JPH0117136B2 - - Google Patents

Info

Publication number
JPH0117136B2
JPH0117136B2 JP58247204A JP24720483A JPH0117136B2 JP H0117136 B2 JPH0117136 B2 JP H0117136B2 JP 58247204 A JP58247204 A JP 58247204A JP 24720483 A JP24720483 A JP 24720483A JP H0117136 B2 JPH0117136 B2 JP H0117136B2
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment film
film
crystal display
display panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58247204A
Other languages
Japanese (ja)
Other versions
JPS60136717A (en
Inventor
Hideaki Mochizuki
Tooru Tamura
Toshio Tatemichi
Isao Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24720483A priority Critical patent/JPS60136717A/en
Publication of JPS60136717A publication Critical patent/JPS60136717A/en
Publication of JPH0117136B2 publication Critical patent/JPH0117136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は液晶表示パネル用配向膜、特に液晶表
示パネルに使用する垂直配向用液晶配向膜に関す
る。 従来例の構成とその問題点 液晶表示パネルに用いられる液晶の分子配向形
態としては、上記パネルの電極面に対して平行に
配向させる方式と、垂直に配向させる方式との2
種類に分けられる。しかして現存は前者の平行配
向方式を利用したツイステツドネマチツク型液晶
表示パネルが主流となつている。しかしながら上
記ツイステツドネマチツク型液晶表示パネルでは
視角依存性が大きいという欠点を有し、一方平行
配向形態の液晶をゲスト・ホスト型のカラー液晶
表示に用いる場合ネガ表示となるため全体の光量
が少なく表示が暗くなる欠点を有している。ここ
れに対し、垂直配向形態の液晶を利用した液晶表
示パネルにおいては、上述した欠点が比較的少な
く、カラー表示の場合、ポジ表示であるため、視
認性の良いカラー表示が得られる利点を有する。
この垂直配向形態の液晶の動作は、液晶表示パネ
ルの電極間に電圧を印加していないときには液晶
分子が電極面に垂直配向しており、電圧印加した
ときに液晶分子が電極に対して平行に並び発色す
る。 しかるに従来から使用されている負の誘電異方
性を有する液晶(以後n型ネマチツク液晶と称す
る)を用いた場合、この液晶分子を垂直に配向さ
せる必要があるが、この配向処理が非常に繁雑
で、しかも充分な配向性能を得難いことが多かつ
た。 発明の目的 本発明は上述した従来の液晶配向法の欠点を解
消することにあり、簡単な方法でしかも斑がなく
コントラストの良い垂直配向方式に利用しうる液
晶配向膜を提供することにある。 発明の構成 本発明は透明電極を設けたガラス基板上を覆う
ように詳けた液晶配向膜であつて、上記液晶配向
膜が、分子中に弗素原子を有する有機化合物のグ
ロー放電によるプラズマ重合によつて形成された
膜である垂直配用液晶配向膜にある。 本発明で使用しうる分子中に弗素原子を有する
有機化合物としては、弗素化脂肪族または脂環式
族不飽和化合物であり、パーフルオロブテン−
2、弗素化ビニリデン、ヘキサフルオロブタジエ
ン−1,3、ヘキサフルオロブチン−2、ヘキサ
フルオロシクロブテン、2,2,2−トリフルオ
ロエチルアクリレート、トリフルオロアクリロイ
ルフルオライドが使用できるが、また上述した弗
素化脂肪族または脂環式族不飽和化合物はそれぞ
れ単独で使用してもよく、あるいは任意の混合物
の形で使用してもよい。 本発明の液晶配向膜を製造するに当つては、上
述した特定の弗素化脂肪族または脂環式族不飽和
化合物(以下弗素化不飽和化合物と略称する)を
気体または蒸気状態にしてグロー放電装置に導入
する。上記弗素化不飽和化合物を気体または蒸気
状態にするには必要あれば加熱するか、不活性ガ
ス例えばアルゴンまたはヘリウムをキヤリヤーガ
スとして使用して気化または蒸気化させてもよ
い。 グロー放電装置は従来より使用されている任意
の装置を使用でき、装置内は真空度0.01〜数
Torrに減圧し、動力5〜200W、周波数5KHz〜
30MHzの高周波電界を用いてグロー放電させる。
放電時間は1〜20分でよい。 上述した条件の下で透明電極を設けたガラス基
板上に弗素化不飽和化合物のプラズマ重合膜が形
成される。膜厚は通常0.01〜0.5μ、好ましくは
0.02〜0.1μである。 実施例の説明 以下に本発明の実施例を第1図を参照して説明
する。 第1図は本発明による液晶配向膜をグロー放電
により製造する方法を示すための説明図であり、
第1図において、ベルジヤー12の内部19を先
ず真空ポンプ16によつて排気しつつ、一方で弗
素化不飽和化合物例えばパーフルオロブテン−2
をボンベ17から導入管18を経てベルジヤー内
部19中に導入する。ベルジヤー内部19はパー
フルオロブテン−2ガスで圧力0.1〜1Torrに保
つ。このとき下部電極11上に一定の間隔を置い
て帯状透明電極2(図では3個)を設けたガラス
基板1を置き、透明電極2を上部電極10と対面
するように置く。パーフルオロブテン−2ガスの
流入量をベルジヤー内部19の圧力0.1〜10Torr
に保つように調整しつつ上部電極10と下部電極
11の間に、高周波電源14により13.56MHzの
高周波放電を発生させる。マツチングユニツト1
3により系のインピーダンスを調節することによ
りグロー放電を持続させる。かくしてグロー放電
が誘起されると、ベルジヤー内部19にパーフル
オロブテン−2のプラズマ状態が生じ、かつ持続
され、ガラス基板1および透明電極1の上にパー
フルオロブテン−2の重合体膜が形成される。5
分後に膜厚0.1μのピンホールが非常に少ない均一
で平滑な配向膜が形成される。 なお従来の配向膜例えばポリイミド膜で被覆す
る場合にはガラス基板は透明電極形成後アルカリ
水溶液等で洗浄し、更に水洗、乾燥等の工程が不
可欠であつたが、本発明の配向膜形成に当つては
かかる清浄化は必ずしも必要でなく、単にガラス
基板上の異物を除去するだけで直ちに液晶配向膜
を形成しても差支えないことが判つた。 上述した如くして製造した液晶配向膜を形成し
た透明電極2を設けたガラス基板1を用い、液晶
表示パネルを製造するに当つては、第2図に示す
如く、上述した如くして形成したそれぞれ液晶配
向膜3および3′を有し、透明電極2および2′を
設けたガラス基板1および1′を、それぞれの透
明電極2および2′が互いに直交するように一定
の間隔を保つて対向させて組合せ、周囲を封止剤
4によつて封止した後、上記間隙中に、1.5重量
%のアトラキノン系染料例えば を添加した負の透電異方性を有するネマチツク液
晶6を封入する。その後ガラス基板1′の背面
(透明電極が設けてない側)に反射板5を貼付す
る。かくして液晶表示パネルが完成する。この液
晶表示パネルは配向斑がなく、視認性も良好です
ぐれた性能を示した。この結果を表1に例1とし
て示す。 なお表1には前述した方法で同様に形成した弗
素化ビニリデンプラズマ重合膜、トリフルオロア
クリロイルフルオライドプラズマ重合膜、2,
2,2−トリフルオロエチルアクリレートプラズ
マ重合膜を用いて作つた上述した如く構成した液
晶表示パネルについての性能も、それぞれ例2〜
4として示す。 また表1には垂直配向膜の従来の例であるレシ
チンの1μの厚さの配向膜をスピンコート法によ
り形成し、上記例1〜4と同様の液晶表示パネル
を作つた結果を比較例として示す。 なお参考例として同じ染料を用い正の誘電異方
性を有する液晶を用いたネガ表示パネルの性能も
表1に併記する。
INDUSTRIAL APPLICATION FIELD The present invention relates to an alignment film for a liquid crystal display panel, and particularly to a liquid crystal alignment film for vertical alignment used in a liquid crystal display panel. Structure of conventional example and its problems There are two types of molecular orientation of liquid crystal used in liquid crystal display panels: one in which the molecules are aligned parallel to the electrode surface of the panel, and the other in which they are aligned perpendicularly to the electrode surface of the panel.
Divided into types. However, currently, twisted nematic type liquid crystal display panels that utilize the former parallel alignment method are the mainstream. However, the above-mentioned twisted nematic type liquid crystal display panel has the disadvantage of large viewing angle dependence, and on the other hand, when parallel alignment type liquid crystal is used for a guest-host type color liquid crystal display, a negative display is obtained and the overall light amount is reduced. It has the disadvantage that the display becomes darker. On the other hand, liquid crystal display panels that use vertically aligned liquid crystals have relatively few of the above-mentioned drawbacks, and have the advantage of providing a color display with good visibility because it is a positive display in the case of color display. .
The operation of this vertically aligned liquid crystal is such that when no voltage is applied between the electrodes of the liquid crystal display panel, the liquid crystal molecules are aligned perpendicular to the electrode surface, and when a voltage is applied, the liquid crystal molecules are aligned parallel to the electrodes. Color develops in a row. However, when using conventionally used liquid crystals with negative dielectric anisotropy (hereinafter referred to as n-type nematic liquid crystals), it is necessary to vertically align the liquid crystal molecules, but this alignment process is extremely complicated. Moreover, it was often difficult to obtain sufficient alignment performance. OBJECTS OF THE INVENTION The purpose of the present invention is to eliminate the drawbacks of the conventional liquid crystal alignment methods described above, and to provide a liquid crystal alignment film that can be used in a vertical alignment method that is simple, free of spots, and has good contrast. Structure of the Invention The present invention is a liquid crystal alignment film formed to cover a glass substrate provided with a transparent electrode, wherein the liquid crystal alignment film is formed by plasma polymerization by glow discharge of an organic compound having fluorine atoms in its molecules. This is a vertically arranged liquid crystal alignment film, which is a film formed by Organic compounds having a fluorine atom in the molecule that can be used in the present invention include fluorinated aliphatic or alicyclic unsaturated compounds, including perfluorobutene-
2. Vinylidene fluoride, hexafluorobutadiene-1,3, hexafluorobutyne-2, hexafluorocyclobutene, 2,2,2-trifluoroethyl acrylate, trifluoroacryloyl fluoride can be used, but the above-mentioned fluorine The aliphatic or cycloaliphatic unsaturated compounds may each be used alone or in the form of any mixture. In producing the liquid crystal alignment film of the present invention, the above-mentioned specific fluorinated aliphatic or alicyclic unsaturated compound (hereinafter abbreviated as fluorinated unsaturated compound) is made into a gas or vapor state and subjected to glow discharge. Introduce it into the device. The fluorinated unsaturated compounds may be brought into a gas or vapor state by heating, if necessary, or by vaporization or vaporization using an inert gas such as argon or helium as a carrier gas. Any conventionally used glow discharge device can be used, and the inside of the device has a degree of vacuum of 0.01 to several
Reduce pressure to Torr, power 5~200W, frequency 5KHz~
A glow discharge is generated using a 30MHz high-frequency electric field.
The discharge time may be 1 to 20 minutes. A plasma polymerized film of a fluorinated unsaturated compound is formed on a glass substrate provided with a transparent electrode under the above conditions. The film thickness is usually 0.01~0.5μ, preferably
It is 0.02-0.1μ. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is an explanatory diagram showing a method for manufacturing a liquid crystal alignment film according to the present invention by glow discharge,
In FIG. 1, the interior 19 of the bell gear 12 is first evacuated by a vacuum pump 16 while a fluorinated unsaturated compound such as perfluorobutene-2 is removed.
is introduced from the cylinder 17 through the inlet pipe 18 into the bell jar interior 19. The inside of the bell gear 19 is maintained at a pressure of 0.1 to 1 Torr with perfluorobutene-2 gas. At this time, a glass substrate 1 on which band-shaped transparent electrodes 2 (three in the figure) are provided is placed on the lower electrode 11 at regular intervals, and the transparent electrode 2 is placed so as to face the upper electrode 10. The inflow amount of perfluorobutene-2 gas is adjusted to the pressure inside the bell gear 19 of 0.1 to 10 Torr.
A high frequency discharge of 13.56 MHz is generated between the upper electrode 10 and the lower electrode 11 by the high frequency power source 14 while adjusting the voltage to maintain the same. Matching unit 1
3, the glow discharge is maintained by adjusting the impedance of the system. When the glow discharge is induced in this way, a plasma state of perfluorobutene-2 is generated and maintained inside the bell jar 19, and a polymer film of perfluorobutene-2 is formed on the glass substrate 1 and the transparent electrode 1. Ru. 5
After a few minutes, a uniform and smooth alignment film with a film thickness of 0.1μ with very few pinholes is formed. In addition, when coating with a conventional alignment film, such as a polyimide film, it was necessary to wash the glass substrate with an alkaline aqueous solution after forming the transparent electrode, and then to perform further steps such as washing with water and drying. In the end, it has been found that such cleaning is not necessarily necessary, and a liquid crystal aligning film can be formed immediately by simply removing foreign matter on the glass substrate. When manufacturing a liquid crystal display panel using the glass substrate 1 provided with the transparent electrode 2 formed with the liquid crystal alignment film manufactured as described above, as shown in FIG. Glass substrates 1 and 1' each having a liquid crystal alignment film 3 and 3' and provided with transparent electrodes 2 and 2' are placed facing each other with a constant interval maintained such that the respective transparent electrodes 2 and 2' are orthogonal to each other. After combining and sealing the periphery with sealant 4, 1.5% by weight of an atraquinone dye, for example, is added into the gap. A nematic liquid crystal 6 having negative conductivity anisotropy doped with is sealed. Thereafter, a reflective plate 5 is attached to the back surface (the side where the transparent electrode is not provided) of the glass substrate 1'. In this way, the liquid crystal display panel is completed. This liquid crystal display panel exhibited excellent performance with no alignment unevenness and good visibility. The results are shown in Table 1 as Example 1. Table 1 shows vinylidene fluoride plasma polymerized films, trifluoroacryloyl fluoride plasma polymerized films, 2,
The performance of the liquid crystal display panel constructed as described above and made using the 2,2-trifluoroethyl acrylate plasma polymerized film was also shown in Examples 2 to 2, respectively.
Shown as 4. Table 1 also shows, as a comparative example, the results of forming a 1μ thick alignment film of lecithin, which is a conventional example of a vertical alignment film, by spin coating, and producing a liquid crystal display panel similar to Examples 1 to 4 above. show. As a reference example, the performance of a negative display panel using the same dye and a liquid crystal having positive dielectric anisotropy is also listed in Table 1.

【表】【table】

【表】 発明の効果 上記表1から明らかな如く、本発明のプラズマ
重合膜を液晶の垂直配向用液晶配向膜として用い
た液晶表示パネルは、配向斑がなく、色のコント
ラストが良く、視認性も良好であるというすぐれ
た性能を示す。また配向膜形成に際して特別な基
板洗浄を必要とせず、製造工程の簡略化ができる
ことが判つた。これに対し、参考例として示した
ポリイミドを配向膜としたゲスト−ホスト型のカ
ラー表示用液晶表示パネルは配向斑はないものの
ネガ表示のために反射型で用いる場合、光量が少
なくなり視認性が悪く視角依存性を有するという
欠点を有していた。一方レシチン膜を用いた従来
の垂直配向用の液晶表示パネルでは配向斑があ
り、しかもカラーコントラストもあまり高くな
く、劣つていることが判る。従つて本発明の配向
膜はすぐれたカラーコントラストを有する液晶デ
イスプレーが可能となる。
[Table] Effects of the Invention As is clear from Table 1 above, a liquid crystal display panel using the plasma polymerized film of the present invention as a liquid crystal alignment film for vertical alignment of liquid crystals has no alignment unevenness, good color contrast, and high visibility. It also shows excellent performance. It has also been found that no special cleaning of the substrate is required when forming the alignment film, and the manufacturing process can be simplified. On the other hand, the guest-host type liquid crystal display panel for color display using polyimide as an alignment film shown as a reference example has no alignment spots, but when used as a reflective type for negative display, the amount of light decreases and visibility becomes poor. It had the disadvantage of having poor viewing angle dependence. On the other hand, the conventional vertically aligned liquid crystal display panel using a lecithin film has alignment irregularities and the color contrast is not very high, indicating that it is inferior. Therefore, the alignment film of the present invention enables a liquid crystal display with excellent color contrast.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液晶配向膜をグロー放電により製造す
る方法を示す説明図であり、第2図は液晶表示パ
ネルの構成の説明図である。 1,1′はガラス基板、2,2′は透明電極、
3,3′は液晶配向膜、4は封止材、5は反射板、
6は液晶、10は上部電極、11は下部電極、1
2はベルジヤー、13は高周波マツチングユニツ
ト、14は高周波電源、16は真空ポンプ、17
はガラスボンベ、18はガス導管、19はベルジ
ヤー内部。
FIG. 1 is an explanatory diagram showing a method of manufacturing a liquid crystal alignment film by glow discharge, and FIG. 2 is an explanatory diagram of the structure of a liquid crystal display panel. 1, 1' are glass substrates, 2, 2' are transparent electrodes,
3, 3' are liquid crystal alignment films, 4 is a sealing material, 5 is a reflective plate,
6 is a liquid crystal, 10 is an upper electrode, 11 is a lower electrode, 1
2 is a bell gear, 13 is a high frequency matching unit, 14 is a high frequency power supply, 16 is a vacuum pump, 17
is a glass cylinder, 18 is a gas conduit, and 19 is inside a bell jar.

Claims (1)

【特許請求の範囲】[Claims] 1 透明電極を設けたガラス基板上を覆うように
設けた液晶配向膜であつて、上記液晶配向膜が、
パーフルオロブテン−2、ヘキサンフルオロブタ
ジエン−1,3、ヘキサフルオロブチン−2、弗
素化ビニリデン、ヘキサフルオロシクロブテン、
2,2,2−トリフルオロエチルアクリレート、
トリフルオロアクリロイルフルオライドよりなる
群から選択した1種以上である有機化合物のグロ
ー放電によるプラズマ重合によつて形成された膜
である垂直配向用液晶配向膜。
1 A liquid crystal alignment film provided to cover a glass substrate provided with a transparent electrode, the liquid crystal alignment film comprising:
Perfluorobutene-2, hexanefluorobutadiene-1,3, hexafluorobutyne-2, vinylidene fluoride, hexafluorocyclobutene,
2,2,2-trifluoroethyl acrylate,
A liquid crystal alignment film for vertical alignment, which is a film formed by plasma polymerization using glow discharge of one or more organic compounds selected from the group consisting of trifluoroacryloyl fluoride.
JP24720483A 1983-12-26 1983-12-26 Liquid crystal orienting film for vertical orientation Granted JPS60136717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24720483A JPS60136717A (en) 1983-12-26 1983-12-26 Liquid crystal orienting film for vertical orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24720483A JPS60136717A (en) 1983-12-26 1983-12-26 Liquid crystal orienting film for vertical orientation

Publications (2)

Publication Number Publication Date
JPS60136717A JPS60136717A (en) 1985-07-20
JPH0117136B2 true JPH0117136B2 (en) 1989-03-29

Family

ID=17159994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24720483A Granted JPS60136717A (en) 1983-12-26 1983-12-26 Liquid crystal orienting film for vertical orientation

Country Status (1)

Country Link
JP (1) JPS60136717A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247334A (en) * 1986-04-21 1987-10-28 Stanley Electric Co Ltd Production of liquid crystal display element
JPS62250417A (en) * 1986-04-23 1987-10-31 Stanley Electric Co Ltd Production of liquid crystal display element
JPS62265621A (en) * 1986-05-13 1987-11-18 Stanley Electric Co Ltd Production of liquid crystal display element
JPS62269117A (en) * 1986-05-16 1987-11-21 Stanley Electric Co Ltd Vertical orientation-treatment of liquid crystal display element
JP2722832B2 (en) * 1991-02-22 1998-03-09 日本電気株式会社 Liquid crystal display device
WO1999028963A1 (en) * 1997-11-28 1999-06-10 Nippon Zeon Co., Ltd. Method of forming insulating film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087669A (en) * 1973-11-30 1975-07-14
JPS50101049A (en) * 1973-10-19 1975-08-11
JPS5885417A (en) * 1981-11-04 1983-05-21 ヒューズ・エアクラフト・カンパニー Manufacture of conductive substrate for parallel array of liquid crystal material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101049A (en) * 1973-10-19 1975-08-11
JPS5087669A (en) * 1973-11-30 1975-07-14
JPS5885417A (en) * 1981-11-04 1983-05-21 ヒューズ・エアクラフト・カンパニー Manufacture of conductive substrate for parallel array of liquid crystal material

Also Published As

Publication number Publication date
JPS60136717A (en) 1985-07-20

Similar Documents

Publication Publication Date Title
US3989354A (en) Nematic liquid crystal of homeotropically aligned type and a method of manufacturing said device
CN103207469B (en) The manufacture method of liquid crystal panel, display device and liquid crystal panel
CA1120887A (en) Method for producing uniform parallel alignment in liquid crystal cells
Heffner et al. Liquid crystal alignment on surfactant treated obliquely evaporated surfaces
JPH0117136B2 (en)
US4105298A (en) Electro-optic devices
JPS6327817A (en) Liquid crystal display device
KR100244705B1 (en) Liquid crystal alignment method
EP1507163A2 (en) A liquid crystal display
JPH03259116A (en) Production of liquid crystal display element
US6836312B2 (en) Optically transparent film, method of manufacturing optically transparent film, alignment film, and liquid crystal panel and display including alignment film
JPH0117134B2 (en)
JPH0618884A (en) Plane orientation method of cholesteric liquid crystal having no disclination
RU2073902C1 (en) Method for unidirectional parallel orientation of liquid crystals
JP3616854B2 (en) Polarizing element, manufacturing method thereof, and liquid crystal display device
JPH0355522A (en) Liquid crystal display element
JPS61138924A (en) Liquid crystal display element
KR100294687B1 (en) LCD
JPS63106623A (en) Liquid crystal display element
JPH052169A (en) Production of liquid crystal oriented film
JP3246493B2 (en) Substrate cleaning tank
JPH0240623A (en) Manufacture of liquid crystal display element
JP3027523B2 (en) Method of forming alignment film for liquid crystal
JP2545976B2 (en) Liquid crystal alignment method
JPS60120326A (en) Liquid crystal orientation film and its manufacture