となってきた。さらに、画像の微細
化によって欠損の大きさもサブミクロンを問題にするま
でになった。さらに、ラビング処理の広幅・高速化等が
加わり、微粒子を確実に、迅速に除去できる方法の開発
が急務となってきた。本発明の目的は、長尺フィルムに
付着した微粒子を効果的に、迅速に除去でき、ラビング
処理の後の工程での歩留まり向上を計ることである。
With the recent increase in the size of liquid crystal display panels, the decrease in yield due to the defects caused by dust has become a serious problem. Further, with the miniaturization of images, the size of defects has become a problem of submicron. Furthermore, with the addition of a wider and faster rubbing process, there has been an urgent need to develop a method for reliably and quickly removing fine particles. An object of the present invention is to effectively and quickly remove fine particles adhering to a long film, and to improve the yield in the step after the rubbing treatment.

【0005】[0005]

【課題を解決するための手段】上記課題は、片面に配向
膜が形成された長尺フィルム基盤をラビングロールによ
って前記配向膜の表面を連続してラビングする際に、静
電気除電装置と超音波除塵装置を通すことを特徴とする
長尺フィルムの連続ラビング方法によって達成される。
Means for Solving the Problems The above-mentioned problems are solved by a static eliminator and an ultrasonic dust eliminator when continuously rubbing the surface of an alignment film with a rubbing roll on a long film substrate having an alignment film formed on one surface. It is achieved by a continuous rubbing method of a long film, which is characterized by passing through a device.

【0006】図1に本発明の代表的な装置を示した。図
1において、1から送り出されたフィルムは2の静電気
除電装置で剥離帯電などの静電気を除去し、3の超音波
除塵装置へ送られる。この超音波除塵装置は超音波発振
子となっている風の吹きだし口4と風の吸い込み口5か
らなり、ケーシングフード6内で吹き出し吸い込みのバ
ランスが取れるようになっている。フィルム基板がここ
を通過する際に超音波振動エネルギーを持ったエアーが
フィルム表面の付着粒子を吹き飛ばす。この方法では基
板を振動させて微粒子を弾き飛ばすのではなく、空気の
振動を微粒子に伝え微粒子を弾きとばすため、基板の振
動がなく、ラビング時のラビング方向の乱れはなくな
る。ここで用いる超音波周波数は20kHzから200
kHz、好ましくは25kHzから100kHzが用い
られる。この処理によってフィルム表面粒子は除去さ
れ、次のラビングロール7でラビング処理される。この
ラビング処理ではラビングクロスなどのごみがラビング
による静電気のためにフィルム表面に付着する。これを
除去する工程が超音波除塵装置8、とそれに続く最終の
静電気除電装置9を通過してラビング工程を終了する。
静電気除電装置は特に除電効果を高めるために発振周波
数10000Hzから50000Hz好ましくは100
00Hzから30000Hzの高周波イオン発生を行
う。このようにして本発明に基づく工程を経てゴミのな
いラビング処理フィルムが連続して得られる。本発明は
静電気除電装置と超音波除塵装置を通すことに特徴があ
り、その設置する順序は限定されないが、最初に静電気
除電装置を,次いで超音波除塵装置を設置するのが好ま
しい。また、設置する位置も限定されないが、ラビング
ロールの前後に、両者を同時に、また、両者を別々に設
置してもよい。最も好ましいのは図1に示されるよう
に、ラビングロールの前後に両者を同時に用いることで
ある。
FIG. 1 shows a typical device of the present invention. In FIG. 1, the film sent from 1 removes static electricity such as peeling charge by the static eliminator 2 and is sent to the ultrasonic dust remover 3. This ultrasonic dust remover is composed of a wind blow-out port 4 and a wind suction port 5 which are ultrasonic oscillators, and the blow-in suction is balanced in a casing hood 6. When the film substrate passes through here, air having ultrasonic vibration energy blows off the adhered particles on the film surface. In this method, the substrate is not vibrated and the fine particles are repelled, but the vibration of the air is transmitted to the fine particles and the fine particles are repelled, so that there is no substrate vibration and there is no disturbance in the rubbing direction during rubbing. The ultrasonic frequency used here is from 20 kHz to 200
kHz, preferably 25 kHz to 100 kHz is used. By this treatment, the film surface particles are removed, and the rubbing treatment is carried out by the next rubbing roll 7. In this rubbing process, dust such as rubbing cloth adheres to the film surface due to static electricity due to rubbing. The step of removing this passes through the ultrasonic dust remover 8 and the final static eliminator 9 following it, and the rubbing step is completed.
The static eliminator has an oscillating frequency of 10,000 Hz to 50,000 Hz, preferably 100
High-frequency ion generation from 00 Hz to 30,000 Hz is performed. In this way, a rubbing-free film without dust is continuously obtained through the process according to the present invention. The present invention is characterized in that the static eliminator and the ultrasonic dust remover are passed therethrough, and the order of installing them is not limited, but it is preferable to first install the static eliminator and then the ultrasonic dust remover. Further, the installation position is not limited, either, but both may be installed at the same time before or after the rubbing roll, or both may be installed separately. Most preferably, both are used simultaneously before and after the rubbing roll, as shown in FIG.

【0007】配向膜の代表的なものとしてポリイミド膜
がある。これはポリアミック酸(例えば、日産化学
(株)製SE−7210)を支持体面に塗布し100℃
から300℃で焼成後ラビングすることにより、ネマテ
ィック液晶やディスコティック液晶を配向させることが
できる。また、アルキル鎖変性系ポバール(例えば、ク
ラレ(株)製MP203、同R1130など)の塗膜なら
ば焼成は必要なく、ラビングするだけで該配向能が付与
できる。その他、ポリビニルブチラール、ポリメチルメ
タクリレート、など疎水性表面を形成する有機高分子膜
ならば大抵のものがその表面をラビングすることにより
液晶配向能を付与できる。また、無機物斜方蒸着膜とし
ては代表的なものにSiO斜方蒸着膜がある。これは、
真空槽内においてベースフィルム面に斜め方向からSi
O蒸発粒子を当て、約20〜200nm厚の斜め蒸着膜
を形成させて配向膜とするものである。この蒸着膜によ
って液晶が配向をすると該液晶層の光軸は、SiO蒸着
粒子が飛んできた軌跡を含み該ベースフィルム面に垂直
な平面上の特定の方向を向く。
A polyimide film is a typical example of the alignment film. This is applied by coating polyamic acid (for example, SE-7210 manufactured by Nissan Chemical Industries, Ltd.) on the surface of the support at 100 ° C.
Nematic liquid crystal or discotic liquid crystal can be aligned by rubbing after firing at 300 to 300 ° C. Further, a coating film of an alkyl chain-modified Poval (for example, MP203 and R1130 manufactured by Kuraray Co., Ltd.) need not be baked, and the orientation ability can be imparted only by rubbing. In addition, almost any organic polymer film such as polyvinyl butyral or polymethylmethacrylate that forms a hydrophobic surface can be given a liquid crystal aligning ability by rubbing the surface. A typical example of the inorganic oblique vapor deposition film is a SiO oblique vapor deposition film. this is,
Si in the vacuum chamber from the diagonal direction to the base film surface
O vaporized particles are applied to form an obliquely vapor-deposited film having a thickness of about 20 to 200 nm to form an alignment film. When the liquid crystal is oriented by this vapor deposition film, the optical axis of the liquid crystal layer is directed to a specific direction on a plane perpendicular to the surface of the base film, including the trajectory of the SiO vapor deposition particles.

【0008】このようにして得られたラビング処理され
たフィルムは液晶セルあるいは液晶表示板の視野角補償
用光学異方性フィルムに用いられる。本発明が利用でき
る光学異方性フィルムには例えば、透明フィルム上に配
向膜を形成した後、本発明の装置でラビングを行い、そ
の上に例えば次に示すディスコティック液晶
The rubbing-treated film thus obtained is used as an optically anisotropic film for compensating the viewing angle of a liquid crystal cell or a liquid crystal display panel. In the optically anisotropic film which can be used in the present invention, for example, after forming an alignment film on a transparent film, rubbing is performed by the device of the present invention, and then, for example, the following discotic liquid crystal.

【0009】[0009]

【化1】 [Chemical 1]

【0010】を含む層を塗布し、該液晶のディスコティ
ックネマティック液晶相−固相転移温度以上で熱処理す
る事で配向を促し、光学異方性を有した光学補償シート
にしたものなどが挙げられる。一旦配向をしたディスコ
ティック液晶分子は支持体面とある角度θをもって配向
するが、1成分系では斜め配向の角度は配向膜の種類に
よってあまり変化せず、ディスコティック液晶分子固有
の値をとることが多い。また、ディスコティック液晶分
子2種以上を混合するとその混合比によりある範囲内の
傾斜角調整ができる。従って、斜め配向の傾斜角制御に
はディスコティック液晶種の選択、更には2種以上のデ
ィスコティック液晶分子を混合するなどの方法が有効で
ある。
An optical compensation sheet having an optical anisotropy is applied by applying a layer containing the above and heat-treating the liquid crystal at a temperature above the discotic nematic liquid crystal phase-solid phase transition temperature to form an optical compensation sheet having optical anisotropy. . The discotic liquid crystal molecules that have once been oriented are oriented at an angle θ with respect to the support surface, but in the one-component system, the angle of oblique orientation does not change much depending on the type of alignment film, and may take a value specific to the discotic liquid crystal molecules. Many. When two or more discotic liquid crystal molecules are mixed, the tilt angle can be adjusted within a certain range by the mixing ratio. Therefore, for controlling the tilt angle of the oblique alignment, it is effective to select a discotic liquid crystal type and further mix two or more types of discotic liquid crystal molecules.

【0011】[0011]

【実施例】【Example】

実施例1 トリアセチルセルロースの127μm厚フィルム(フィ
ルム面内の直交する二方向の屈折率をnx、ny、厚み
方向の屈折率をnz、厚みd=127μmとした場合 (nx−ny)×d=20(nm)、{(nx−ny)
/2−nz}×d=95(nm) を支持体とし、その上に配向膜としてアルキル変性ポバ
ール(クラレ(株)製MP302)を2μm厚となるよ
うに塗布した。これを図1に示す本発明の静電気除電装
置と超音波除塵装置を備えたラビング機によりラビング
して配向能を付与した後、ディスコティック液晶TE−
1とTE−1を4:1のブレンド比で混合したディ
スコティック液晶素材をメチルエチルケトン液中に溶か
して10wt%とした液をスピンコーターにより300
0rpmで塗布して、1μ厚のディスコティック液晶を
含む層を有したフィルムを作成した。このフィルムを1
45℃に設定された恒温槽に5分間入れた後に、10〜
20℃に設定された金属表面に接触させて急冷する事に
よりディスコティック液晶層を配向させ、光学異方性を
有する光学補償フィルムを作成した。このようにして作
成したフィルム表面の微粒子の数を電子顕微鏡で観察し
た。
Example 1 A 127 μm thick film of triacetyl cellulose (when the refractive index in two directions orthogonal to each other in the film plane is nx, ny, the refractive index in the thickness direction is nz, and the thickness d = 127 μm (nx-ny) × d = 20 (nm), {(nx-ny)
/ 2-nz} xd = 95 (nm) was used as a support, and an alkyl-modified Poval (MP302 manufactured by Kuraray Co., Ltd.) was applied thereon as an alignment film so as to have a thickness of 2 μm. This is rubbed with a rubbing machine equipped with the static eliminator of the present invention and an ultrasonic dust eliminator shown in FIG.
A discotic liquid crystal material prepared by mixing 1 and TE-1 in a blending ratio of 4: 1 was dissolved in methyl ethyl ketone solution to make 10 wt% and the resulting solution was 300 by a spin coater.
Coating was carried out at 0 rpm to make a film having a layer containing a discotic liquid crystal having a thickness of 1 μm. This film 1
After putting it in a constant temperature bath set at 45 ° C for 5 minutes,
The discotic liquid crystal layer was aligned by bringing it into contact with a metal surface set at 20 ° C. and rapidly cooling it, to prepare an optical compensation film having optical anisotropy. The number of fine particles on the surface of the film thus formed was observed with an electron microscope.

【0012】実施例2 このフィルムをTN型液晶セル(液晶の異常光と常光の
屈折率の差と液晶セルのギャップサイズの積が510n
mでねじれ角が87゜)に図3のように装着し、実際の
画像による視認性評価を実施した。
Example 2 This film was applied to a TN type liquid crystal cell (the product of the difference in refractive index between the extraordinary light and the ordinary light of the liquid crystal and the gap size of the liquid crystal cell was 510 n).
It was mounted at a twist angle of 87 ° at m as shown in FIG. 3 and the visibility was evaluated by an actual image.

【0013】比較例 本発明の装置の代わりに図2の従来の装置でラビングし
た他は実施例1と同様にして作った光学補償フィルムの
表面の微粒子の数を電子顕微鏡で観察した。更にこのフ
ィルムを実施例2と同じTNセルへ同じ構成で装着し視
認性評価(画素の欠陥)を観察した。
Comparative Example The number of fine particles on the surface of the optical compensation film produced in the same manner as in Example 1 except that the conventional apparatus shown in FIG. 2 was used for rubbing instead of the apparatus of the present invention was observed with an electron microscope. Further, this film was mounted on the same TN cell as in Example 2 with the same constitution, and the visibility evaluation (pixel defect) was observed.

【0014】表1には電子顕微鏡観察の結果とこれらフ
ィルムを用いて作成した液晶表板の視認性結果を示し
た。
Table 1 shows the results of electron microscopic observation and the results of the visibility of the liquid crystal surface plates prepared using these films.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上示した結果のように、フィルム基板
を連続してラビング処理する際に本発明の除塵装置が極
めて有効であり、画素欠陥のない液晶表示板が得られる
ことが判った。
From the results shown above, it was found that the dust remover of the present invention is extremely effective when continuously rubbing a film substrate, and a liquid crystal display panel having no pixel defects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる一実施例におけるラビング処理
装置を示す。
FIG. 1 shows a rubbing processing apparatus according to an embodiment of the present invention.

【図2】従来の配向処理装置を示す。FIG. 2 shows a conventional alignment treatment apparatus.

【図3】TN型液晶表示板の構成を示す。FIG. 3 shows a structure of a TN type liquid crystal display panel.

【符号の説明】[Explanation of symbols]

1:フィルム基板送り出し 2:静電気除電装置 3:超音波除塵装置 4:超音波発振子および風吹き出し口 5:風吸い込み口 6:ケーシングフード 7:ラビングロール 8:超音波除塵装置 9:静電気除電装置 10:フィルム基板の巻き取り 11:エアーナイフ TNC:TN型液晶セル A、B:偏光板 PA、PB:偏光軸 RF1、RF2:光学補償フィルム BL:バックライト R1、R2:光学補償フィルムのラビング方向 1: Sending out a film substrate 2: Static eliminator 3: Ultrasonic dust remover 4: Ultrasonic oscillator and wind outlet 5: Wind suction port 6: Casing hood 7: Rubbing roll 8: Ultrasonic dust remover 9: Static eliminator 10: Winding of film substrate 11: Air knife TNC: TN type liquid crystal cell A, B: Polarizing plate PA, PB: Polarization axis RF1, RF2: Optical compensation film BL: Backlight R1, R2: Rubbing direction of optical compensation film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 片面に配向膜が形成された長尺フィルム
基盤をラビングロールによって前記配向膜の表面を連続
してラビングする際に、静電気除電装置と超音波除塵装
置を通すことを特徴とする長尺フィルムの連続ラビング
方法。
1. A static electricity eliminator and an ultrasonic dust eliminator are passed when continuously rubbing the surface of the alignment film with a rubbing roll on a long film substrate having an alignment film formed on one surface. Continuous rubbing method for long film.
JP12531994A 1994-06-07 1994-06-07 Rubbing method Pending JPH07333613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12531994A JPH07333613A (en) 1994-06-07 1994-06-07 Rubbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12531994A JPH07333613A (en) 1994-06-07 1994-06-07 Rubbing method

Publications (1)

Publication Number Publication Date
JPH07333613A true JPH07333613A (en) 1995-12-22

Family

ID=14907173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12531994A Pending JPH07333613A (en) 1994-06-07 1994-06-07 Rubbing method

Country Status (1)

Country Link
JP (1) JPH07333613A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098588A (en) * 2002-09-12 2004-04-02 Fuji Photo Film Co Ltd Processing method and marking apparatus for photographic sensitive material
CN100397204C (en) * 2002-12-26 2008-06-25 新日本石油化学株式会社 Friction method for film
EP2105767A1 (en) 2008-03-28 2009-09-30 Fujifilm Corporation Transparent support, optical film, polarizing plate and image display device
CN102683485A (en) * 2012-04-23 2012-09-19 江苏申乾食品包装有限公司 Manufacture method of solar back plate
JP2016068008A (en) * 2014-09-30 2016-05-09 東レエンジニアリング株式会社 Gravure coating method and gravure coating device
CN108993083A (en) * 2018-10-08 2018-12-14 安吉县力顺电声配件厂 Dust-extraction unit is used in a kind of production and processing of loudspeaker
JP2019022895A (en) * 2018-11-22 2019-02-14 東レエンジニアリング株式会社 Gravure coating method and gravure coating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455530A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Production of liquid crystal display panel
JPH021729B2 (en) * 1986-04-23 1990-01-12 Ito Hamu Kk
JPH06110059A (en) * 1992-09-25 1994-04-22 Casio Comput Co Ltd Method and device for orientation processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021729B2 (en) * 1986-04-23 1990-01-12 Ito Hamu Kk
JPS6455530A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Production of liquid crystal display panel
JPH06110059A (en) * 1992-09-25 1994-04-22 Casio Comput Co Ltd Method and device for orientation processing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098588A (en) * 2002-09-12 2004-04-02 Fuji Photo Film Co Ltd Processing method and marking apparatus for photographic sensitive material
CN100397204C (en) * 2002-12-26 2008-06-25 新日本石油化学株式会社 Friction method for film
EP2105767A1 (en) 2008-03-28 2009-09-30 Fujifilm Corporation Transparent support, optical film, polarizing plate and image display device
CN102683485A (en) * 2012-04-23 2012-09-19 江苏申乾食品包装有限公司 Manufacture method of solar back plate
JP2016068008A (en) * 2014-09-30 2016-05-09 東レエンジニアリング株式会社 Gravure coating method and gravure coating device
CN108993083A (en) * 2018-10-08 2018-12-14 安吉县力顺电声配件厂 Dust-extraction unit is used in a kind of production and processing of loudspeaker
JP2019022895A (en) * 2018-11-22 2019-02-14 東レエンジニアリング株式会社 Gravure coating method and gravure coating device

Similar Documents

Publication Publication Date Title
KR101275944B1 (en) Liquid crystal display device
JP2010020331A (en) Phase retardation plate, and method for making the same
CN101802663B (en) Biaxial birefringent component, liquid crystal projector, and method for manufacturing biaxial birefringent component
CN102736159A (en) Composite retardation plate, composite polarizing plate and preparation methods for those
JPH07333613A (en) Rubbing method
WO2014180036A1 (en) Liquid crystal display and optical compensation method thereof
JP2003215337A (en) Optical compensation filter, its manufacturing method, circularly polarizing plate, and picture display device
KR20040000461A (en) Polyimide-free alignment layer for lcd fabrication and method
WO2014180048A1 (en) Liquid crystal display and optical compensation method thereof
JPH0973081A (en) Production of long-sized optical compensation sheet
JPH10186356A (en) Optical compensation film for liquid crystal display element
JPH10512979A (en) Image display device
JPH09230143A (en) Optical compensation sheet, its production liquid crystal display device and color liquid crystal display device
JP4460792B2 (en) Optical compensation sheet for VA mode liquid crystal display device and VA mode liquid crystal display device
WO2015196503A1 (en) Liquid crystal display device and optical compensation method for same
JPH08160429A (en) Rubbing method, rubbing device and production of optical compensation sheet
JP2004133171A (en) Optical compensation sheet and liquid crystal display device
US6538712B1 (en) High pretilt alignment of reactive liquid crystals in liquid crystal displays
US20050062921A1 (en) Liquid crystal display
JPH0618884A (en) Plane orientation method of cholesteric liquid crystal having no disclination
KR20060032349A (en) Fabrication method for in-plane switching mode lcd
JPH0117136B2 (en)
JP3616140B2 (en) Optical compensation sheet manufacturing method
KR100294687B1 (en) LCD
JP2003260715A (en) Method for manufacturing cellulose acylate film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980616