JPH07333447A - Optical signal processing circuit - Google Patents

Optical signal processing circuit

Info

Publication number
JPH07333447A
JPH07333447A JP6130632A JP13063294A JPH07333447A JP H07333447 A JPH07333447 A JP H07333447A JP 6130632 A JP6130632 A JP 6130632A JP 13063294 A JP13063294 A JP 13063294A JP H07333447 A JPH07333447 A JP H07333447A
Authority
JP
Japan
Prior art keywords
waveguide
optical
array
channel
channel waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6130632A
Other languages
Japanese (ja)
Other versions
JP3201560B2 (en
Inventor
Katsunari Okamoto
勝就 岡本
Hiroaki Yamada
裕朗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13063294A priority Critical patent/JP3201560B2/en
Publication of JPH07333447A publication Critical patent/JPH07333447A/en
Application granted granted Critical
Publication of JP3201560B2 publication Critical patent/JP3201560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize an optical equalizer which compensates dispersion of optical fibers and the array waveguide diffraction gratings having flat optical frequency characteristics with each of respective channels by specifying the parameters of array waveguide diffraction grantings. CONSTITUTION:Signal light of a frequency (f) (wavelength lambda=c/f) is spread by diffraction in the first sectional slab waveguide 22 and is introduced to the channel waveguide array 23 arranged perpendicularly to its diffraction plane when this signal light is made incident on the central part of the channel waveguide 11 for input. At this time, the quantity of the light power to be taken into the respective waveguides of the channel waveguide array 23 depends upon the core opening widths D1 of the respective waveguides. The core opening widths D of the respective waveguides of the channel waveguide array 23 are set at prescribed values at the boundary of the first sectional slab waveguide 22 and the channel waveguide array 23, by which the photoelectric amplitude Bit(n+1) of the (n+1)th (n=0 to N-1) is assigned and the prescribed waveguide length Q(n+1) at about the wavelength lambda of below of the light is adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバの分散によ
って光信号に生じた歪みを波形整形する光等化器、ある
いは波長分波機能を有するアレイ導波路回折格子とし
て、所定の光周波数フィルタ特性を有する光信号処理回
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a predetermined optical frequency filter as an optical equalizer for waveform-shaping distortion generated in an optical signal due to dispersion of an optical fiber or an arrayed waveguide diffraction grating having a wavelength demultiplexing function. The present invention relates to an optical signal processing circuit having characteristics.

【0002】[0002]

【従来の技術】既設の多くの光ファイバは波長 1.3μm
で零分散となり、波長1.55μmで損失が最低になる特性
を有している。この光ファイバに波長1.55μmの光信号
を入射すると、光ファイバの分散によって光信号周波数
(変調周波数)fが高くなるにつれて伝搬遅延時間τが
小さくなる(伝搬速度が速くなる)。したがって、この
光ファイバを伝搬する光信号は、その波長スペクトルの
広がりに応じて波形が歪む。この歪みが大きくなると、
光ファイバの伝送容量あるいは伝送距離が制限されるこ
とになる。
2. Description of the Related Art Many existing optical fibers have a wavelength of 1.3 μm.
Has zero dispersion and has the property that the loss becomes minimum at the wavelength of 1.55 μm. When an optical signal with a wavelength of 1.55 μm is incident on this optical fiber, the propagation delay time τ decreases (the propagation speed increases) as the optical signal frequency (modulation frequency) f increases due to the dispersion of the optical fiber. Therefore, the waveform of the optical signal propagating through this optical fiber is distorted according to the spread of the wavelength spectrum. When this distortion increases,
The transmission capacity or transmission distance of the optical fiber is limited.

【0003】等化器は、このような光ファイバの分散を
補償して光信号を波形整形するものである。従来の等化
器としては、光信号を電気信号に変換して使用するマイ
クロストリップ線路が知られている。その構造は図9に
示すように、誘電体1とその両面に接合される金属導体
2,3である。伝搬遅延時間τは、図10に示すように
信号周波数fが高くなるにつれて大きくなる(伝搬速度
が遅くなる)。また、マイクロストリップ線路の長さL
に応じてその割合が大きくなる。このように、伝搬遅延
特性はマイクロストリップ線路と光ファイバとでは逆に
なる。したがって、分散を有する光ファイバを伝搬した
光信号は、電気信号に変換した後に、所定の長さLのマ
イクロストリップ線路を通すことにより、光ファイバに
おける分散の影響を相殺することができる。
The equalizer compensates for such dispersion of the optical fiber and shapes the waveform of the optical signal. As a conventional equalizer, a microstrip line that converts an optical signal into an electric signal and uses it is known. The structure is, as shown in FIG. 9, a dielectric 1 and metal conductors 2 and 3 bonded to both surfaces thereof. The propagation delay time τ increases as the signal frequency f increases as shown in FIG. 10 (propagation speed decreases). Also, the length L of the microstrip line
The proportion increases according to. Thus, the propagation delay characteristics are opposite between the microstrip line and the optical fiber. Therefore, the optical signal propagating through the optical fiber having dispersion can be canceled out by the influence of dispersion in the optical fiber by converting the optical signal into an electric signal and then passing through the microstrip line having a predetermined length L.

【0004】次に、波長分波機能を有する従来のアレイ
導波路回折格子について、図11〜図13を参照して説
明する。図11は、従来のアレイ導波路回折格子の構成
を示す平面図である。
Next, a conventional arrayed waveguide diffraction grating having a wavelength demultiplexing function will be described with reference to FIGS. 11 to 13. FIG. 11 is a plan view showing the structure of a conventional arrayed waveguide diffraction grating.

【0005】図において、基板10上に形成した複数本
(または1本)の入力用チャネル導波路11、第1の扇
形スラブ導波路12、導波路長差ΔLで順次長くなる複
数N本の導波路からなるチャネル導波路アレイ13、第
2の扇形スラブ導波路14、複数本の出力用チャネル導
波路15を順次接続した構成である。
In the figure, a plurality (or one) of input channel waveguides 11 formed on a substrate 10, a first fan-shaped slab waveguide 12, and a plurality of N waveguides which are sequentially lengthened by a waveguide length difference ΔL. This is a configuration in which a channel waveguide array 13 including waveguides, a second fan-shaped slab waveguide 14, and a plurality of output channel waveguides 15 are sequentially connected.

【0006】図12は、第1の扇形スラブ導波路12の
近傍の構造を示す拡大図である。なお、第2の扇形スラ
ブ導波路14においても同様である。図において、Rは
第1の扇形スラブ導波路12の曲率半径、2aは入力用
チャネル導波路11およびチャネル導波路アレイ13の
各導波路のコア幅、Uは入力用チャネル導波路11の各
導波路のコア開口幅、s1 は入力用チャネル導波路11
のスラブ導波路境界での導波路間隔、Dはチャネル導波
路アレイ13の各導波路のコア開口幅、s2 はチャネル
導波路アレイ13のスラブ導波路境界での導波路間隔、
1 ,d2 は各テーパ導波路部分の長さを示す。ここ
で、UおよびDはそれぞれ一定である。
FIG. 12 is an enlarged view showing the structure in the vicinity of the first fan-shaped slab waveguide 12. The same applies to the second fan-shaped slab waveguide 14. In the figure, R is the radius of curvature of the first fan-shaped slab waveguide 12, 2a is the core width of each waveguide of the input channel waveguide 11 and the channel waveguide array 13, and U is each waveguide of the input channel waveguide 11. The core opening width of the waveguide, s 1 is the input channel waveguide 11
, The waveguide spacing at the slab waveguide boundary, D is the core opening width of each waveguide of the channel waveguide array 13, s 2 is the waveguide spacing at the slab waveguide boundary of the channel waveguide array 13,
d 1 and d 2 indicate the length of each tapered waveguide portion. Here, U and D are constant.

【0007】このような構成において、所定の入力用チ
ャネル導波路11から入射した光は、第1の扇形スラブ
導波路12において回折により広がり、その回折面と垂
直に配置されたチャネル導波路アレイ13に導かれる。
チャネル導波路アレイ13は、各導波路が導波路長差Δ
Lで順次長くなっているので、各導波路を伝搬して第2
の扇形スラブ導波路14に到達した光には導波路長差Δ
Lに対応する位相差が生じている。この位相差は光周波
数により異なるので、第2の扇形スラブ導波路14のレ
ンズ効果で出力用チャネル導波路15の入力端に集光す
る際に、光周波数ごとに異なる位置に集光する。
In such a structure, the light incident from the predetermined input channel waveguide 11 spreads by diffraction in the first fan-shaped slab waveguide 12, and the channel waveguide array 13 arranged perpendicular to the diffractive surface. Be led to.
In the channel waveguide array 13, each waveguide has a waveguide length difference Δ.
Since it becomes longer in L, it propagates through each waveguide and
The light reaching the fan-shaped slab waveguide 14 has a waveguide length difference Δ
There is a phase difference corresponding to L. Since this phase difference varies depending on the optical frequency, when the light is focused on the input end of the output channel waveguide 15 by the lens effect of the second fan-shaped slab waveguide 14, it is focused on different positions for each optical frequency.

【0008】アレイ導波路回折格子は、このように入力
用チャネル導波路11から入射された光の周波数に対応
して、出力用チャネル導波路15の導波路が選択される
光分波器として動作する。従来のアレイ導波路回折格子
では、図13に示すように、出力用チャネル導波路15
の各導波路対応にその中心周波数(ここでは 100GHz間
隔)の近傍で放物線状の光周波数特性となる。
The arrayed waveguide diffraction grating operates as an optical demultiplexer in which the waveguide of the output channel waveguide 15 is selected according to the frequency of the light incident from the input channel waveguide 11. To do. In the conventional arrayed waveguide diffraction grating, as shown in FIG.
A parabolic optical frequency characteristic is obtained in the vicinity of the center frequency (here, 100 GHz interval) corresponding to each of the waveguides.

【0009】[0009]

【発明が解決しようとする課題】従来のマイクロストリ
ップ線路による等化器では、波形整形するために光信号
を一旦電気信号に変換する必要があり、全光中継システ
ムに用いることができなかった。さらに、信号周波数f
が高くなるとマイクロストリップ線路の導体損失が増加
するので、光信号の波形整形を行っても光ファイバの伝
送容量と伝送距離を共に高めることは困難であった。
In the conventional equalizer using a microstrip line, it is necessary to temporarily convert an optical signal into an electric signal for waveform shaping, and it cannot be used in an all-optical repeater system. Furthermore, the signal frequency f
Since the conductor loss of the microstrip line increases with increasing, it is difficult to increase both the transmission capacity and the transmission distance of the optical fiber even if the waveform shaping of the optical signal is performed.

【0010】また、従来のアレイ導波路回折格子は、図
13に示すように放物線状の光周波数特性を有し3dB帯
域幅は27GHzと狭い。したがって、入力用チャネル導波
路11に入射された光の波長がその中心波長から変動し
た場合には、出力用チャネル導波路15の所定のチャネ
ルへ出射される光の損失が大幅に増加し、またクロスト
ークを劣化させる問題があった。
Further, the conventional arrayed-waveguide diffraction grating has a parabolic optical frequency characteristic as shown in FIG. 13 and has a narrow 3 dB bandwidth of 27 GHz. Therefore, when the wavelength of the light incident on the input channel waveguide 11 changes from its center wavelength, the loss of the light emitted to a predetermined channel of the output channel waveguide 15 increases significantly, and There was a problem of degrading crosstalk.

【0011】本発明は、光ファイバの分散を補償する光
等化器、また各チャネルごとにフラットな光周波数特性
を有するアレイ導波路回折格子を実現し、大容量・長距
離光通信および波長分割ルーティングに適した光信号処
理回路を提供することを目的とする。
The present invention realizes an optical equalizer for compensating the dispersion of an optical fiber, and an arrayed waveguide diffraction grating having a flat optical frequency characteristic for each channel to realize a large capacity / long distance optical communication and wavelength division. An object is to provide an optical signal processing circuit suitable for routing.

【0012】[0012]

【課題を解決するための手段】本発明の光信号処理回路
は、第1の扇形スラブ導波路とチャネル導波路アレイと
の境界におけるチャネル導波路アレイの各導波路のコア
開口部がそれぞれ所定の幅を有する。さらに、所定の導
波路長差で順次長くなるチャネル導波路アレイの各導波
路が、それぞれ信号光の波長程度以下の所定の導波路長
を加減した長さを有する。
According to the optical signal processing circuit of the present invention, the core openings of the respective waveguides of the channel waveguide array at the boundary between the first fan-shaped slab waveguide and the channel waveguide array are respectively predetermined. Has a width. Further, each of the waveguides of the channel waveguide array, which is sequentially lengthened by a predetermined waveguide length difference, has a length obtained by adding or subtracting a predetermined waveguide length equal to or less than the wavelength of the signal light.

【0013】[0013]

【作用】アレイ導波路回折格子を構成するチャネル導波
路アレイの各導波路の光電界分布と位相は、各導波路の
コア開口幅と、信号光の波長程度以下の所定の導波路長
を加減した各導波路の長さに応じて設定することができ
る。
The optical electric field distribution and phase of each waveguide of the channel waveguide array forming the arrayed waveguide diffraction grating are adjusted by adjusting the core opening width of each waveguide and a predetermined waveguide length equal to or less than the wavelength of the signal light. It can be set according to the length of each waveguide.

【0014】本発明の光信号処理回路では、この原理に
基づいて、チャネル導波路アレイの各導波路のコア開口
幅と長さを調整する。これにより、チャネル導波路アレ
イの光電界分布と位相を制御し、出力用チャネル導波路
の各チャネルにおける光周波数特性を制御することがで
きる。たとえば、光ファイバの分散特性と逆符号の光周
波数特性を実現することができる。また、各チャネルご
とにフラットな光周波数特性を有するアレイ導波路回折
格子を実現することができる。
In the optical signal processing circuit of the present invention, the core opening width and length of each waveguide of the channel waveguide array are adjusted based on this principle. Thereby, the optical electric field distribution and phase of the channel waveguide array can be controlled, and the optical frequency characteristic in each channel of the output channel waveguide can be controlled. For example, it is possible to realize an optical frequency characteristic having a sign opposite to that of the dispersion characteristic of the optical fiber. Further, it is possible to realize an arrayed waveguide diffraction grating having a flat optical frequency characteristic for each channel.

【0015】[0015]

【実施例】図1は、本発明の光信号処理回路の構成を示
す平面図である。図において、基板10上に形成した複
数本(または1本)の入力用チャネル導波路11、第1
の扇形スラブ導波路22、所定の導波路長差で順次長く
なる複数N本の導波路からなるチャネル導波路アレイ2
3、第2の扇形スラブ導波路14、複数本の出力用チャ
ネル導波路15を順次接続した構成である。なお、この
基本構成は図12に示す従来のアレイ導波路回折格子と
同じである。本発明では、第1の扇形スラブ導波路22
およびチャネル導波路23が従来のものと異なる。
1 is a plan view showing the structure of an optical signal processing circuit according to the present invention. In the figure, a plurality (or one) of input channel waveguides 11 formed on a substrate 10 and a first
Fan-shaped slab waveguide 22 and a channel waveguide array 2 composed of a plurality of N waveguides which are sequentially lengthened by a predetermined waveguide length difference.
3, the second fan-shaped slab waveguide 14 and a plurality of output channel waveguides 15 are sequentially connected. The basic configuration is the same as that of the conventional arrayed waveguide diffraction grating shown in FIG. In the present invention, the first fan-shaped slab waveguide 22
And the channel waveguide 23 is different from the conventional one.

【0016】図2は、第1の扇形スラブ導波路22の近
傍の構造を示す拡大図である。なお、第2の扇形スラブ
導波路14の近傍の構造は、図12に示す従来の第1の
扇形スラブ導波路12と同じ構造である。
FIG. 2 is an enlarged view showing the structure in the vicinity of the first fan-shaped slab waveguide 22. The structure in the vicinity of the second fan-shaped slab waveguide 14 is the same as that of the conventional first fan-shaped slab waveguide 12 shown in FIG.

【0017】図において、Rは第1の扇形スラブ導波路
22の曲率半径、2aは入力用チャネル導波路11およ
びチャネル導波路アレイ23の各導波路のコア幅、Uは
入力用チャネル導波路11のコア開口幅、s1 は入力用
チャネル導波路11のスラブ導波路境界での導波路間
隔、Di はチャネル導波路アレイ23の一端からi番目
(iは1〜N)の導波路のコア開口幅、s2 はチャネル
導波路アレイ23のスラブ導波路境界での導波路間隔、
1 ,d2 は各テーパ導波路部分の長さを示す。ここ
で、Uは一定であるが、Di は各導波路ごとに異なる。
In the figure, R is the radius of curvature of the first fan-shaped slab waveguide 22, 2a is the core width of each waveguide of the input channel waveguide 11 and the channel waveguide array 23, and U is the input channel waveguide 11. Core opening width, s 1 is the waveguide spacing at the slab waveguide boundary of the input channel waveguide 11, D i is the core of the i-th (i is 1 to N) waveguide from one end of the channel waveguide array 23. The opening width, s 2 is the waveguide spacing at the slab waveguide boundary of the channel waveguide array 23,
d 1 and d 2 indicate the length of each tapered waveguide portion. Here, U is constant, but D i is different for each waveguide.

【0018】本実施例では、入力用チャネル導波路11
の中心ポートに周波数f(波長λ=c/f)の信号光が
入射されたとする。入射された信号光は、第1の扇形ス
ラブ導波路22において回折により広がり、その回折面
と垂直に配置されたチャネル導波路アレイ23に導かれ
る。このとき、チャネル導波路アレイ23の各導波路に
取り込まれる光パワーの量は、各導波路のコア開口幅D
i に依存する。いま、i番目(iは1〜N)の導波路の
光電界振幅をBit(i) (実数)とする。チャネル導波路
アレイ23は、図1では内側から、図2では右側から各
導波路が導波路長差ΔLで順次長くなるように構成す
る。これに加えて、i番目の導波路の長さには波長λ程
度以下の所定の導波路長Q(i) が加減される。
In this embodiment, the input channel waveguide 11 is used.
It is assumed that signal light of frequency f (wavelength λ = c / f) is incident on the center port of the. The incident signal light spreads by diffraction in the first fan-shaped slab waveguide 22 and is guided to the channel waveguide array 23 arranged perpendicularly to the diffraction surface. At this time, the amount of optical power taken into each waveguide of the channel waveguide array 23 is determined by the core opening width D of each waveguide.
depends on i . Now, let the optical electric field amplitude of the i-th (i is 1 to N) waveguide be Bit (i) (real number). The channel waveguide array 23 is configured such that each waveguide is sequentially lengthened with a waveguide length difference ΔL from the inside in FIG. 1 and from the right in FIG. In addition to this, a predetermined waveguide length Q (i) having a wavelength of about λ or less is added to or subtracted from the length of the i-th waveguide.

【0019】ここで、一番右側(i=1)の導波路の長
さをLC とおくと、i番目の導波路を通って第2の扇形
スラブ導波路14に出るときの光の位相φi は、 φi =βC{LC+(i-1)ΔL+Q(i)} …(1) と表される。ただし、βC は導波路の伝搬定数である。
i番目の導波路から第2のスラブ導波路14に入射され
た光は多重干渉し、光の周波数fに応じたポート(本実
施例では出力用チャネル導波路15の中心ポート)に出
射される。出射光の電界振幅G(f) は、
Here, when the length of the rightmost waveguide (i = 1) is set to L C , the phase of the light when it exits the second fan-shaped slab waveguide 14 through the i-th waveguide. φ i is expressed as φ i = β C {L C + (i−1) ΔL + Q (i)} (1). However, β C is the propagation constant of the waveguide.
The light that has entered the second slab waveguide 14 from the i-th waveguide undergoes multiple interference and is emitted to the port (the central port of the output channel waveguide 15 in this embodiment) according to the frequency f of the light. . The electric field amplitude G (f) of the emitted light is

【0020】[0020]

【数1】 [Equation 1]

【0021】と表される。いま、アレイ導波路回折格子
の回折次数をmFDM とすると、 mFDM =nCΔL/λ0=nC ΔLf0/c …(3) の関係が成り立つ。ただし、 nC =βC/k …(4) であり、λ0 およびf0 はそれぞれ信号光の中心波長お
よび中心周波数である。
Is represented as Assuming that the diffraction order of the arrayed waveguide diffraction grating is m FDM , the following relationship holds: m FDM = n C ΔL / λ 0 = n C ΔLf 0 / c (3) However, n C = β C / k (4), and λ 0 and f 0 are the center wavelength and center frequency of the signal light, respectively.

【0022】また、アレイ導波路回折格子の周波数帯域
(Free Spectral Range :FSR)Wと回折次数mFDM との
間には、 W=f0/mFDM …(5) の関係が成り立つ。ここで、光周波数をアレイ導波路回
折格子の周波数帯域内で離散化して f=fS=f0+sW/N (s=−N/2 〜 N/2-1) …(6) と表す。このとき、式(3),(4),(5),(6) より、βC ΔL
のs番目の成分は、 βC(s)ΔL=2π(mFDM+s/N) …(7) となる。これを用いて式(1) を書き直すと φi(s)=βC(s)LC+(i-1)2π(mFDM+s/N)+βC(s)Q(i) …(8) となる。式(8) および式(2) を用いて出射光の電界振幅
G(f) のs番目の成分を求めると、
Further, between the frequency band (Free Spectral Range: FSR) W of the arrayed-waveguide diffraction grating and the diffraction order m FDM , the relationship of W = f 0 / m FDM (5) is established. Here, by discretizing the optical frequency within the frequency band of the array waveguide diffraction grating f = f S = f 0 + sW / N (s = -N / 2 ~ N / 2-1) ... expressed as (6). At this time, from equations (3), (4), (5), and (6), β C ΔL
The s-th component of is β C (s) ΔL = 2π (m FDM + s / N) (7) If equation (1) is rewritten using this, φ i (s) = β C (s) L C + (i-1) 2π (m FDM + s / N) + β C (s) Q (i) (8) ). When the s-th component of the electric field amplitude G (f) of the emitted light is calculated using Equation (8) and Equation (2),

【0023】[0023]

【数2】 [Equation 2]

【0024】と表される。ただし、Δf =W/Nであ
る。ここで、n=i-1 (n=0〜N-1) と置き換えると、
式(9) は、
It is expressed as follows. However, Δf = W / N. Here, substituting n = i-1 (n = 0 to N-1),
Equation (9) is

【0025】[0025]

【数3】 [Equation 3]

【0026】となる。ただし、LC >>Q(n+1) であるの
で、βC(s)Q(n+1) をβC(0)Q(n+1)とおいた。ここ
で、 g(n) =Bit(n+1) exp{-jβC(O)Q(n+1)} …(11) とおくと、式(10)は、
[0026] However, since L C >> Q (n + 1), β C (s) Q (n + 1) is set as β C (0) Q (n + 1). Here, when g (n) = Bit (n + 1) exp {-jβ C (O) Q (n + 1)} (11) is set, the equation (10) becomes

【0027】[0027]

【数4】 [Equation 4]

【0028】となる。この式は、g(n) とG(sΔf) の
間の離散フーリエ変換の関係を表している。すなわち、
第1の扇形スラブ導波路22とチャネル導波路アレイ2
3との境界において、チャネル導波路アレイ23の各導
波路のコア開口幅を所定値に設定して (n+1)番目(n=
0〜N-1)の光電界振幅Bit(n+1) を指定し、かつ光の波
長λ程度以下の所定の導波路長Q(n+1) を加減すること
により、 (n+1)番目の導波路の位相を調節する。これに
より、所定の複素振幅係数g(n) を実現することがで
き、式(12)によって所望の光周波数特性G(sΔf) を得
ることができる。
[0028] This equation represents the discrete Fourier transform relationship between g (n) and G (sΔf). That is,
First fan-shaped slab waveguide 22 and channel waveguide array 2
At the boundary with 3, the core opening width of each waveguide of the channel waveguide array 23 is set to a predetermined value and the (n + 1) th (n =
(0 + 1) by specifying the optical field amplitude Bit (n + 1) of 0 to N-1) and adjusting the predetermined waveguide length Q (n + 1) that is less than or equal to the wavelength λ of the light. Adjust the phase of the second waveguide. As a result, the predetermined complex amplitude coefficient g (n) can be realized, and the desired optical frequency characteristic G (sΔf) can be obtained by the equation (12).

【0029】これとは逆に所望の光周波数特性G(sΔ
f) が既に与えられている場合には、
On the contrary, the desired optical frequency characteristic G (sΔ
f) has already been given,

【0030】[0030]

【数5】 [Equation 5]

【0031】の離散フーリエ逆変換によって複素振幅係
数g(n) が与えられる。そして (n+1)番目(n=0〜N-
1)の光電界振幅Bit(n+1) は、式(11)より複素振幅係数
g(n)の絶対値として与えられ、その導波路に加減する
導波路長Q(n+1) は、複素振幅係数g(n) の位相項から
求められる。このようにして、第1の扇形スラブ導波路
22とチャネル導波路アレイ23との境界におけるチャ
ネル導波路アレイ23の各導波路のコア開口幅D
n+1 と、加減する導波路長Q(n+1) が決定される。以上
は、本発明の光信号処理回路の光周波数フィルタとして
の一般的な説明である。
The inverse complex Fourier transform of gives the complex amplitude coefficient g (n). And the (n + 1) th (n = 0 to N-
The optical electric field amplitude Bit (n + 1) of 1) is given as the absolute value of the complex amplitude coefficient g (n) from the equation (11), and the waveguide length Q (n + 1) that is adjusted in the waveguide is It is obtained from the phase term of the complex amplitude coefficient g (n). Thus, the core opening width D of each waveguide of the channel waveguide array 23 at the boundary between the first fan-shaped slab waveguide 22 and the channel waveguide array 23 is
n + 1 and the waveguide length Q (n + 1) to be adjusted are determined. The above is a general description of the optical signal processing circuit of the present invention as an optical frequency filter.

【0032】(第1実施例)以下、本発明の光信号処理
回路の第1実施例として、光等化器に用いる場合の具体
例について説明する。
(First Embodiment) As a first embodiment of the optical signal processing circuit according to the present invention, a specific example in which the optical signal processing circuit is used in an optical equalizer will be described below.

【0033】まず、光ファイバの周波数応答H(ω)は、 H(ω)=H0 exp{-j(β″L/2)(ω−ω0)2 } …(14) で与えられる。ただし、β″=d2β/dω2、ω0 は光
の中心角周波数、Lはファイバ長、H0 は定数である。
光ファイバの分散σとβ″との間には、 β″=(λ0 2/2πc)σ …(15) の関係が成り立つ。ただし、cは真空中の光速度、λ0
=2πc/ω0 である。
First, the frequency response H (ω) of the optical fiber is given by H (ω) = H 0 exp {-j (β ″ L / 2) (ω−ω 0 ) 2 } (14). However, β ″ = d 2 β / dω 2 , ω 0 is the central angular frequency of light, L is the fiber length, and H 0 is a constant.
The relation of β ″ = (λ 0 2 / 2πc) σ (15) holds between the dispersion σ and β ″ of the optical fiber. Where c is the speed of light in vacuum, λ 0
= 2πc / ω 0 .

【0034】いま、波長λ0 の単位をμm、光ファイバ
の分散σの単位をps/km・nm、ファイバ長Lの単
位をkmとしたとき、 p=π・10-5・λ0 2σL/3 …(16) とおくと、光ファイバの周波数応答H(ω)は、 H(ω)=H0 exp{-jp(f−f0)2} …(17) と表される。ただし、光周波数fおよびf0の単位はGHz
である。これより、光ファイバの信号遅延時間tf は、
When the unit of the wavelength λ 0 is μm, the unit of dispersion σ of the optical fiber is ps / km · nm, and the unit of the fiber length L is km, p = π · 10 −5 · λ 0 2 σL / 3 (16), the frequency response H (ω) of the optical fiber is expressed as H (ω) = H 0 exp {-jp (f−f 0 ) 2 } (17). However, the unit of optical frequency f and f 0 is GHz
Is. From this, the signal delay time t f of the optical fiber is

【0035】[0035]

【数6】 [Equation 6]

【0036】で与えられる。したがって、本発明の光信
号処理回路の光周波数特性G(sΔf)がG0 を定数と
して、 G(sΔf)=G0exp{jp(fs−f0)2}=G0exp{jp(sΔf)2} …(19) であるとき、光ファイバの分散特性(式(14)または式(1
7))を補償する光等化器が実現できる。
Is given by Therefore, the optical frequency characteristics G (sΔf) is G 0 of the optical signal processing circuit of the present invention as a constant, G (sΔf) = G 0 exp {jp (f s -f 0) 2} = G 0 exp {jp ( sΔf) 2 } (19), the dispersion characteristics of the optical fiber (equation (14) or (1)
An optical equalizer that compensates for 7)) can be realized.

【0037】光等化器の具体的設計は、式(19)を式(13)
に代入することにより、
The specific design of the optical equalizer is expressed by the equation (19) and the equation (13).
By substituting into

【0038】[0038]

【数7】 [Equation 7]

【0039】の離散フーリエ逆変換によって複素振幅係
数g(n) を求める。上述したように、 (n+1)番目(n=
0〜N-1)の光電界振幅Bit(n+1) は式(11)より複素振幅
係数g(n) の絶対値として与えられ、その導波路に加減
する導波路長Q(n+1) は複素振幅係数g(n) の位相項か
ら求められる。このようにして、第1の扇形スラブ導波
路22とチャネル導波路アレイ23との境界におけるチ
ャネル導波路アレイ23の各導波路のコア開口幅Dn+1
と加減する導波路長Q(n+1)が決定される。
The complex amplitude coefficient g (n) is obtained by the inverse discrete Fourier transform of. As described above, the (n + 1) th (n =
The optical electric field amplitude Bit (n + 1) of 0 to N-1) is given as an absolute value of the complex amplitude coefficient g (n) from the equation (11), and the waveguide length Q (n + 1) is adjusted to the waveguide. ) Is obtained from the phase term of the complex amplitude coefficient g (n). In this way, the core opening width D n + 1 of each waveguide of the channel waveguide array 23 at the boundary between the first fan-shaped slab waveguide 22 and the channel waveguide array 23.
The waveguide length Q (n + 1) to be adjusted is determined.

【0040】本実施例のアレイ導波路回折格子におい
て、λ0 =1.55μm、N=128 、R=5.63mm、ΔL=
1.03749 mm、2a=7μm(コア厚2t=6μm,比
屈折率差Δ=0.75%)、U=7μm、d1 =450 μm、
1 =50μm、D0 =12μm、d2 =750 μm、s2
15μmとしたとき、nC =1.4507、mFDM =971 、W=
200 GHz、Δf=1.56GHzとなる。
In the arrayed waveguide diffraction grating of this embodiment, λ 0 = 1.55 μm, N = 128, R = 5.63 mm, ΔL =
1.03749 mm, 2a = 7 μm (core thickness 2t = 6 μm, relative refractive index difference Δ = 0.75%), U = 7 μm, d 1 = 450 μm,
s 1 = 50 μm, D 0 = 12 μm, d 2 = 750 μm, s 2 =
Assuming 15 μm, n C = 1.4507, m FDM = 971, W =
It becomes 200 GHz and Δf = 1.56 GHz.

【0041】このアレイ導波路回折格子により、λ0
1.55μm、分散σ=−10ps/km・nm、長さL=10
0 kmの光ファイバの分散を補償(等化)するには、式
(20)に従ってg(n) を求め、i(=n+1)番目(i=
1〜N、n=0〜N-1)の光電界振幅Bit(i) および加減
する導波路長Q(i) を求める。
With this arrayed waveguide diffraction grating, λ 0 =
1.55 μm, dispersion σ = −10 ps / km · nm, length L = 10
To compensate (equalize) the dispersion of a 0 km optical fiber,
G (n) is calculated according to (20), and the i (= n + 1) th (i =
The optical field amplitude Bit (i) of 1 to N, n = 0 to N-1) and the length of the waveguide Q (i) to be adjusted are obtained.

【0042】図3は光電界振幅Bit(i) の分布を示し、
図4は加減する導波路長Q(i) を波長で規格化した過剰
光路長Q(i)/λ0の分布を示す。第1の扇形スラブ導波
路22とチャネル導波路アレイ23との境界におけるi
番目の導波路のコア開口幅Di は次のようにして決め
る。Bit(i) の最大値(図3の場合にはi=38番目)を
Bmax とし、これに対応するコア開口幅をDmax とす
る。すなわち、図3の場合にはDmax =D38である。コ
ア開口幅とチャネル導波路アレイ中を伝搬する光強度
(光電界強度の自乗)とは比例するので、
FIG. 3 shows the distribution of the optical field amplitude Bit (i),
FIG. 4 shows the distribution of the excess optical path length Q (i) / λ 0 in which the adjustable waveguide length Q (i) is normalized by the wavelength. I at the boundary between the first sector slab waveguide 22 and the channel waveguide array 23
The core opening width D i of the th waveguide is determined as follows. The maximum value of Bit (i) (i = 38th in the case of FIG. 3) is defined as Bmax, and the core opening width corresponding to this is defined as Dmax. That is, in the case of FIG. 3, Dmax = D 38 . Since the core aperture width and the light intensity (square of the optical electric field intensity) propagating in the channel waveguide array are proportional,

【0043】[0043]

【数8】 [Equation 8]

【0044】の関係が成り立つ。したがって、i番目の
導波路のコア開口幅Di は、
The following relationship holds. Therefore, the core opening width D i of the i-th waveguide is

【0045】[0045]

【数9】 [Equation 9]

【0046】で与えられる。式(22)においてDmax =D
0 =12μmとし、i番目の導波路のコア開口幅Di を決
定し、かつ上述のアレイ導波路回折格子のパラメータを
用いてマスクを作製し、石英系光導波路を用いて本実施
例の光信号処理回路を作製した。
Is given by In formula (22), Dmax = D
0 = 12 μm, the core opening width D i of the i-th waveguide is determined, and a mask is produced using the parameters of the above-described arrayed-waveguide diffraction grating. A signal processing circuit was produced.

【0047】以下、その作製手順を示す。シリコン基板
上に火炎堆積法によってSiO2下部クラッド層を堆積
し、次にGeO2をドーパントとして添加したSiO2ガラ
スのコア層を堆積し、電気炉で透明ガラス化した。次
に、前記設計に基づくパターンを用いてコア層をエッチ
ングし、光導波路部分を作製した。最後に、再びSiO2
上部クラッド層を堆積した。このようにして作製した光
等化器の位相特性の測定結果を図5に示す。
The manufacturing procedure will be described below. A SiO 2 lower clad layer was deposited on a silicon substrate by a flame deposition method, and then a core layer of SiO 2 glass doped with GeO 2 as a dopant was deposited, and the glass was transparentized in an electric furnace. Next, the core layer was etched using a pattern based on the above design, and an optical waveguide portion was produced. Finally, again SiO 2
The upper cladding layer was deposited. FIG. 5 shows the measurement result of the phase characteristics of the optical equalizer manufactured in this way.

【0048】図5において、実線は作製した光等化器の
位相特性を示す。破線は、分散σ=−10(ps/km・nm)で長
さL=100(km) の光ファイバの位相特性(式(17)におい
てp=−0.0252 (GHz)-2)の逆符号の特性を示す。すな
わち、等化器に要求される位相特性である。本測定結果
は、f=f0−25〜f0+25(GHz) の50GHzの範囲で光ファ
イバの分散を精度よく等化できることを示している。
In FIG. 5, the solid line shows the phase characteristic of the produced optical equalizer. The broken line is the inverse sign of the phase characteristic of optical fiber with dispersion σ = −10 (ps / km ・ nm) and length L = 100 (km) (p = −0.0252 (GHz) −2 in Eq. (17)). Show the characteristics. That is, it is the phase characteristic required for the equalizer. This measurement results show that it is possible to equalize accurately dispersion of the optical fiber in the range of 50GHz of f = f 0 -25~f 0 +25 ( GHz).

【0049】(第2実施例)次に、本発明の光信号処理
回路の第2実施例として、光周波数特性がフラットなア
レイ導波路回折格子として用いる場合の構成について説
明する。
(Second Embodiment) Next, as a second embodiment of the optical signal processing circuit of the present invention, a configuration in the case of being used as an arrayed waveguide diffraction grating having flat optical frequency characteristics will be described.

【0050】基本的な構成は、光等化器として用いる場
合と同様である。ただし、第1の扇形スラブ導波路22
との境界におけるチャネル導波路アレイ23の各導波路
のコア開口幅Di と、その導波路に加減する導波路長Q
(i) の値が異なる。
The basic structure is the same as that used as an optical equalizer. However, the first fan-shaped slab waveguide 22
And the core opening width D i of each waveguide of the channel waveguide array 23 at the boundary with
The value of (i) is different.

【0051】本実施例のアレイ導波路回折格子におい
て、λ0 =1.55μm、N=128 、R=5.63mm、ΔL=
254.3 μm、2a=7μm(コア厚2t=6μm,比屈
折率差Δ=0.75%)、U=7μm、d1 =450 μm、s
1 =50μm、D0=12μm、d2=750 μm、s2 =15μ
mとしたとき、nC =1.4507、mFDM=238 、W=813.2
GHz、Δf=6.35GHzとなる。
In the arrayed waveguide diffraction grating of this embodiment, λ 0 = 1.55 μm, N = 128, R = 5.63 mm, ΔL =
254.3 μm, 2a = 7 μm (core thickness 2t = 6 μm, relative refractive index difference Δ = 0.75%), U = 7 μm, d 1 = 450 μm, s
1 = 50 μm, D 0 = 12 μm, d 2 = 750 μm, s 2 = 15 μm
When m, n C = 1.4507, m FDM = 238, W = 813.2
GHz, Δf = 6.35 GHz.

【0052】このアレイ導波路回折格子により、λ0
1.55μmでフラットな光周波数特性を実現するには、式
(13)において、
With this arrayed waveguide diffraction grating, λ 0 =
To achieve a flat optical frequency characteristic at 1.55 μm, use the formula
In (13),

【0053】[0053]

【数10】 [Equation 10]

【0054】とおいてg(n) を求め、i(=n+1)番
目(i=1〜N、n=0〜N-1)の光電界振幅Bit(i) お
よび加減する導波路長Q(i) を求める。図6は光電界振
幅Bit(i) の分布を示し、図7は加減する導波路長Q
(i) を導波路内波長λg(=λ0/nC)で規格化した過剰
光路長Q(i)/λgの分布を示す。なお、第1の扇形スラ
ブ導波路22とチャネル導波路アレイ23との境界にお
けるi番目の導波路のコア開口幅Di は、式(22)におい
てDmax =12μmとして決定した。このようなアレイ導
波路回折格子は、光等化器の場合と同様にして作製する
ことができる。その光周波数特性の測定結果を図8に示
す。
Here, g (n) is obtained, and the optical field amplitude Bit (i) of the i (= n + 1) th (i = 1 to N, n = 0 to N-1) and the waveguide length Q (i) to be adjusted. ). FIG. 6 shows the distribution of the optical field amplitude Bit (i), and FIG. 7 shows the adjustable waveguide length Q.
The distribution of the excess optical path length Q (i) / λ g obtained by normalizing (i) with the wavelength λ g (= λ 0 / n C ) in the waveguide is shown. The core opening width D i of the i-th waveguide at the boundary between the first fan-shaped slab waveguide 22 and the channel waveguide array 23 was determined as Dmax = 12 μm in the equation (22). Such an arrayed waveguide diffraction grating can be manufactured in the same manner as in the case of the optical equalizer. The measurement result of the optical frequency characteristic is shown in FIG.

【0055】図8において、出力用チャネル導波路15
では、各導波路対応の中心周波数(ここでは 100GHz間
隔)の近傍でフラットな光周波数特性を実現でき、3dB
帯域幅は従来の27GHzから60GHzにまで拡大された。す
なわち、隣接するチャネルへのクロストークを劣化させ
ることなく、3dB帯域幅を大幅に増大させることができ
る。
In FIG. 8, the output channel waveguide 15 is shown.
Can realize flat optical frequency characteristics in the vicinity of the center frequency (here, 100 GHz interval) corresponding to each waveguide, and 3 dB
Bandwidth has been expanded from the conventional 27 GHz to 60 GHz. That is, the 3 dB bandwidth can be significantly increased without deteriorating crosstalk to adjacent channels.

【0056】[0056]

【発明の効果】以上説明したように本発明の光信号処理
回路は、アレイ導波路回折格子のパラメータを適当に選
ぶことにより、任意の伝搬遅延特性を実現することがで
きる。これにより、光信号を電気信号に変換することな
く、光ファイバの分散を補償する波形整形が可能とな
り、大容量・長距離光通信を容易に実現するこができ
る。
As described above, the optical signal processing circuit of the present invention can realize an arbitrary propagation delay characteristic by appropriately selecting the parameters of the arrayed waveguide diffraction grating. As a result, it becomes possible to perform waveform shaping for compensating for dispersion of the optical fiber without converting the optical signal into an electric signal, and it is possible to easily realize large-capacity / long-distance optical communication.

【0057】また、アレイ導波路回折格子のパラメータ
を適当に選ぶことにより、隣接する信号チャネルへのク
ロストークを劣化させることなく、3dB帯域幅を大幅に
増大させることができる。したがって、例えばレーザ光
源の波長が温度変化によって各信号チャネルの中心波長
から変動した場合でも、通過損失を増加させることなく
所定の分波特性を維持することができる。これにより、
波長分割ルーティングシステム等の設計の許容度が増す
ことができる。
By appropriately selecting the parameters of the arrayed waveguide diffraction grating, the 3 dB bandwidth can be greatly increased without deteriorating the crosstalk to the adjacent signal channels. Therefore, for example, even when the wavelength of the laser light source changes from the center wavelength of each signal channel due to temperature change, it is possible to maintain the predetermined demultiplexing characteristic without increasing the passage loss. This allows
The tolerance of the design of the wavelength division routing system or the like can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光信号処理回路の構成を示す平面図。FIG. 1 is a plan view showing the configuration of an optical signal processing circuit of the present invention.

【図2】第1の扇形スラブ導波路22の近傍の構造を示
す拡大図。
FIG. 2 is an enlarged view showing a structure in the vicinity of a first fan-shaped slab waveguide 22.

【図3】光等化器として用いる場合の光電界振幅Bit
(i) の分布を示す図。
FIG. 3 is an optical field amplitude Bit when used as an optical equalizer.
The figure which shows the distribution of (i).

【図4】光等化器として用いる場合の過剰光路長Q(i)
/λ0 の分布を示す図。
FIG. 4 is an excess optical path length Q (i) when used as an optical equalizer.
The figure which shows the distribution of / (lambda) 0 .

【図5】光等化器の位相特性の測定結果を示す図。FIG. 5 is a diagram showing measurement results of phase characteristics of an optical equalizer.

【図6】アレイ導波路回折格子として用いる場合の光電
界振幅Bit(i) の分布を示す図。
FIG. 6 is a diagram showing a distribution of an optical electric field amplitude Bit (i) when used as an arrayed waveguide diffraction grating.

【図7】アレイ導波路回折格子として用いる場合の過剰
光路長Q(i) /λg の分布を示す図。
FIG. 7 is a diagram showing a distribution of excess optical path length Q (i) / λ g when it is used as an arrayed waveguide diffraction grating.

【図8】アレイ導波路回折格子の光周波数特性の測定結
果を示す図。
FIG. 8 is a diagram showing measurement results of optical frequency characteristics of an arrayed waveguide diffraction grating.

【図9】従来の等化器の構成を示す図。FIG. 9 is a diagram showing a configuration of a conventional equalizer.

【図10】従来の等化器の伝搬遅延特性を示す図。FIG. 10 is a diagram showing a propagation delay characteristic of a conventional equalizer.

【図11】従来のアレイ導波路回折格子の構成を示す平
面図。
FIG. 11 is a plan view showing a configuration of a conventional arrayed waveguide diffraction grating.

【図12】第1の扇形スラブ導波路12(第2の扇形ス
ラブ導波路14)の近傍の構造を示す拡大図。
FIG. 12 is an enlarged view showing a structure in the vicinity of a first fan-shaped slab waveguide 12 (second fan-shaped slab waveguide 14).

【図13】従来のアレイ導波路回折格子の光周波数特性
を示す図。
FIG. 13 is a diagram showing optical frequency characteristics of a conventional arrayed-waveguide diffraction grating.

【符号の説明】[Explanation of symbols]

10,20 基板 11 入力用チャネル導波路 12,22 第1の扇形スラブ導波路 13,23 チャネル導波路アレイ 14 第2の扇形スラブ導波路 15 出力用チャネル導波路 10, 20 substrate 11 input channel waveguide 12, 22 first fan-shaped slab waveguide 13, 23 channel waveguide array 14 second fan-shaped slab waveguide 15 output channel waveguide

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、入力用チャネル導波路と、出
力用チャネル導波路と、所定の導波路長差で順次長くな
る複数本の導波路からなるチャネル導波路アレイと、前
記入力用チャネル導波路と前記チャネル導波路アレイと
を接続する第1の扇形スラブ導波路と、前記チャネル導
波路アレイと前記出力用チャネル導波路とを接続する第
2の扇形スラブ導波路とを形成した光信号処理回路にお
いて、 前記第1の扇形スラブ導波路と前記チャネル導波路アレ
イとの境界におけるチャネル導波路アレイの各導波路の
コア開口部がそれぞれ所定の幅を有し、 所定の導波路長差で順次長くなるチャネル導波路アレイ
の各導波路が、それぞれ信号光の波長程度以下の所定の
導波路長を加減した長さを有することを特徴とする光信
号処理回路。
1. A channel waveguide array comprising an input channel waveguide, an output channel waveguide, and a plurality of waveguides that are sequentially lengthened by a predetermined waveguide length difference on a substrate, and the input channel. An optical signal having a first fan-shaped slab waveguide that connects a waveguide and the channel waveguide array, and a second fan-shaped slab waveguide that connects the channel waveguide array and the output channel waveguide. In the processing circuit, the core opening of each waveguide of the channel waveguide array at the boundary between the first fan-shaped slab waveguide and the channel waveguide array has a predetermined width, An optical signal processing circuit, wherein each of the waveguides of the channel waveguide array, which becomes longer in sequence, has a length obtained by adjusting a predetermined waveguide length equal to or less than a wavelength of signal light.
JP13063294A 1994-06-13 1994-06-13 Optical signal processing circuit Expired - Lifetime JP3201560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13063294A JP3201560B2 (en) 1994-06-13 1994-06-13 Optical signal processing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13063294A JP3201560B2 (en) 1994-06-13 1994-06-13 Optical signal processing circuit

Publications (2)

Publication Number Publication Date
JPH07333447A true JPH07333447A (en) 1995-12-22
JP3201560B2 JP3201560B2 (en) 2001-08-20

Family

ID=15038894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13063294A Expired - Lifetime JP3201560B2 (en) 1994-06-13 1994-06-13 Optical signal processing circuit

Country Status (1)

Country Link
JP (1) JP3201560B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0822428A1 (en) * 1996-08-02 1998-02-04 Hitachi Cable, Ltd. Method and apparatus for atomic absorption-spectroscopy
FR2758675A1 (en) * 1997-01-22 1998-07-24 Hitachi Cable MULTIPLEXER-DEMULTIPLEXER IN WAVELENGTHS
US5940548A (en) * 1996-07-10 1999-08-17 Nippon Telegraph And Telephone Corporation Guided-wave circuit with optical characteristics adjusting plate, method for producing it, and apparatus for producing optical characteristics adjusting plate
EP1060426A1 (en) * 1998-03-02 2000-12-20 The University Of Melbourne An optical device for dispersion compensation
US6222956B1 (en) 1998-05-29 2001-04-24 Hitachi Cable Ltd. Optical wavelength multiplexer/demultiplexer
WO2002069007A1 (en) * 2001-02-23 2002-09-06 Lightwave Microsystems Corporation Dendritic taper for an integrated optical wavelength router
WO2002073270A1 (en) * 2001-03-12 2002-09-19 Avanex Uk Limited Arrayed waveguide grating
WO2004061496A1 (en) * 2002-12-27 2004-07-22 Nippon Telegraph And Telephone Corporation Array waveguide lattice type optical multilexer/demultiplexer circuit
US6768840B2 (en) 2001-01-16 2004-07-27 The Furukawa Electric Co., Ltd. Arrayed waveguide grating and method for manufacturing the same
KR100450324B1 (en) * 1997-12-30 2005-04-06 삼성전자주식회사 Optical Wavelength Multiplexer / Splitter with Flat Frequency Response
US7031569B2 (en) 2002-10-01 2006-04-18 Nhk Spring Co., Ltd Optical multi-demultiplexer
JP2011227149A (en) * 2010-04-15 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> Optical switch and wavelength selection switch

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940548A (en) * 1996-07-10 1999-08-17 Nippon Telegraph And Telephone Corporation Guided-wave circuit with optical characteristics adjusting plate, method for producing it, and apparatus for producing optical characteristics adjusting plate
US5841919A (en) * 1996-08-02 1998-11-24 Hitachi Cable, Ltd. Optical wavelength multiplexer/demultiplexer
EP0822428A1 (en) * 1996-08-02 1998-02-04 Hitachi Cable, Ltd. Method and apparatus for atomic absorption-spectroscopy
FR2758675A1 (en) * 1997-01-22 1998-07-24 Hitachi Cable MULTIPLEXER-DEMULTIPLEXER IN WAVELENGTHS
KR100450324B1 (en) * 1997-12-30 2005-04-06 삼성전자주식회사 Optical Wavelength Multiplexer / Splitter with Flat Frequency Response
EP1060426A1 (en) * 1998-03-02 2000-12-20 The University Of Melbourne An optical device for dispersion compensation
EP1060426A4 (en) * 1998-03-02 2004-12-15 Univ Melbourne An optical device for dispersion compensation
US6882772B1 (en) 1998-03-02 2005-04-19 The University Of Melbourne Optical device for dispersion compensation
US6222956B1 (en) 1998-05-29 2001-04-24 Hitachi Cable Ltd. Optical wavelength multiplexer/demultiplexer
US6768840B2 (en) 2001-01-16 2004-07-27 The Furukawa Electric Co., Ltd. Arrayed waveguide grating and method for manufacturing the same
WO2002069007A1 (en) * 2001-02-23 2002-09-06 Lightwave Microsystems Corporation Dendritic taper for an integrated optical wavelength router
US6697552B2 (en) 2001-02-23 2004-02-24 Lightwave Microsystems Corporation Dendritic taper for an integrated optical wavelength router
WO2002073270A1 (en) * 2001-03-12 2002-09-19 Avanex Uk Limited Arrayed waveguide grating
US7016568B2 (en) 2001-03-12 2006-03-21 Harm Van Weerden Arrayed waveguide grating with increased uniformity of a performance parameter
US7031569B2 (en) 2002-10-01 2006-04-18 Nhk Spring Co., Ltd Optical multi-demultiplexer
WO2004061496A1 (en) * 2002-12-27 2004-07-22 Nippon Telegraph And Telephone Corporation Array waveguide lattice type optical multilexer/demultiplexer circuit
US7400800B2 (en) 2002-12-27 2008-07-15 Ntt Electronics Corporation Arrayed waveguide grating type optical multiplexer/demultiplexer circuit
JP2011227149A (en) * 2010-04-15 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> Optical switch and wavelength selection switch

Also Published As

Publication number Publication date
JP3201560B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JP2870499B2 (en) Optical wavelength multiplexer / demultiplexer
EP1226461B1 (en) Phasar with flattened pass-band
US5818986A (en) Angular Bragg reflection planar channel waveguide wavelength demultiplexer
US7020398B2 (en) Dispersion slope equalizer
JP3112246B2 (en) Array waveguide grating
JP3201560B2 (en) Optical signal processing circuit
US6404946B1 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer
JPH05313029A (en) Light wave combining/splitting instrument
CN110596914B (en) Array waveguide grating with adjustable wavelength and bandwidth and adjusting method thereof
EP0782019A2 (en) Bandwith-adjusted wavelength demultiplexer
JPH07104137A (en) Optical dispersion equalizing circuit
JP3224086B2 (en) Arrayed waveguide grating with variable frequency width of flat band characteristics
JP3775673B2 (en) Arrayed waveguide grating type optical multiplexer / demultiplexer
JP3247819B2 (en) Array grating type optical multiplexer / demultiplexer
JP3206796B2 (en) Optical equalizer
JPH07333446A (en) Optical multiplexer/demultiplexer
US20040202419A1 (en) Using a transversal filter to compensate for dispersion
JPH05157920A (en) Waveguide diffraction grating
JP3889697B2 (en) Optical bandpass filter
JPH08334792A (en) Light signal processing circuit and method therefor
JP3249960B2 (en) Array grating type optical multiplexer / demultiplexer
JP3144620B2 (en) Array waveguide grating
JP4003533B2 (en) Variable optical attenuator
JP3144614B2 (en) Flat band characteristic array grating
JPH05323140A (en) Optical equalizer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140622

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term