JPS63106623A - Liquid crystal display element - Google Patents
Liquid crystal display elementInfo
- Publication number
- JPS63106623A JPS63106623A JP25226786A JP25226786A JPS63106623A JP S63106623 A JPS63106623 A JP S63106623A JP 25226786 A JP25226786 A JP 25226786A JP 25226786 A JP25226786 A JP 25226786A JP S63106623 A JPS63106623 A JP S63106623A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- display element
- ion plating
- crystal display
- oriented film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 38
- 238000007733 ion plating Methods 0.000 claims abstract description 16
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 9
- 230000007704 transition Effects 0.000 claims abstract description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 6
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims abstract description 4
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 16
- 239000011521 glass Substances 0.000 abstract description 15
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 7
- 238000002834 transmittance Methods 0.000 description 10
- 230000005684 electric field Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000003098 cholesteric effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
双安定駆動を行うのに充分な電圧ヒステリシス幅を備え
、製造再現性が高く、経時変化が少なく、且つ信顧性の
高い液晶表示素子を得る方法として対向電極上に膜形成
する無機配向膜をイオンプレーティングにより形成する
か、或いはイオンビームを照射しながらイオンプレーテ
ィングを行って形成した液晶表示素子。[Detailed Description of the Invention] [Summary] This invention has been proposed as a method for obtaining a liquid crystal display element that has a voltage hysteresis width sufficient for bistable driving, has high manufacturing reproducibility, has little change over time, and has high reliability. A liquid crystal display element in which an inorganic alignment film is formed on an electrode by ion plating, or by ion plating while irradiating an ion beam.
本発明は製造再現性が高く、経時変化が少なく、且つ信
頼性の高い液晶表示素子に関する。The present invention relates to a liquid crystal display element with high manufacturing reproducibility, little change over time, and high reliability.
第1図は液晶表示素子の模式図であって、少なくとも一
方が透明金属からなる電極パターン1を備え°たガラス
基板2がそれぞれ電極パターン1を内側にし、電極パタ
ーンlがマトリックス状に配列するように対向せしめ、
この間に液晶3を封入して電圧印加ができるよう構成さ
れている。FIG. 1 is a schematic diagram of a liquid crystal display element, in which a glass substrate 2 is provided with an electrode pattern 1, at least one of which is made of a transparent metal, with the electrode pattern 1 facing inside, and the electrode patterns 1 arranged in a matrix. to face the
The structure is such that a liquid crystal 3 is sealed in between and a voltage can be applied.
例えばドツトマトリックス形の場合を例にとると、平行
平板からなるガラス基板2の内面には線幅が200〜3
00μm、線間隔が100μm程度の平行な電極パター
ンlが多数形成されて透明電極と対向電極とが作られて
おり、これらの電極パターン1は厚さが約10μmのグ
ラスファイバチップなどからなるセパレータにより微小
間隙を隔て\対向すると共に電極パターン1が互いに直
交するように配置され、この隙間に液晶3が封入されて
いる。For example, in the case of a dot matrix type, the inner surface of the glass substrate 2 made of parallel flat plates has a line width of 200 to 3
A transparent electrode and a counter electrode are made by forming a large number of parallel electrode patterns 1 with a line spacing of about 100 μm and a line spacing of about 100 μm. Electrode patterns 1 are arranged so as to be perpendicular to each other while facing each other with a minute gap in between, and a liquid crystal 3 is sealed in this gap.
ここで、透明電極は酸化インジウム(Inz03)と酸
化錫(SnO□)との固溶体(略称I TO)を用いて
形成されており、一方、対向電極は表示方法が透過形の
構成をとる場合は透明電極を用い、反射形の場合はアル
ミニウム(Al)など反射率の良い金属膜を用いて形成
されている。Here, the transparent electrode is formed using a solid solution (abbreviated as ITO) of indium oxide (Inz03) and tin oxide (SnO□), while the counter electrode is formed using a transmissive display structure. A transparent electrode is used, and in the case of a reflective type, a metal film with good reflectivity such as aluminum (Al) is used.
そして、表示素子の駆動は直交するX電極とY電極にそ
れぞれ走査電圧と信号電圧を印加して走査し、選択点に
両方の電圧が重畳して加わり、液晶の相転移が起こるに
必要な電界に達するよう構成されている。Then, the display element is driven by scanning by applying a scanning voltage and a signal voltage to the orthogonal X and Y electrodes, respectively, and applying both voltages in a superimposed manner to the selected point, creating the electric field necessary for the phase transition of the liquid crystal to occur. is configured to reach.
本発明は電界によるネマティック−コレステリック相転
移に伴う電圧−光透過率の双安定性を利用する表示素子
の改良に関するものである。The present invention relates to an improvement in a display element that utilizes the voltage-light transmittance bistability associated with nematic-cholesteric phase transition caused by an electric field.
〔従来の技術〕
ネマティック−コレステリック相転移に伴う電圧−光透
過率の双安定性を利用する表示素子は発明者等が提案し
ている表示方式であって、液晶としてはネマティック液
晶にコレステリンク液晶を加えたものを使用している。[Prior Art] A display element that utilizes the voltage-light transmittance bistability associated with nematic-cholesteric phase transition is a display method proposed by the inventors, and the liquid crystal used is nematic liquid crystal and cholesteric liquid crystal. I'm using something with the addition of.
第2図はか\る相転移型液晶の印加電圧と透過率との関
係図である。FIG. 2 is a diagram showing the relationship between applied voltage and transmittance of such a phase change type liquid crystal.
すなわち、無電界の許では液晶分子は螺旋構造をとるコ
レステリック相であって白濁しており、光は散乱されて
透過率が低いホーカルコニック状Li(略してF状態)
をしているが、電界が増加して液晶分子が電界の方向に
配向し、ネマティック相に相転移するに従って透過率は
上昇して透明となり透過率の大きなホメオトロピック状
態(略してH状M)になる。In other words, in the absence of an electric field, liquid crystal molecules are in a cholesteric phase with a helical structure and are cloudy, and light is scattered and forms a focal conic Li (abbreviated as F state) with low transmittance.
However, as the electric field increases and the liquid crystal molecules align in the direction of the electric field and undergo a phase transition to the nematic phase, the transmittance increases and becomes transparent, resulting in a homeotropic state (abbreviated as H-shaped M) with high transmittance. become.
次に、このH状態から電界を減少して行くとネマティッ
ク相から再びコレステリック相からなるF状態に戻るが
、この際に電界に対する透過率カーブは同一の行程を通
らず同図に示すようなヒステリシスループを描く。Next, when the electric field is decreased from this H state, the nematic phase returns to the F state consisting of a cholesteric phase, but at this time, the transmittance curve for the electric field does not go through the same process and shows hysteresis as shown in the figure. Draw a loop.
そのため、同一の印加電圧値Vdで透明なH状態と白濁
したF状態が存在することになる。Therefore, a transparent H state and a cloudy F state exist at the same applied voltage value Vd.
相転移型液晶表示はか\る双安定状態を利用して表示を
行うもので、液晶のメモリ効果によりそれぞれの状態維
持が容易に行われるために大容量表示が可能であり、ま
た従来のTN(Twist NematiC)表示に必
要な偏光板は不要であり、そのため投写光量の減衰が少
ないと云う特徴がある。Phase change type liquid crystal displays display using bistable states, and because each state is easily maintained due to the memory effect of liquid crystals, large-capacity display is possible. (Twist NematiC) A polarizing plate required for display is not required, and therefore the amount of projected light is characterized by little attenuation.
さて、かかる相転移型液晶表示素子の必要条件はヒステ
リシスループの立ち上がり曲線4と立ち下がり曲線5の
電圧幅(ヒステリシス幅)Δが充分に広いことが必要で
ある。Now, a necessary condition for such a phase change type liquid crystal display element is that the voltage width (hysteresis width) Δ of the rising curve 4 and falling curve 5 of the hysteresis loop is sufficiently wide.
ここでヒステリシス幅Δは立ち下がり曲線5で透過率が
90%を示す印加電圧値と、立ち上がり曲線4で透過率
が20%を示す印加電圧値の差として定義されている。Here, the hysteresis width Δ is defined as the difference between the applied voltage value at which the transmittance is 90% in the falling curve 5 and the applied voltage value at which the transmittance is 20% in the rising curve 4.
さて、相転移型液晶表示素子において、電極パターン1
を含み液晶3と接するガラス基板2の上に厚さが100
0〜2000人の配向膜が形成されていて、液晶分子の
配向を助けているが、ヒステリシス幅Δは配向膜の組成
および形成状態の良否に大きく影響している。Now, in a phase change type liquid crystal display element, electrode pattern 1
100 mm thick on the glass substrate 2 in contact with the liquid crystal 3.
An alignment film of 0 to 2000 layers is formed to help align liquid crystal molecules, and the hysteresis width Δ greatly influences the composition of the alignment film and the quality of its formation.
すなわち、ヒステリシス幅Δを大きくするには表面極性
の大きな材料を用いる必要があり、また均一に形成する
ことが必要で、不均一部が存在すると、その部分のヒス
テリシス幅が表示素子のヒステリシス幅Δを決めてしま
う。In other words, in order to increase the hysteresis width Δ, it is necessary to use a material with a large surface polarity, and it is also necessary to form the material uniformly. If there is a non-uniform part, the hysteresis width at that part will be larger than the hysteresis width Δ of the display element. I decide.
従来は、相転移型液晶表示素子の配向膜としてはポリビ
ニルアルコール(略称PVA)や−酸化珪素(Sin)
などが使われていた。Conventionally, polyvinyl alcohol (abbreviated as PVA) and -silicon oxide (Sin) have been used as alignment films for phase change type liquid crystal display elements.
etc. were used.
ここで、PVAは表面極性の大きな材料であり、スピン
コード法で成膜されているが、ガラス基板表面の極く僅
かな汚れ、 PVA塗布液の濃度むら。Here, PVA is a material with high surface polarity and is formed into a film using the spin code method, but there are very slight stains on the surface of the glass substrate and uneven concentration of the PVA coating solution.
熱処理時の温度分布などが原因して配向むらを生ずると
云う欠点があった。There is a drawback that uneven orientation occurs due to temperature distribution during heat treatment.
配向むらが存在すると電界を加えて表示を行う場合にそ
の部分の液晶分子の傾斜角が他の部分と違うようになり
、液晶分子の屈折率に異方性が存在するために表示画像
に明暗を生じてしまう。If alignment unevenness exists, when displaying by applying an electric field, the tilt angle of the liquid crystal molecules in that part will be different from other parts, and the display image will have brightness and darkness due to anisotropy in the refractive index of the liquid crystal molecules. will occur.
また、PVAからなる配向膜は経時変化が起こり易く、
温度変化の激しい環境での使用は信頼性に問題があった
。In addition, alignment films made of PVA tend to change over time.
There were reliability problems when used in environments with rapid temperature changes.
また、SiO膜は信頼性の点で優れているもの\、ガラ
ス基板の掻く僅かの汚染が原因して表面状態がばらつき
、そのために相転移型液晶表示素子の駆動特性がばらつ
くと云う問題があった。In addition, although SiO films are excellent in terms of reliability, there is a problem in that the surface condition varies due to slight contamination scratched on the glass substrate, which causes variations in the driving characteristics of phase change type liquid crystal display elements. Ta.
以上記したように相転移型液晶表示素子においてヒステ
リシス幅Δを大きく形成し、安定に駆動させるにはガラ
ス基板の表面に表面極性の大きな材料からなる配向膜を
均一に形成することが必要であるが、製造再現性に優れ
、配向むらのない配向膜の形成が難しいことが問題であ
る。As mentioned above, in order to form a large hysteresis width Δ and drive stably in a phase change type liquid crystal display element, it is necessary to uniformly form an alignment film made of a material with high surface polarity on the surface of the glass substrate. However, the problem is that it is difficult to form an alignment film with excellent manufacturing reproducibility and no alignment unevenness.
上記の問題はネマティック−コレステリック相転移型液
晶を媒体として表示を行う液晶表示素子において、対向
する電極面上に表面極性の強い無機配向膜をイオンプレ
ーティングにより形成するか、或いはイオンビームを照
射しながらイオンプレーティングを行って形成する液晶
表示素子により解決することができる。The above problem can be solved by forming an inorganic alignment film with strong surface polarity on the opposing electrode surfaces by ion plating or by irradiating it with an ion beam in a liquid crystal display element that displays using a nematic-cholesteric phase transition liquid crystal as a medium. However, this problem can be solved by using a liquid crystal display element formed by ion plating.
本発明は表面極性の大きな材料として弗化マグネシウム
(Mgh)或いは酸化マグネシウム(MgO)を選び、
これをイオンプレーティング法で形成することによって
電極パターンを含むガラス基板上に密着性よく且つ均質
な配向膜を形成するものである。The present invention selects magnesium fluoride (Mgh) or magnesium oxide (MgO) as a material with large surface polarity,
By forming this using an ion plating method, a highly adhesive and homogeneous alignment film is formed on a glass substrate including an electrode pattern.
ここで、イオンプレーティング法としてはとりわけ高周
波励起方式がよく、更に成膜に際してアルゴン(Ar)
などの不活性ガスをイオンビームとしてガラス基板に照
射しながら行うと、より均一な配向膜を形成できること
が判った。Here, as the ion plating method, a high frequency excitation method is particularly suitable, and argon (Ar) is used during film formation.
It has been found that a more uniform alignment film can be formed by irradiating the glass substrate with an ion beam of an inert gas such as .
すなわち、10− ’ torr程度の真空度で高周波
コイルに13.56 Mn2の電流を通じて不活性ガス
のプラズマを作り、この中をMgF を或しN4;il
’1gOの蒸発分子が飛翔するようにすると蒸発分子は
イオン化したArガスによりイオン化し、ガラス基板に
衝突し放電することにより密着性の良く、均質な蒸着膜
を得ることができる。That is, an inert gas plasma is created by passing a current of 13.56 Mn2 through a high-frequency coil in a vacuum of about 10-' torr, and MgF or N4;
When the evaporated molecules of 1 gO are allowed to fly, the evaporated molecules are ionized by the ionized Ar gas, collide with the glass substrate, and generate a discharge, thereby making it possible to obtain a homogeneous evaporated film with good adhesion.
更に、発明者等は、この蒸着装置中にイオンガンを備え
ておき、蒸着中に計などの不活性ガスをイオンビームと
してガラス基板に照射すると、より均一な配向膜が形成
できることを見出したものである。Furthermore, the inventors have discovered that a more uniform alignment film can be formed by equipping this vapor deposition apparatus with an ion gun and irradiating the glass substrate with an inert gas such as an ion beam during vapor deposition. be.
実施例1:
大きさが130 X160 m、厚さが1.1fiで、
この上にITOの電極パターンが形成されているガラス
基板を15組準備し、これを洗滌し乾燥した後、順次高
周波励起式イオンプレーディング装置に装着し、装置内
を2 X 10−’torrの真空度にまで排気した後
、Arガスを導入して2 X 10−’torrに保ち
なから40Wのプラズマ出力で2分間に亙って基板洗滌
を行った後、次のように処理条件を変えて配向膜の形成
を行い、液晶表示素子を製作した。Example 1: Size is 130 x 160 m, thickness is 1.1 fi,
We prepared 15 sets of glass substrates on which ITO electrode patterns were formed, and after washing and drying them, they were sequentially installed in a high-frequency excitation type ion plating apparatus, and the inside of the apparatus was heated to 2 x 10-'torr. After evacuation to a vacuum level, Ar gas was introduced and maintained at 2 × 10-'torr, and the substrate was cleaned with a plasma output of 40 W for 2 minutes. The processing conditions were then changed as follows. An alignment film was formed using the following steps, and a liquid crystal display element was manufactured.
■MgF、を抵抗加熱方式で蒸発させながら高周波コイ
ル内を通すイオンプレーティングを行った。■Ion plating was performed by passing MgF through a high-frequency coil while evaporating it using a resistance heating method.
この場合、Arガス圧は2 Xl0−’torrとし、
またプラズマ形成のための印加電力は100Wとした。In this case, the Ar gas pressure is 2 Xl0-'torr,
Further, the applied power for plasma formation was 100W.
(試料A)
■ Arのイオンビームでガラス基板を照射しなから■
と同じ条件で蒸発を行った。(試料B)■ −gFgを
通常の抵抗加熱方式で蒸発させて配向膜を形成した。(
試料C)
上記3種類の配向膜を備えた相転移型液晶表示素子につ
いて目視により配向むらを観察すると試料A、Bを用い
た表示素子ではむらが認められなかったのに対し、試料
Cを用いた素子では数鶴〜2cm程度のむらが多数検出
された。(Sample A) ■ Do not irradiate the glass substrate with Ar ion beam ■
Evaporation was carried out under the same conditions. (Sample B) -gFg was evaporated using a conventional resistance heating method to form an alignment film. (
Sample C) When visually observing the alignment unevenness of the phase change type liquid crystal display elements equipped with the three types of alignment films mentioned above, no unevenness was observed in the display elements using Samples A and B, whereas no unevenness was observed in the display elements using Sample C. Many unevennesses ranging in size from several centimeters to 2 cm were detected in the elements used.
また、それぞれ5個づつの表示素子についてヒステリシ
ス幅Δを測定したところ、試料AとBでは安定駆動に必
要な4vの値が常に得られたのに対し、試料Cでは変動
が大きかった。Further, when the hysteresis width Δ was measured for each of five display elements, samples A and B always had a value of 4V necessary for stable driving, while sample C showed large fluctuations.
これらの測定値は、
試料A : 4.1.4.0.4.0.4.1.4.0
平均4.04V′試料B : 4.1.4.2.4.2
.4.2.4.2平均4.18V試料C’: 4.0.
2.7.2.9.4.1.3.5平均3.44Vであっ
た。These measured values are: Sample A: 4.1.4.0.4.0.4.1.4.0
Average 4.04V'Sample B: 4.1.4.2.4.2
.. 4.2.4.2 Average 4.18V Sample C': 4.0.
2.7.2.9.4.1.3.5 average was 3.44V.
実施例2:
配向膜の形成材料としてMgF2の代わりにMgOを用
い、実施例1と同じ条件でガラス基板上に配向膜を形成
し、これについて目視により配向むらを観察し、またこ
れを用いて製作した相転移型液晶表示素子についてヒス
テリシス幅Δを測定したが実施例1の場合と同様に従来
の蒸着法で形成した配向膜には配向むらが多数認めれ、
またヒステリシス幅Δの変動が大きかったのに対し、本
発明を適用したものは配向むらがなく、またイオンビー
ムを照射しながらイオンプレーティングを行った場合は
実施例1と同様により大きなヒステリシス幅Δを得るこ
とができた。Example 2: Using MgO instead of MgF2 as the forming material for the alignment film, an alignment film was formed on a glass substrate under the same conditions as in Example 1, and alignment unevenness was visually observed. The hysteresis width Δ was measured for the manufactured phase change type liquid crystal display element, but as in Example 1, many alignment irregularities were observed in the alignment film formed by the conventional vapor deposition method.
Also, while the variation in the hysteresis width Δ was large, the one to which the present invention was applied had no alignment unevenness, and when ion plating was performed while irradiating the ion beam, the hysteresis width Δ was larger as in Example 1. I was able to get
以上記したように本発明の実施により双安定駆動を行う
のに充分なヒステリシス幅Δをもち、製造再現性が高く
、信顛性の高い相転移型液晶表示素子の製造が可能とな
る。As described above, by carrying out the present invention, it is possible to manufacture a phase change type liquid crystal display element having a sufficient hysteresis width Δ for bistable driving, high manufacturing reproducibility, and high reliability.
【図面の簡単な説明】
第1図は液晶表示素子の構成を示す断面図、第2図は相
転移型液晶の印加電圧と透過率との関係図、
である。
図において、
1は電極パターン、 2はガラス基板、3は液晶
、
である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing the structure of a liquid crystal display element, and FIG. 2 is a diagram showing the relationship between applied voltage and transmittance of a phase change type liquid crystal. In the figure, 1 is an electrode pattern, 2 is a glass substrate, and 3 is a liquid crystal.
Claims (2)
体として表示を行う液晶表示素子において、対向する電
極面上に表面極性の強い無機配向膜をイオンプレーティ
ングにより形成するか、或いはイオンビームを照射しな
がらイオンプレーティングを行って形成することを特徴
とする液晶表示素子。(1) In a liquid crystal display element that performs display using a nematic-cholesteric phase transition type liquid crystal as a medium, an inorganic alignment film with strong surface polarity is formed on opposing electrode surfaces by ion plating, or while irradiating with an ion beam. A liquid crystal display element characterized by being formed by performing ion plating.
グネシウム或いは酸化マグネシウムからなることを特徴
とする特許請求の範囲第1項記載の液晶表示素子。(2) The liquid crystal display element according to claim 1, wherein the inorganic alignment film formed on the opposing electrode surfaces is made of magnesium fluoride or magnesium oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25226786A JPS63106623A (en) | 1986-10-23 | 1986-10-23 | Liquid crystal display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25226786A JPS63106623A (en) | 1986-10-23 | 1986-10-23 | Liquid crystal display element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63106623A true JPS63106623A (en) | 1988-05-11 |
Family
ID=17234860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25226786A Pending JPS63106623A (en) | 1986-10-23 | 1986-10-23 | Liquid crystal display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63106623A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007047252A (en) * | 2005-08-08 | 2007-02-22 | Seiko Epson Corp | Liquid crystal device, manufacturing method for liquid crystal device, and projection type display device |
US7223449B2 (en) * | 2001-09-20 | 2007-05-29 | Shinmaywa Industries, Ltd. | Film deposition method |
CN1324370C (en) * | 2003-09-04 | 2007-07-04 | 精工爱普生株式会社 | Method of forming inorganic alignment film, inorganic alignment film, substrate for electronic device, |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50142194A (en) * | 1974-05-07 | 1975-11-15 | ||
JPS5355143A (en) * | 1976-10-29 | 1978-05-19 | Sharp Corp | Electrode forming method in full surface mirror type liquid crystal displaydevice |
JPS54158948A (en) * | 1978-06-06 | 1979-12-15 | Citizen Watch Co Ltd | Liquid crystal display device |
JPS55133703A (en) * | 1979-04-06 | 1980-10-17 | Nippon Electric Co | Method of producing transparent conductive film |
JPS55140818A (en) * | 1979-04-20 | 1980-11-04 | Seiko Instr & Electronics Ltd | Phase transition type liquid crystal display device and its manufacture |
JPS57204025A (en) * | 1981-06-10 | 1982-12-14 | Canon Inc | Electrooptic device |
JPS5981624A (en) * | 1982-11-01 | 1984-05-11 | Stanley Electric Co Ltd | Liquid crystal cell and its manufacture |
JPS6157926A (en) * | 1984-08-30 | 1986-03-25 | Fujitsu Ltd | Liquid crystal display element |
JPS61151683A (en) * | 1984-12-26 | 1986-07-10 | 日本電気株式会社 | Manufacture of thin film double terminal element type activematrix liquid crystal display unit |
JPS6378127A (en) * | 1986-09-20 | 1988-04-08 | Fujitsu Ltd | Phase transition type liquid crystal element |
-
1986
- 1986-10-23 JP JP25226786A patent/JPS63106623A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50142194A (en) * | 1974-05-07 | 1975-11-15 | ||
JPS5355143A (en) * | 1976-10-29 | 1978-05-19 | Sharp Corp | Electrode forming method in full surface mirror type liquid crystal displaydevice |
JPS54158948A (en) * | 1978-06-06 | 1979-12-15 | Citizen Watch Co Ltd | Liquid crystal display device |
JPS55133703A (en) * | 1979-04-06 | 1980-10-17 | Nippon Electric Co | Method of producing transparent conductive film |
JPS55140818A (en) * | 1979-04-20 | 1980-11-04 | Seiko Instr & Electronics Ltd | Phase transition type liquid crystal display device and its manufacture |
JPS57204025A (en) * | 1981-06-10 | 1982-12-14 | Canon Inc | Electrooptic device |
JPS5981624A (en) * | 1982-11-01 | 1984-05-11 | Stanley Electric Co Ltd | Liquid crystal cell and its manufacture |
JPS6157926A (en) * | 1984-08-30 | 1986-03-25 | Fujitsu Ltd | Liquid crystal display element |
JPS61151683A (en) * | 1984-12-26 | 1986-07-10 | 日本電気株式会社 | Manufacture of thin film double terminal element type activematrix liquid crystal display unit |
JPS6378127A (en) * | 1986-09-20 | 1988-04-08 | Fujitsu Ltd | Phase transition type liquid crystal element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7223449B2 (en) * | 2001-09-20 | 2007-05-29 | Shinmaywa Industries, Ltd. | Film deposition method |
CN1324370C (en) * | 2003-09-04 | 2007-07-04 | 精工爱普生株式会社 | Method of forming inorganic alignment film, inorganic alignment film, substrate for electronic device, |
JP2007047252A (en) * | 2005-08-08 | 2007-02-22 | Seiko Epson Corp | Liquid crystal device, manufacturing method for liquid crystal device, and projection type display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0541388B1 (en) | Method of producing a liquid crystal display device | |
KR100368349B1 (en) | Method of homeotropic alignment or tilted homeotropic alignment of liquid crystals by single oblique evaporation of oxides and structure formed thereby | |
US4261650A (en) | Method for producing uniform parallel alignment in liquid crystal cells | |
JP3738990B2 (en) | Liquid crystal alignment film, method for manufacturing the liquid crystal alignment film, liquid crystal panel, and liquid crystal display device | |
JPS63106623A (en) | Liquid crystal display element | |
JP2558072B2 (en) | Liquid crystal cell substrate surface treatment method | |
KR20050017593A (en) | A liquid crystal display | |
JP2002055348A (en) | Liquid crystal device, device for manufacturing liquid crystal device, method for manufacturing liquid crystal device and method for forming alignment film | |
JPH08106093A (en) | Liquid crystal light valve | |
US20030063252A1 (en) | Optically transparent film, method of manufacturing optically transparent film, alignment film, and liquid crystal panel and display including alignment film | |
JPH05203961A (en) | Ferroelectric liquid crystal element | |
KR0141909B1 (en) | Liquid crystal display device with homeotropic alignment layer undercoat formed by ion beam assisted vapor deposition | |
US6801280B2 (en) | Reflective liquid crystal displays having multilayer rear substrates | |
JP3074805B2 (en) | Display element | |
Chabicovsky et al. | Liquid-crystal cells with special electrodes for the generation of uniform colors by optical birefringence | |
JPH01172817A (en) | Ferroelectric liquid crystal element | |
JPS6280620A (en) | Liquid crystal display device | |
Little et al. | A New Method for Inducing Homogeneous Alignment of Nematic Liquid Crystals | |
JPH0117134B2 (en) | ||
JPS63106625A (en) | Liquid crystal display element | |
JPS6059323A (en) | Liquid crystal cell | |
JPH08106092A (en) | Liquid crystal light valve | |
JPS6378127A (en) | Phase transition type liquid crystal element | |
JPS62257121A (en) | Liquid crystal display device | |
JPS62217221A (en) | Liquid crystal display device |