JP3249960B2 - Array grating type optical multiplexer / demultiplexer - Google Patents

Array grating type optical multiplexer / demultiplexer

Info

Publication number
JP3249960B2
JP3249960B2 JP2001028768A JP2001028768A JP3249960B2 JP 3249960 B2 JP3249960 B2 JP 3249960B2 JP 2001028768 A JP2001028768 A JP 2001028768A JP 2001028768 A JP2001028768 A JP 2001028768A JP 3249960 B2 JP3249960 B2 JP 3249960B2
Authority
JP
Japan
Prior art keywords
waveguide
demultiplexer
optical multiplexer
grating type
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001028768A
Other languages
Japanese (ja)
Other versions
JP2001242328A (en
Inventor
勝就 岡本
弘 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001028768A priority Critical patent/JP3249960B2/en
Publication of JP2001242328A publication Critical patent/JP2001242328A/en
Application granted granted Critical
Publication of JP3249960B2 publication Critical patent/JP3249960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光周波数多重(F
DM)通信方式あるいは光波長多重(WDM)通信方式
において使用するアレイ格子型光合分波器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical frequency multiplexing (F
The present invention relates to an array grating type optical multiplexer / demultiplexer used in a DM) communication system or an optical wavelength division multiplexing (WDM) communication system.

【0002】[0002]

【従来の技術】図4は、アレイ格子型光合分波器の基本
構成を示す。図において、アレイ格子型光合分波器は、
基板10上に形成したN本の入力用チャネル導波路1
1、第1の扇形スラブ導波路12、所定の導波路長差Δ
Lで順次長くなるM本の導波路からなるチャネル導波路
アレイ13、第2の扇形スラブ導波路14、N本の出力
用チャネル導波路15を順次接続した構成である。
2. Description of the Related Art FIG. 4 shows a basic structure of an array grating type optical multiplexer / demultiplexer. In the figure, the array grating type optical multiplexer / demultiplexer is
N input channel waveguides 1 formed on substrate 10
1, first sector slab waveguide 12, predetermined waveguide length difference Δ
This is a configuration in which a channel waveguide array 13 composed of M waveguides that are sequentially elongated by L, a second sector slab waveguide 14, and N output channel waveguides 15 are sequentially connected.

【0003】図5は、第2の扇形スラブ導波路14の近
傍の構造を示す拡大図である。なお、第1の扇形スラブ
導波路12においても同様である。図において、Rは扇
形スラブ導波路14の曲率半径、2aはチャネル導波路
アレイ13および出力用チャネル導波路15の各導波路
のコア幅、D1 はチャネル導波路アレイ13の各導波路
のコア開口幅、dはチャネル導波路アレイ13のスラブ
導波路境界での導波路間隔(dは等間隔)、D2 は出力
用チャネル導波路15の各導波路のコア開口幅、Sは出
力用チャネル導波路15のスラブ導波路境界での導波路
間隔(以下、出力用チャネル導波路15の間隔という。
入力用チャネル導波路11の間隔という場合も同様とす
る。)、h1 ,h2 は各テーパ導波路部分の長さを示
す。
FIG. 5 is an enlarged view showing a structure near the second fan-shaped slab waveguide 14. As shown in FIG. The same applies to the first sector slab waveguide 12. In FIG, R represents the radius of curvature of the sector slab waveguide 14, 2a each waveguide core width of the channel waveguide array 13 and the output channel waveguide 15, D 1 is in each waveguide of the channel waveguide array 13 core opening width, d is the channel waveguide waveguide spacing at the slab waveguide boundaries of the array 13 (d equally spaced), D 2 are each waveguide of the output channel waveguide 15 core opening width, S is output channel Waveguide spacing at the slab waveguide boundary of waveguide 15 (hereinafter referred to as spacing of output channel waveguides 15).
The same applies to the case of the distance between the input channel waveguides 11. ), H 1 and h 2 indicate the length of each tapered waveguide portion.

【0004】ここで、従来のアレイ格子型光合分波器で
は、出力用チャネル導波路15の間隔Sは等間隔であっ
た。同様に、入力用チャネル導波路11の間隔も等間隔
であり、かつ入力用チャネル導波路11の間隔と出力用
チャネル導波路15の間隔が同一に設定されていた。
Here, in the conventional array grating type optical multiplexer / demultiplexer, the intervals S of the output channel waveguides 15 are equal. Similarly, the intervals between the input channel waveguides 11 are also equal, and the interval between the input channel waveguides 11 and the interval between the output channel waveguides 15 are set to be the same.

【0005】このような構成では、所定の入力用チャネ
ル導波路11から入射した光は、第1の扇形スラブ導波
路12において回折により広がり、その回折面と垂直に
配置されたチャネル導波路アレイ13に導かれる。チャ
ネル導波路アレイ13は、各導波路が導波路長差ΔLで
順次長くなっているので、各導波路を伝搬して第2の扇
形スラブ導波路14に到達した光には導波路長差ΔLに
対応する位相差が生じている。この位相差は光周波数に
より異なるので、第2の扇形スラブ導波路14のレンズ
効果で出力用チャネル導波路15の入力端に集光する際
に、光周波数ごとに異なる位置に集光する。すなわち、
入力用チャネル導波路11から入射された光の周波数に
対応して、出力用チャネル導波路15の導波路が選択さ
れる光分波器として動作する。また、逆の経路を経るこ
とにより同様に光合波器として動作せることができる。
In such a configuration, light incident from a predetermined input channel waveguide 11 spreads by diffraction in the first sector slab waveguide 12, and the channel waveguide array 13 arranged perpendicular to the diffraction plane. It is led to. In the channel waveguide array 13, since each waveguide is sequentially elongated by the waveguide length difference ΔL, the light propagating through each waveguide and reaching the second sector slab waveguide 14 has a waveguide length difference ΔL. Is generated. Since this phase difference varies depending on the optical frequency, when the light is focused on the input end of the output channel waveguide 15 by the lens effect of the second sector slab waveguide 14, it is focused on a different position for each optical frequency. That is,
The waveguide of the output channel waveguide 15 operates as an optical demultiplexer in which the waveguide of the output channel waveguide 15 is selected according to the frequency of the light incident from the input channel waveguide 11. In addition, it can be similarly operated as an optical multiplexer by passing through the reverse path.

【0006】図6は、従来のアレイ格子型光合分波器の
フィルタ特性の測定結果を示す。各チャネル導波路のコ
ア幅2a=7μm、コア厚2t=7μm、比屈折率差Δ
=0.75%とした。また、h1 =1mm、D1 =20μm、
2 =0.5 mm、D2 =12μm、R=14.4mm、d=S
=22μm、ΔL=79μm、回折次数m=74、N=16、M
=100 とした。
FIG. 6 shows measurement results of filter characteristics of a conventional array grating type optical multiplexer / demultiplexer. Core width 2a = 7 μm, core thickness 2t = 7 μm, relative refractive index difference Δ of each channel waveguide
= 0.75%. H 1 = 1 mm, D 1 = 20 μm,
h 2 = 0.5 mm, D 2 = 12 μm, R = 14.4 mm, d = S
= 22 μm, ΔL = 79 μm, diffraction order m = 74, N = 16, M
= 100.

【0007】このとき、従来のアレイ格子型光合分波器
のフィルタ特性は、各出力用チャネル導波路15の通過
中心波長が等間隔(図6では0.64nm間隔(波長1.55μ
m帯で80GHz間隔))であった。第2の扇形スラブ導波
路14において、波長λ(あるいは光周波数f)に対す
る集光スポット位置xの変化は、+xを図6における右
方向にとると、 Δx/Δλ=−RΔL/λ0d, Δx/Δf=−RΔL/f0d …(1) で与えられる。ここで、λ0 は波長多重信号の中心波長
であり、f0(=c/λ0)は中心光周波数である。式(1)
のR,ΔL,d,λ0 ,f0 はすべて一定値であるの
で、光の波長λ(光周波数f)に対する集光スポット位
置xの変化は一定であることがわかる。したがって、出
力用チャネル導波路15(入力用チャネル導波路14)
が等間隔に配置されている場合には、図6に示すように
分波される波長多重信号光(周波数多重信号光)の間隔
も一定になることが分る。
At this time, the filter characteristics of the conventional array grating type optical multiplexer / demultiplexer are such that the transmission center wavelengths of the output channel waveguides 15 are equally spaced (in FIG. 6, 0.64 nm spacing (wavelength 1.55 μm).
80 GHz interval in m band)). In the second fan-shaped slab waveguide 14, the change of the focused spot position x with respect to the wavelength λ (or the optical frequency f) is as follows, when + x is taken to the right in FIG. 6, Δx / Δλ = −RΔL / λ 0 d, Δx / Δf = −RΔL / f 0 d (1) Here, λ 0 is the center wavelength of the wavelength multiplexed signal, and f 0 (= c / λ 0 ) is the center optical frequency. Equation (1)
Since R, ΔL, d, λ 0 , and f 0 are all constant values, it can be seen that the change of the focused spot position x with respect to the light wavelength λ (light frequency f) is constant. Therefore, the output channel waveguide 15 (input channel waveguide 14)
Are arranged at equal intervals, it can be seen that the intervals of the wavelength-division multiplexed signal light (frequency multiplexed signal light) to be demultiplexed are also constant as shown in FIG.

【0008】[0008]

【発明が解決しようとする課題】従来のアレイ格子型光
合分波器では、周波数多重信号光(波長多重信号光)の
各光周波数(波長)が等間隔であるときに、4光波混合
によって周波数多重信号光(波長多重信号光)間にクロ
ストークが生じる問題があった。ここで、4光波混合と
は、光周波数fi ,fj ,fk (k≠i,j)の3つの
光波が光ファイバの3次の非線形感受率χ(3) を介して
相互作用し、光周波数fF=fi+fj−fkの光波を発生
させる非線形プロセスである。光周波数(波長)が等間
隔に配置された周波数多重信号光(波長多重信号光)で
は、4光波混合によって生じる新たな光波は、他の信号
周波数に重なってクロストークを生じさせることにな
る。
In the conventional array grating type optical multiplexer / demultiplexer, when the optical frequencies (wavelengths) of the frequency multiplexed signal light (wavelength multiplexed signal light) are equally spaced, the frequency is increased by four-wave mixing. There is a problem that crosstalk occurs between multiplexed signal lights (wavelength multiplexed signal lights). Here, four-wave mixing means that three light waves of optical frequencies f i , f j , f k (k ≠ i, j) interact via the third-order nonlinear susceptibility χ (3) of the optical fiber. , A non-linear process that generates a light wave of optical frequency f F = f i + f j −f k . In frequency multiplexed signal light (wavelength multiplexed signal light) in which optical frequencies (wavelengths) are arranged at equal intervals, a new light wave generated by four-wave mixing overlaps with another signal frequency and causes crosstalk.

【0009】したがって、4光波混合によるクロストー
クを抑制するためには、光信号の周波数間隔(波長間
隔)を不等間隔にする必要があり、これに対応して光合
分波器の光周波数フィルタ特性(光波長フィルタ特性)
も不等間隔にする必要があった。
Therefore, in order to suppress crosstalk due to four-wave mixing, it is necessary to make the frequency interval (wavelength interval) of the optical signal unequal, and accordingly, the optical frequency filter of the optical multiplexer / demultiplexer must correspond to this. Characteristics (optical wavelength filter characteristics)
Also needed to be unevenly spaced.

【0010】また、システムの要求や作製時のパラメー
タ変動に対応して、分波特性の中心波長を変えることが
できるようにするには、光合分波器の光周波数フィルタ
特性(光波長フィルタ特性)も不等間隔にする必要があ
った。
Further, in order to be able to change the center wavelength of the demultiplexing characteristic in response to the requirements of the system and fluctuations in parameters at the time of fabrication, the optical frequency filter characteristics of the optical multiplexer / demultiplexer (optical wavelength filter Characteristics) also needed to be unequally spaced.

【0011】本発明は、入力導波路の位置を変えること
により分波特性の中心波長が変わるアレイ格子型光合分
波器を提供することを目的とする。
It is an object of the present invention to provide an array grating type optical multiplexer / demultiplexer in which the center wavelength of the demultiplexing characteristic is changed by changing the position of the input waveguide.

【0012】[0012]

【課題を解決するための手段】本発明のアレイ格子型光
合分波器は、入力用チャネル導波路の間隔と、出力用チ
ャネル導波路の間隔が異なることを特徴とする。
An array grating type optical multiplexer / demultiplexer according to the present invention is characterized in that the distance between the input channel waveguides and the distance between the output channel waveguides are different.

【0013】[0013]

【作用】本発明のアレイ格子型光合分波器は、入力用チ
ャネル導波路の間隔と、出力用チャネル導波路の間隔が
異なるように形成することにより、入力導波路の位置を
変えることにより分波特性の中心波長を変えることがで
きる。
The array grating type optical multiplexer / demultiplexer according to the present invention is formed such that the distance between the input channel waveguides and the distance between the output channel waveguides are different from each other, thereby changing the position of the input waveguide. The center wavelength of the wave characteristic can be changed.

【0014】[0014]

【発明の実施の形態】本発明のアレイ格子型光合分波器
の基本構成は従来のものとほぼ同じである。すなわち、
図4に示すように、基板10上に形成したN本の入力用
チャネル導波路11、第1の扇形スラブ導波路12、所
定の導波路長差ΔLで順次長くなるM本の導波路からな
るチャネル導波路アレイ13、第2の扇形スラブ導波路
14、N本の出力用チャネル導波路15を順次接続した
構成である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic structure of an array grating type optical multiplexer / demultiplexer according to the present invention is almost the same as that of the conventional one. That is,
As shown in FIG. 4, the input channel waveguides 11 formed on the substrate 10, the first sector slab waveguides 12, and the M waveguides that are sequentially elongated by a predetermined waveguide length difference ΔL are formed. In this configuration, a channel waveguide array 13, a second fan-shaped slab waveguide 14, and N output channel waveguides 15 are sequentially connected.

【0015】本発明の特徴は、入力用チャネル導波路1
1の間隔と出力用チャネル導波路15の間隔がともに等
間隔であるものの両者の間隔が異なることである。図1
は、第1の扇形スラブ導波路12および第2の扇形スラ
ブ導波路14の近傍の構造を示す拡大図である。
A feature of the present invention is that an input channel waveguide 1 is provided.
Although the interval of 1 and the interval of the output channel waveguide 15 are both equal, they are different from each other. FIG.
3 is an enlarged view showing a structure near a first sector slab waveguide 12 and a second sector slab waveguide 14. FIG.

【0016】図において、本実施例では入力用チャネル
導波路11の間隔をS+δs(等間隔)とし、出力用チ
ャネル導波路15の間隔をS(等間隔)とする。ただ
し、入力用チャネル導波路11の中央の導波路位置は、
間隔がSである従来位置と同じとし、δs=S/10=2.
2 μmとした。その他のパラメータは、各チャネル導波
路のコア幅2a=7μm、コア厚2t=7μm、比屈折
率差Δ=0.75%とした。また、h1 =1mm、D1 =20
μm、h2 =0.5 mm、D2 =12μm、R=14.4mm、
d=22μm、ΔL=79μm、回折次数m=74、N=16、
M=100 とした。このとき、16チャネル(N=16)の場
合に、入力用チャネル導波路11の左側から数えてi番
目(i=1〜16)の導波路位置の従来位置からのずれφ
i は、 φi =(i−8)δs …(2) となる。
In this embodiment, in this embodiment, the interval between the input channel waveguides 11 is S + δs (equal interval), and the interval between the output channel waveguides 15 is S (equal interval). However, the center waveguide position of the input channel waveguide 11 is
Δs = S / 10 = 2.
It was 2 μm. Other parameters were the core width 2a of each channel waveguide = 7 μm, the core thickness 2t = 7 μm, and the relative refractive index difference Δ = 0.75%. H 1 = 1 mm, D 1 = 20
μm, h 2 = 0.5 mm, D 2 = 12 μm, R = 14.4 mm,
d = 22 μm, ΔL = 79 μm, diffraction order m = 74, N = 16,
M = 100. At this time, in the case of 16 channels (N = 16), the i-th (i = 1 to 16) waveguide position counted from the left side of the input channel waveguide 11 is shifted from the conventional position by φ.
i is as follows: φ i = (i−8) δs (2)

【0017】このようなパラメータに基づいてマスクを
作製し、石英系光導波路を用いて本実施例のアレイ格子
型光合分波器を作製した。まず、Si 基板(10)上に
火炎堆積法によりSiO2下部クラッド層を堆積し、次に
GeO2をドーパントとして添加したSiO2ガラスのコア
層を堆積した後に、電気炉で透明ガラス化した。次に、
前記設計に基づく図1,図4に示すパターンを用いてコ
ア層をエッチングして光導波路部分を作製した。最後
に、再びSiO2上部クラッド層を堆積した。
A mask was manufactured based on such parameters, and an array grating type optical multiplexer / demultiplexer of this embodiment was manufactured using a silica-based optical waveguide. First, an SiO 2 lower cladding layer was deposited on the Si substrate (10) by a flame deposition method, and then a core layer of SiO 2 glass doped with GeO 2 as a dopant was deposited, followed by transparent vitrification in an electric furnace. next,
Using the patterns shown in FIGS. 1 and 4 based on the above design, the core layer was etched to produce an optical waveguide portion. Finally, a SiO 2 upper cladding layer was deposited again.

【0018】このようにして作製されたアレイ格子型光
合分波器の分波特性を測定したところ、次のような結果
が得られた。ただし、δλ=チャネル間隔/10=0.064
nm(8GHz)である。
When the demultiplexing characteristics of the array grating type optical multiplexer / demultiplexer thus manufactured were measured, the following results were obtained. Where δλ = channel interval / 10 = 0.064
nm (8 GHz).

【0019】 6番目の入力導波路に波長多重信号光
を入射すると、7番目の出力導波路に(λ0 −2δλ)
の波長の光が出射され、他の出力導波路には0.64nm
(80GHz)間隔の異なる信号光が順次出射された。
When the wavelength multiplexed signal light enters the sixth input waveguide, (λ 0 −2δλ) is applied to the seventh output waveguide.
Is emitted, and the other output waveguide has a wavelength of 0.64 nm.
(80 GHz) signal lights having different intervals were sequentially emitted.

【0020】 7番目の入力導波路に波長多重信号光
を入射すると、8番目の出力導波路に(λ0 −δλ)の
波長の光が出射され、他の出力導波路には0.64nm間隔
の異なる信号光が順次出射された。
When wavelength-multiplexed signal light is incident on the seventh input waveguide, light having a wavelength of (λ 0 −δλ) is emitted on the eighth output waveguide, and the other output waveguides have a wavelength of 0.64 nm. Different signal lights were sequentially emitted.

【0021】 8番目の入力導波路に波長多重信号光
を入射すると、9番目の出力導波路にλ0 の波長の光が
出射され、他の出力導波路には0.64nm間隔の異なる信
号光が順次出射された。
When wavelength-division multiplexed signal light enters the eighth input waveguide, light having a wavelength of λ 0 is emitted to the ninth output waveguide, and different signal lights at 0.64 nm intervals are output to the other output waveguides. Emitted sequentially.

【0022】 9番目の入力導波路に波長多重信号光
を入射すると、10番目の出力導波路に(λ0 +δλ)の
波長の光が出射され、他の出力導波路には0.64nm間隔
の異なる信号光が順次出射された。
When the wavelength-division multiplexed signal light enters the ninth input waveguide, light having a wavelength of (λ 0 + δλ) is emitted to the tenth output waveguide, and the other output waveguides have different intervals of 0.64 nm. Signal light was sequentially emitted.

【0023】 10番目の入力導波路に波長多重信号光
を入射すると、11番目の出力導波路に(λ0 +2δλ)
の波長の光が出射され、他の出力導波路には0.64nm
(80GHz)間隔の異なる信号光が順次出射された。
When the wavelength-division multiplexed signal light enters the tenth input waveguide, (λ 0 + 2δλ) is applied to the eleventh output waveguide.
Is emitted, and the other output waveguide has a wavelength of 0.64 nm.
(80 GHz) signal lights having different intervals were sequentially emitted.

【0024】以上の結果から、本実施形態のアレイ格子
型光合分波器では、入力用チャネル導波路11の間隔と
出力用チャネル導波路15の間隔を相違させることによ
り、波長多重信号光を異なる入力導波路に入射した場合
の分波特性の中心波長を λ0 +jδλ (jは正負の整数) …(3) のように設定することができる。すなわち、要求条件に
応じて分波特性の中心波長を変えることができる。
From the above results, in the array grating type optical multiplexer / demultiplexer of this embodiment, the wavelength multiplexed signal light is made different by making the interval between the input channel waveguides 11 and the interval between the output channel waveguides 15 different. The center wavelength of the demultiplexing characteristic when the light enters the input waveguide can be set as λ 0 + jδλ (j is a positive or negative integer) (3). That is, the center wavelength of the demultiplexing characteristic can be changed according to the required conditions.

【0025】また、アレイ格子型光合分波器の作製時の
パラメータ変動によって中心波長がシステムの設定値か
らずれた場合にも、用いる入力用チャネル導波路11の
入力位置を変えることにより調整することができる。
Further, even when the center wavelength deviates from the set value of the system due to a parameter change at the time of manufacturing the array grating type optical multiplexer / demultiplexer, adjustment is made by changing the input position of the input channel waveguide 11 to be used. Can be.

【0026】(参考例)図2は、参考例における第2の
扇形スラブ導波路14の近傍の構造を示す拡大図であ
る。
(Reference Example) FIG. 2 is an enlarged view showing the structure near the second sector slab waveguide 14 in the reference example.

【0027】図において、本実施例では、si が左側か
ら数えて(i−1)番目とi番目(i=2〜N)の出力
用チャネル導波路15の間隔となる。その他の各パラメ
ータは図5に示す従来構成と同じである。なお、図中破
線は、図5に示す従来のアレイ格子型光合分波器におけ
る等間隔(S=22μm)の出力用チャネル導波路15の
位置を示す。また、入力用チャネル導波路11の間隔
は、等間隔でも不等間隔でも以下に示す不等間隔の光周
波数フィルタ特性は得られる。
[0027] In view, in the present embodiment, s i is the distance between the output channel waveguide 15 counted from the left (i-1) -th and the i-th (i = 2 to N). Other parameters are the same as those of the conventional configuration shown in FIG. The broken lines in the figure indicate the positions of the output channel waveguides 15 at equal intervals (S = 22 μm) in the conventional array grating type optical multiplexer / demultiplexer shown in FIG. Further, whether the input channel waveguides 11 are equally spaced or unevenly spaced, the following unequally spaced optical frequency filter characteristics can be obtained.

【0028】各チャネル導波路のコア幅2a=7μm、
コア厚2t=7μm、比屈折率差Δ=0.75%とした。ま
た、h1 =1mm、D1 =20μm、h2 =0.5 mm、D
2 =12μm、R=14.4mm、d=22μm、ΔL=79μ
m、回折次数m=74、N=16、M=100 とし、出力用チ
ャネル導波路15の間隔si として s2 =S−δs,s3 =S−δs,s4 =S+δs, s5 =S+δs,s6 =S−δs,s7 =S−δs,s8 =S+δs, s9 =S+δs,s10=S−δs,s11=S−δs,s12=S+δs, s13=S+δs,s14=S−δs,s15=S−δs,s16=S+δs …(4) と設定した。ただし、δs=S/4=5.5 μmとした。
Core width 2a of each channel waveguide = 7 μm,
The core thickness was 2t = 7 μm, and the relative refractive index difference Δ = 0.75%. H 1 = 1 mm, D 1 = 20 μm, h 2 = 0.5 mm,
2 = 12 μm, R = 14.4 mm, d = 22 μm, ΔL = 79 μ
m, diffraction orders m = 74, N = 16, M = 100, and s 2 = S−δs, s 3 = S−δs, s 4 = S + δs, s 5 = interval s i of the output channel waveguide 15. S + δs, s 6 = S -δs, s 7 = S-δs, s 8 = S + δs, s 9 = S + δs, s 10 = S-δs, s 11 = S-δs, s 12 = S + δs, s 13 = S + δs, s 14 = S−δs, s 15 = S−δs, s 16 = S + δs (4) However, δs = S / 4 = 5.5 μm.

【0029】このようなパラメータに基づいて作製され
たアレイ格子型光合分波器の分波特性を測定した結果を
図3に示す。この図からも分かるように、出力用チャネ
ル導波路15の各導波路ごとに分波される波長多重信号
光(周波数多重信号光)の間隔が不等間隔になることが
確認された。また、このような不等間隔の波長多重信号
光(周波数多重信号光)を用いることにより、4光波混
合によって生じる周波数fF=fi+fj−fkの不要光成
分と他の信号光の周波数とを相違させることができる。
これにより、4光波混合光が他の信号周波数に重なって
クロストークを生じさせることを抑制することができ
る。
FIG. 3 shows the results of measuring the demultiplexing characteristics of the array grating type optical multiplexer / demultiplexer manufactured based on such parameters. As can be seen from this figure, it has been confirmed that the wavelength multiplexed signal light (frequency multiplexed signal light) split for each waveguide of the output channel waveguide 15 has unequal intervals. In addition, by using such unequally-spaced wavelength multiplexed signal light (frequency multiplexed signal light), unnecessary light components having a frequency f F = f i + f j −f k generated by four-wave mixing and other signal light are used. The frequency can be different.
Thus, it is possible to prevent the four-wave mixing light from overlapping with another signal frequency and causing crosstalk.

【0030】[0030]

【発明の効果】以上説明したように、本発明のアレイ格
子型光合分波器では、入力導波路の位置を変えることに
より分波特性の中心波長を変えることができるので、シ
ステムの要求や作製時のパラメータ変動に容易に対応す
ることができる。
As described above, in the array grating type optical multiplexer / demultiplexer according to the present invention, the center wavelength of the demultiplexing characteristic can be changed by changing the position of the input waveguide. It is possible to easily cope with parameter fluctuations during manufacturing.

【0031】したがって、本発明のアレイ格子型光合分
波器は、光波長多重あるいは光周波数多重を用いた大容
量・長距離光通信に極めて有用な素子として利用するこ
とができる。
Therefore, the array grating type optical multiplexer / demultiplexer of the present invention can be used as a very useful element for large-capacity and long-distance optical communication using optical wavelength division multiplexing or optical frequency division multiplexing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の扇形スラブ導波路12および第2の扇形
スラブ導波路14の近傍の構造を示す拡大図。
FIG. 1 is an enlarged view showing a structure near a first sector slab waveguide 12 and a second sector slab waveguide 14. FIG.

【図2】第2の扇形スラブ導波路14の近傍の構造を示
す拡大図。
FIG. 2 is an enlarged view showing a structure near a second fan-shaped slab waveguide 14.

【図3】アレイ格子型光合分波器の分波特性の測定結果
を示す図。
FIG. 3 is a diagram showing measurement results of the demultiplexing characteristics of an array grating type optical multiplexer / demultiplexer.

【図4】アレイ格子型光合分波器の基本構成を示す図。FIG. 4 is a diagram showing a basic configuration of an array grating type optical multiplexer / demultiplexer.

【図5】第2の扇形スラブ導波路14の近傍の構造を示
す拡大図。
FIG. 5 is an enlarged view showing a structure near a second fan-shaped slab waveguide 14.

【図6】従来のアレイ格子型光合分波器の分波特性の測
定結果を示す図。
FIG. 6 is a diagram showing measurement results of the demultiplexing characteristics of a conventional array grating type optical multiplexer / demultiplexer.

【符号の説明】[Explanation of symbols]

10 基板 11 入力用チャネル導波路 12 第1の扇形スラブ導波路 13 チャネル導波路アレイ 14 第2の扇形スラブ導波路 15 出力用チャネル導波路 Reference Signs List 10 substrate 11 input channel waveguide 12 first sector slab waveguide 13 channel waveguide array 14 second sector slab waveguide 15 output channel waveguide

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−244105(JP,A) 特開 平6−194539(JP,A) 特開 平6−250030(JP,A) 特開 平7−225359(JP,A) 特開 平8−69021(JP,A) 米国特許5002350(US,A) 電子情報通信学会技術研究報告,Vo l.94 No.301(1994),pp.25 −31 (58)調査した分野(Int.Cl.7,DB名) G02B 6/12 - 6/14 G02B 6/28 G02B 5/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-244105 (JP, A) JP-A-6-194539 (JP, A) JP-A-6-250030 (JP, A) JP-A-7- 225359 (JP, A) JP-A-8-69021 (JP, A) US Patent 5002350 (US, A) IEICE Technical Report, Vol. 94 No. 301 (1994); 25-31 (58) Field surveyed (Int.Cl. 7 , DB name) G02B 6/12-6/14 G02B 6/28 G02B 5/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、入力用チャネル導波路と、出
力用チャネル導波路と、所定の導波路長差で順次長くな
る複数本の導波路からなるチャネル導波路アレイと、前
記入力用チャネル導波路と前記チャネル導波路アレイと
を接続する第1の扇形スラブ導波路と、前記チャネル導
波路アレイと前記出力用チャネル導波路とを接続する第
2の扇形スラブ導波路とを形成したアレイ格子型光合分
波器において、 前記入力用チャネル導波路と前記第1の扇形スラブ導波
路との境界における入力用チャネル導波路の間隔と、前
記第2の扇形スラブ導波路と前記出力用チャネル導波路
との境界における出力用チャネル導波路の間隔が異なる
ことを特徴とするアレイ格子型光合分波器。
1. A channel waveguide array comprising: an input channel waveguide; an output channel waveguide; a plurality of waveguides that are sequentially elongated by a predetermined waveguide length difference; An array grating formed with a first fan-shaped slab waveguide connecting a waveguide and the channel waveguide array and a second fan-shaped slab waveguide connecting the channel waveguide array and the output channel waveguide In the optical multiplexer / demultiplexer, an interval between the input channel waveguides at a boundary between the input channel waveguide and the first sector slab waveguide, the second sector slab waveguide and the output channel waveguide are provided. An array grating type optical multiplexer / demultiplexer, wherein the spacing between output channel waveguides at the boundary between the two is different.
JP2001028768A 2001-02-05 2001-02-05 Array grating type optical multiplexer / demultiplexer Expired - Lifetime JP3249960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028768A JP3249960B2 (en) 2001-02-05 2001-02-05 Array grating type optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028768A JP3249960B2 (en) 2001-02-05 2001-02-05 Array grating type optical multiplexer / demultiplexer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1823795A Division JP3247819B2 (en) 1995-02-06 1995-02-06 Array grating type optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JP2001242328A JP2001242328A (en) 2001-09-07
JP3249960B2 true JP3249960B2 (en) 2002-01-28

Family

ID=18893209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028768A Expired - Lifetime JP3249960B2 (en) 2001-02-05 2001-02-05 Array grating type optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP3249960B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053980B2 (en) * 2008-10-30 2012-10-24 日本電信電話株式会社 Optical wavelength division multiplexing signal monitoring apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子情報通信学会技術研究報告,Vol.94 No.301(1994),pp.25−31

Also Published As

Publication number Publication date
JP2001242328A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
US6163637A (en) Chirped waveguide grating router as a splitter/router
CA2198836C (en) Optical wavelength multiplexer/demultiplexer
EP1226461B1 (en) Phasar with flattened pass-band
EP0880036B1 (en) Method for altering the temperature dependence of optical waveguide devices
US6055349A (en) Optical waveguide device and manufacturing method therefor
JP4385224B2 (en) Optical waveguide device and optical waveguide module
JP3112246B2 (en) Array waveguide grating
US10495813B2 (en) Echelle grating multiplexer or demultiplexer
WO2000011508A1 (en) Array waveguide diffraction grating optical multiplexer/demultiplexer
JP2003035830A (en) Optical wavelength multiplexer/demultiplexer
JP2000171661A (en) Array waveguide diffraction grating type optical multiplexer/demultiplexer
JP2002323626A (en) Optical wavelength multiplexing and demultiplexing device and optical multiplexing and demultiplexing system
US20020176660A1 (en) Optical wavelength multiplexer/demultiplexer and use method thereof
JP3247819B2 (en) Array grating type optical multiplexer / demultiplexer
JP3249960B2 (en) Array grating type optical multiplexer / demultiplexer
JP3178781B2 (en) Array waveguide diffraction grating optical multiplexer / demultiplexer
JPH112733A (en) Array grating optical synthesizing and branching device
JP7124638B2 (en) wavelength checker
EP2518547B1 (en) Planar lightwave circuit and production method for planar lightwave circuit
JP4375256B2 (en) Waveguide-type temperature-independent optical multiplexer / demultiplexer
JP2000147280A (en) Method for correcting wavelength of optical multiplexer-demultiplexer
JP3214545B2 (en) Array waveguide grating
JP2002341158A (en) Array waveguide grating type optical wavelength multiplexer/demultiplexer
JP3144614B2 (en) Flat band characteristic array grating
JPWO2003083535A1 (en) Optical waveguide and optical multiplexer / demultiplexer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term