JPS6059323A - Liquid crystal cell - Google Patents

Liquid crystal cell

Info

Publication number
JPS6059323A
JPS6059323A JP58167787A JP16778783A JPS6059323A JP S6059323 A JPS6059323 A JP S6059323A JP 58167787 A JP58167787 A JP 58167787A JP 16778783 A JP16778783 A JP 16778783A JP S6059323 A JPS6059323 A JP S6059323A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
light
crystal cell
crystal oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58167787A
Other languages
Japanese (ja)
Inventor
Yuji Kato
裕司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58167787A priority Critical patent/JPS6059323A/en
Publication of JPS6059323A publication Critical patent/JPS6059323A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To reduce the manday of vapor deposition, to hold light reflectivity high and constant, and to improve manufacture yield by allowing one liquid crystal oriented film to serve as a light reflecting film. CONSTITUTION:A transparent electrode 2 of ITO, light absorbing film 3 of CdTe, and liquid crystal oriented film 15 of Al as the reflecting film are laminated successively on the internal surface of a glass substrate 1 on a laser light irradiation side. A transparent electrode 8 of ITO and a liquid crystal oriented film 7 of SiO are formed successively on the internal surface of a glass substrate on a projection light side. The substrates 1 and 9 are provided with liquid crystal 6 across spacers 10 and 11. The Al film 15 as a reflecting and liquid crystal oriented film is formed on the film 3 in gaseous argon by performing vapor deposition at, for example, 85 deg. to the vertical direction of the substrate, and about 90% high reflectivity to projection light is obtained by measurement.

Description

【発明の詳細な説明】 本発明は、腕時計、電子計算機、航空型制用大画面ディ
スプレイ等の表示装置として用いられる液晶セルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal cell used as a display device for wristwatches, electronic computers, large-screen displays for aircraft control systems, and the like.

9 液晶セルは、直視型と投射型とがある一投射却液晶セル
は航空管制用大画面ディスプレイ等ではライトバルブと
称され広く知られている。液晶セルのアドレス方式には
、レーザ熱アドレス、光アドレス、CCDアドレス等が
あるが、ここでは説明を具体化するためにレーザ熱アド
レス液晶セルについて説明する。
9. There are two types of liquid crystal cells: direct view type and projection type. Projection liquid crystal cells are widely known as light valves in large screen displays for air traffic control and the like. Addressing methods for liquid crystal cells include laser thermal addressing, optical addressing, CCD addressing, etc., but here, in order to make the explanation more concrete, a laser thermal addressing liquid crystal cell will be explained.

液晶を加熱して液晶分子の配向状態を不規則にし、その
後に急冷すると、その不規則な7枚晶分子の配向状態が
保持され、光を散乱する現象が生ずる。これを液晶の熱
光学効果と称する。この効果を利用した液晶セルでは、
液晶セルにレーザ光を照射して照射部分に温度上昇を生
せしめ画像書込みを行い、更に書込まれた画像を消去す
るには液晶に電界をかけて液晶分子を強制的に配向させ
る。
When a liquid crystal is heated to make the orientation of the liquid crystal molecules irregular and then rapidly cooled, the irregular orientation of the heptalytic molecules is maintained and a phenomenon of light scattering occurs. This is called the thermo-optic effect of liquid crystal. In a liquid crystal cell that utilizes this effect,
A liquid crystal cell is irradiated with a laser beam to cause a temperature rise in the irradiated area to write an image, and to erase the written image, an electric field is applied to the liquid crystal to forcibly align the liquid crystal molecules.

液晶分子の配向が良好なときは、液晶は全面に渡り透明
状態になり、また配向状態が不良のときけ液晶が部分的
に又は全面に渡り白濁状態となる。
When the alignment of the liquid crystal molecules is good, the liquid crystal becomes transparent over the entire surface, and when the alignment is poor, the liquid crystal becomes cloudy partially or over the entire surface.

液晶セルでは、透明状態の液晶にレーザ光を照射し白濁
状態すなわち光散乱状態として画像書込みを行うが、配
向状態が不良であると画像書込みができない。
In a liquid crystal cell, an image is written by irradiating a transparent liquid crystal with a laser beam to turn it into a cloudy state, that is, a light scattering state, but if the alignment state is poor, the image cannot be written.

第1図は、従来の投射型液晶セルの断面図である。レー
ザ光照射側基板1の内面には透明電極2、光吸収膜3、
光反射ノ良4及び液晶配向膜5が順次形成しである。書
込んだ画像は投射光により一読み出しスクリーン上に投
射されるか、この投射元側の基板9の内面には透明電極
8及び液晶配向膜7がI[+’を次形成しである。この
2枚の基板1,9は、スペーサ10 、11を介して一
定間隔に保持してあり、側面しl:接着剤12.13で
封止しである。
FIG. 1 is a sectional view of a conventional projection type liquid crystal cell. On the inner surface of the laser beam irradiation side substrate 1, a transparent electrode 2, a light absorption film 3,
A light reflection film 4 and a liquid crystal alignment film 5 are formed in sequence. The written image is projected onto a reading screen by projection light, or a transparent electrode 8 and a liquid crystal alignment film 7 are then formed on the inner surface of the substrate 9 on the projection source side. These two substrates 1 and 9 are held at a constant distance through spacers 10 and 11, and their sides are sealed with adhesives 12 and 13.

そして、両基板J、90間隙に液晶6が注入しである。Then, liquid crystal 6 is injected into a gap of 90 mm between both substrates J.

このような投射型液晶セルでは、液晶配向膜5をイIJ
る手段として、光反射膜4のラビングや光反射膜4上に
施すSiOの斜め蒸着がある。しかし、ラビング法は製
造工程が複雑で経験に一層る面があり、また光反射膜が
l膜やAu膜のように柔らかい場合にはラビング法は使
えない。SiO斜め蒸着膜は、蒸Xj時のガス出しの具
合により均一な膜をイ0ること力順II: L < 、
膜厚の制御が困難であって、膜厚の変化により光反射率
が変化するという欠点かあった。そこで、液晶セルの製
造歩留りが低くかった。更に、斜め蒸着法はx15空工
程を用いilので工数が掛かるのであるが、レーザ光照
射(fillにも液晶配向〕萬を一層設けることは液晶
セルの製造工程を複雑にするという久点かあっノζ。
In such a projection type liquid crystal cell, the liquid crystal alignment film 5 is
As means for this, there are rubbing of the light reflection film 4 and oblique vapor deposition of SiO on the light reflection film 4. However, the rubbing method requires a complicated manufacturing process and requires more experience, and the rubbing method cannot be used when the light reflecting film is soft such as an L film or an Au film. The SiO obliquely deposited film can be formed into a uniform film depending on the gas release during evaporation.
It is difficult to control the film thickness, and the light reflectance changes as the film thickness changes. Therefore, the manufacturing yield of liquid crystal cells was low. Furthermore, the oblique evaporation method requires a lot of man-hours because it uses a x15 empty process, but providing more laser light irradiation (liquid crystal orientation in the fill) may complicate the manufacturing process of the liquid crystal cell.ノζ.

本発明の目的は、製造工程が?1j単で製造歩才1りの
高い液晶セルの提供にある。
The purpose of the present invention is to improve the manufacturing process. The purpose of the present invention is to provide a liquid crystal cell that is simple and has the highest manufacturing efficiency.

本発明の構成は、液晶が2枚の互いにほぼ平イテな液晶
配向1戻の間に侠んである液晶セルにおいて、一方の前
記液晶配向ノ摸が光反射j林を兼ねることを特徴とする
The structure of the present invention is characterized in that, in a liquid crystal cell in which a liquid crystal is placed between two substantially flat liquid crystal alignment plates, one of the liquid crystal alignment plates also serves as a light reflecting plate.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第2図は水元り:]の一実施例の投射型液晶セルの断面
図である。レーザ光照射側ガラス基板1の内面にはI’
l”0の透明電極2 、 CdTeの光吸収■漢3、A
、1反射膜兼液晶配向膜15が順次稙層しである。
FIG. 2 is a sectional view of a projection type liquid crystal cell according to an embodiment of Mizumotori. I' is on the inner surface of the glass substrate 1 on the laser beam irradiation side.
Transparent electrode 2 of l”0, light absorption of CdTe ■Kan 3, A
, 1 reflective film/liquid crystal aligning film 15 are sequentially formed.

一方、投射元側のガラス基板9の内面にはI’lI”0
の透明電’k 8 % S+O液晶液晶配向ノボ7順次
形成しである。この2枚のガラス基板1,9は、スペー
サ1、0 、11を介して一定間隙に保持され、周囲は
接着剤12.13で封止しである。そして、両基板1,
90間隙にノルマル・オクチル・ンアノ・ビフェニル液
晶6が注入しである。
On the other hand, the inner surface of the glass substrate 9 on the projection source side has I'lI"0
The transparent electrode'k8% S+O liquid crystal liquid crystal alignment novo 7 was sequentially formed. These two glass substrates 1 and 9 are held at a constant distance through spacers 1, 0 and 11, and their peripheries are sealed with adhesives 12 and 13. And both substrates 1,
Normal octyl ano-biphenyl liquid crystal 6 is injected into the 90-gap gap.

アルゴンガス中でCdTeの光吸収膜3上−基板の垂直
方向に刻し85°の角度で斜方向蒸着した反射と液晶配
向とを兼ねさせたl膜15を作成し、投射光に対する反
射率を測定した結果、製作した全ての実施例に対して9
0チ程度の高い反射率となり、第1図の従来の構造で得
られた反射率と同程度となった。捷た、従来成品配向膜
5のj膜厚のばらつきにより生じていた反射率のばらつ
きも、AA膜を反射膜兼液晶配向膜15として用いたこ
とによりなくなった。アルゴンガス中で製作されたA7
膜15は非常にきれいな表面状態を示し、製作した全て
の実施例において液晶分子は良好な配向を示した。反射
膜兼液晶配向膜15におけるAl原子の基板1に対する
入射角は85°以外であっても差支えない。入射角が6
0°〜89°の範囲の場合にもアルゴンガス中で製作し
た全ての膜15が90%程度の高い反射率を呈し、また
液晶分子も良好な配向状態を示した。
An L film 15 that serves both reflection and liquid crystal alignment is created by diagonally evaporating the CdTe light absorption film 3 on the CdTe light absorption film 3 in the vertical direction of the substrate at an angle of 85° in argon gas, and increases the reflectance of the projected light. As a result of measurement, 9 for all manufactured examples.
The reflectance was as high as 0.0, which was comparable to the reflectance obtained with the conventional structure shown in FIG. The variation in reflectance caused by the variation in film thickness of the conventional product alignment film 5 is also eliminated by using the AA film as the reflective film and liquid crystal alignment film 15. A7 made in argon gas
The film 15 showed a very clean surface condition, and the liquid crystal molecules showed good alignment in all the fabricated examples. The incident angle of Al atoms with respect to the substrate 1 in the reflective film/liquid crystal alignment film 15 may be other than 85°. angle of incidence is 6
Even in the range of 0° to 89°, all the films 15 produced in argon gas exhibited a high reflectance of about 90%, and the liquid crystal molecules also showed a good alignment state.

第3図(a)から(C)は、液晶分子の配向状態を示す
この実施例の部分断面図である。図において、61は分
子の配向が良好な状態、すなわち透明状態にある液晶領
域、62は分子の配向が不良な状態すなわち白濁状態に
ある液晶領域をそれぞれ示す。第3図(a)はAl原子
の入射角が基板1の垂直方向に対し70°である場合の
液晶セルを示す。液晶分子の配向状態が良好であるから
、液晶6の全体が透明状態の液晶領域61と々っだ。一
方、第3図(b)はAl原子の入射角が基板1の垂直方
向に対し50°である場合の液晶セルを示す。液晶6の
一部に分子の配向に不良の領域が生じ、白濁状態の液晶
領域62が生じた。また、第3図(C)はAl原子の入
射角が基板1の垂直方向に対し30°である場合の液晶
セルを示す。このときは、液晶6の全体に渡り分子の配
向に不良が生じ、全域が白濁状態の液晶領域62となっ
た。
FIGS. 3A to 3C are partial cross-sectional views of this embodiment showing the alignment state of liquid crystal molecules. In the figure, numeral 61 indicates a liquid crystal region with good molecular orientation, that is, a transparent state, and 62 indicates a liquid crystal region with poor molecular orientation, that is, a cloudy state. FIG. 3(a) shows a liquid crystal cell in which the incident angle of Al atoms is 70° with respect to the vertical direction of the substrate 1. Since the alignment state of the liquid crystal molecules is good, the entire liquid crystal 6 is in a transparent liquid crystal region 61. On the other hand, FIG. 3(b) shows a liquid crystal cell in which the incident angle of Al atoms is 50° with respect to the vertical direction of the substrate 1. A region with defective molecular orientation occurred in a part of the liquid crystal 6, resulting in a cloudy liquid crystal region 62. Further, FIG. 3(C) shows a liquid crystal cell in which the incident angle of Al atoms is 30° with respect to the vertical direction of the substrate 1. At this time, a defective orientation of molecules occurred throughout the liquid crystal 6, resulting in a liquid crystal region 62 in a cloudy state over the entire area.

また、光反射膜兼液晶配向膜工5七してAu膜を用いた
実施例において、Au原子の基板1に対する入射角が6
0°から89°の範囲の場合も、投射光に対する反射率
は従来の構造で得られた反射率と同程度となシ、従来液
晶配向膜5の膜厚の変化によシ生じていた反射率の変化
もなくなった。更・に、製作した全ての実施例において
液晶分子は良好な配向状態を示した。
In addition, in an example in which an Au film is used as the light reflection film/liquid crystal alignment film 57, the incident angle of Au atoms to the substrate 1 is 6
Even in the range of 0° to 89°, the reflectance for the projected light is on the same level as the reflectance obtained with the conventional structure. There is no longer a change in the rate. Furthermore, the liquid crystal molecules showed good alignment in all of the manufactured examples.

このように、第2図の実施例の液晶セルは、光反射膜と
液晶配向膜とを兼ねた構造であるから、第1図の従来の
ものより膜の蒸着工程が1つ減り、製造工程が簡単であ
り、光反射率が高く一定であるから製造歩留りが高い。
In this way, since the liquid crystal cell of the embodiment shown in FIG. 2 has a structure that serves as both a light reflection film and a liquid crystal alignment film, the number of film deposition steps is reduced by one compared to the conventional one shown in FIG. is simple, and the light reflectance is high and constant, so the manufacturing yield is high.

なお、前述の実施例は投射型の液晶セルであったが、直
視型液晶セルにも本発明は適用できる。
Note that although the above-mentioned embodiment was a projection type liquid crystal cell, the present invention can also be applied to a direct view type liquid crystal cell.

以上説明したように、本発明によれば、製造工程が簡単
で、かつ製造歩留りの高い液晶セルが得られる。
As described above, according to the present invention, a liquid crystal cell with a simple manufacturing process and a high manufacturing yield can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液晶セルの断面図、第2図は本発明の一
実施例の断面図、第3図(a) 、 (b)及び(C)
は液晶分子の配向状態を示すこの実施例の部分断面図で
ある。 1.9・・・・・・基板、2,8・・・・・・透明電接
、3・・・・・・光吸収膜、4・・・・・・光反射膜、
5,7・・・・・・液晶配向)摸、6・・・・・・液晶
、10.11・・・・・・スペーサ、12゜13・・・
・・・接着剤、15・・・・・・Ad光反射膜兼液晶配
向膜、61・・・・・・透明状態の液晶領域、62・・
・・・・白濁状態の液晶領域。
Fig. 1 is a cross-sectional view of a conventional liquid crystal cell, Fig. 2 is a cross-sectional view of an embodiment of the present invention, and Fig. 3 (a), (b), and (C).
is a partial cross-sectional view of this example showing the alignment state of liquid crystal molecules. 1.9...Substrate, 2,8...Transparent electrical contact, 3...Light absorption film, 4...Light reflection film,
5, 7...Liquid crystal alignment), 6...Liquid crystal, 10.11...Spacer, 12゜13...
... Adhesive, 15 ... Ad light reflection film and liquid crystal alignment film, 61 ... Liquid crystal region in transparent state, 62 ...
...Cloudy liquid crystal area.

Claims (1)

【特許請求の範囲】[Claims] (1)液晶が2枚の互いにほぼ平行な液晶配向膜の間に
挾んである液晶セルにおいて、一方の前記液晶配向膜が
光反射膜を兼ねることを%徴とする液晶セル。 Al膜又はAu膜であることを特徴とする特許請求の範
囲第1項記載の液晶セル。
(1) A liquid crystal cell in which a liquid crystal is sandwiched between two substantially parallel liquid crystal alignment films, in which one of the liquid crystal alignment films also serves as a light reflecting film. The liquid crystal cell according to claim 1, wherein the liquid crystal cell is an Al film or an Au film.
JP58167787A 1983-09-12 1983-09-12 Liquid crystal cell Pending JPS6059323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58167787A JPS6059323A (en) 1983-09-12 1983-09-12 Liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58167787A JPS6059323A (en) 1983-09-12 1983-09-12 Liquid crystal cell

Publications (1)

Publication Number Publication Date
JPS6059323A true JPS6059323A (en) 1985-04-05

Family

ID=15856099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58167787A Pending JPS6059323A (en) 1983-09-12 1983-09-12 Liquid crystal cell

Country Status (1)

Country Link
JP (1) JPS6059323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212461A (en) * 1993-01-12 1994-08-02 Kyushu Sekisui Kogyo Kk Resin pipe with copper wire and its molding method
US7271863B2 (en) * 2002-10-16 2007-09-18 Nitto Denko Corporation Color liquid crystal display with internal rear polarizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212461A (en) * 1993-01-12 1994-08-02 Kyushu Sekisui Kogyo Kk Resin pipe with copper wire and its molding method
US7271863B2 (en) * 2002-10-16 2007-09-18 Nitto Denko Corporation Color liquid crystal display with internal rear polarizer

Similar Documents

Publication Publication Date Title
CA2132751C (en) Improved liquid crystal light valves using internal, fixed spacers and method of incorporating same
US7830482B2 (en) Method for manufacturing a transflective liquid crystal display panel comprising forming a first alignment film having different alignments in the transmissive and reflective regions and forming a second alignment film with a single alignment
JP2009145403A (en) Liquid crystal display apparatus, manufacturing method thereof, and liquid crystal projector
JPH08136932A (en) Method for introducing slightly inclined perpendicular arrangement to liquid crystal, liquid crystal electrooptical element and liquid crystal light valve
JP3156178B2 (en) Polymer thin film alignment method, liquid crystal alignment method, liquid crystal cell manufacturing method, liquid crystal cell and alignment film
JPH11271739A (en) Liquid crystal display element
JP2004045784A (en) Liquid crystal panel and its manufacturing method
JPS6059323A (en) Liquid crystal cell
JPS6057572B2 (en) liquid crystal display
JP2000056297A (en) Liquid crystal display device
JPH08106093A (en) Liquid crystal light valve
JPS60203916A (en) Curved liquid crystal cell and antidazzle type reflection mirror using said cell
JPS59224826A (en) Liquid crystal display cell
KR0141909B1 (en) Liquid crystal display device with homeotropic alignment layer undercoat formed by ion beam assisted vapor deposition
JPH04315129A (en) Reflection type liquid crystal display device
JP4910245B2 (en) Reflective liquid crystal display device and method of manufacturing reflector used for the same
JPS6261125B2 (en)
JPS63106623A (en) Liquid crystal display element
JPH1172782A (en) Liquid crystal display device
JPH06118401A (en) Method for correcting rubbing flaw of display device
JPS62229222A (en) Liquid crystal display device
JPS60151688A (en) Reflection type liquid crystal light valve
JPH0553134A (en) Photoconduction type liquid crystal valve
JPH085973A (en) Production of liquid crystal panel
TW548449B (en) Method for fabricating a reflective liquid crystal display panel and devices made