JP3775673B2 - Arrayed waveguide grating type optical multiplexer / demultiplexer - Google Patents

Arrayed waveguide grating type optical multiplexer / demultiplexer Download PDF

Info

Publication number
JP3775673B2
JP3775673B2 JP2002378882A JP2002378882A JP3775673B2 JP 3775673 B2 JP3775673 B2 JP 3775673B2 JP 2002378882 A JP2002378882 A JP 2002378882A JP 2002378882 A JP2002378882 A JP 2002378882A JP 3775673 B2 JP3775673 B2 JP 3775673B2
Authority
JP
Japan
Prior art keywords
waveguide
optical
parabolic
slab
arrayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002378882A
Other languages
Japanese (ja)
Other versions
JP2004212435A (en
Inventor
勤 鬼頭
靖之 井上
幹隆 井藤
善典 日比野
明正 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002378882A priority Critical patent/JP3775673B2/en
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to CNB200380107773XA priority patent/CN100381843C/en
Priority to US10/540,789 priority patent/US7400800B2/en
Priority to DE60331352T priority patent/DE60331352D1/en
Priority to PCT/JP2003/017065 priority patent/WO2004061496A1/en
Priority to AU2003292722A priority patent/AU2003292722A1/en
Priority to EP03768372A priority patent/EP1577685B1/en
Priority to KR1020057012049A priority patent/KR100722250B1/en
Publication of JP2004212435A publication Critical patent/JP2004212435A/en
Application granted granted Critical
Publication of JP3775673B2 publication Critical patent/JP3775673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光波長多重通信システムに用いるアレイ導波路格子型光合分波器に関する。
【0002】
【従来の技術】
現在、通信容量の拡大のために複数の光波長を用いた光波長多重通信システムの開発が盛んである。この光波長多重通信システムにおいて、送信機側で複数の波長の光信号を合波したり、受信機側で1本の光ファイバ中の複数の光信号を異なるポートに分波したりする光波長合分波回路として、アレイ導波路格子型光合分波回路が広く使用されている。
【0003】
図8に、従来のアレイ導波路格子型光合分波回路の構成を示す(例えば、非特許文献1参照)。
【0004】
図8に示すように、従来のアレイ導波路格子型光合分波回路は、入力導波路1と、入力導波路1に接続された第1のスラブ導波路2と、第1のスラブ導波路2に接続され、所定の導波路長差で順次長くなる複数の光導波路からなるアレイ導波路3と、アレイ導波路3に接続された第2のスラブ導波路4と、第2のスラブ導波路4に接続された複数の出力導波路5とを有する。これらは、平面な基板10上に形成された屈折率の高いコアとその回りのクラッドから成る光導波路を用いて構成されている。
【0005】
図8に示す従来のアレイ導波路格子型光合分波回路において、入力導波路1に導かれた光は、第1のスラブ導波路2で拡がり、アレイ導波路3の各々の光導波路へ分岐される。そして、第2のスラブ導波路4で再び合波されて出力導波路5へと導かれる。この時、第1のスラブ導波路2のアレイ導波路3側の端部に投射された光フィールドパターンは、基本的に第2のスラブ導波路4のアレイ導波路3側の端部にコピーされることになる。更に、アレイ導波路3では、隣り合う光導波路同士がΔLだけ光路長が異なるように設けられているため、入力された光の波長に依存して光フィールドが傾きを持つこととなる。この傾きによって、第2のスラブ導波路4の出力導波路5側において、光フィールドが焦点を結ぶ位置を波長ごとに変化させ、その結果、波長分波が可能となる。なお、出力導波路5側から光を入射する場合、光の相反性により、異なる波長の光を合波して、入力導波路1から光を出射することとなる。
【0006】
このようなアレイ導波路格子型光合分波回路は、1本の光ファイバに異なる波長を持つ信号を複数伝送させる光多重通信システムにおいて、必要不可欠な光部品となりつつある。
【0007】
更に、図1に示したアレイ導波路格子型光合分波回路の透過波長帯域幅を拡げたパスバンド拡大アレイ導波路格子型光合分波回路の提案も種々行われている(例えば、非特許文献2参照)。図9に、提案されている従来のパスバンド拡大アレイ導波路格子型光合分波回路の構成を示す。
【0008】
図9(a)に示すように、従来のパスバンド拡大アレイ導波路格子型光合分波回路は、図8に示した従来のアレイ導波路格子型光合分波回路の入力導波路1と第1のスラブ導波路2の間に、放物線状のパラボラ導波路6を設けた構成である。このパラボラ導波路6は、図9(b)に示すように、Aを係数、w0を入力導波路1の幅、z0を第1のスラブ導波路2からのパラボラ導波路6の長さとすると、第1のスラブ導波路2に接する入力光導波路1の幅wが、光波の伝搬軸zに対して、以下の数式で規定されるものである。
【数3】

Figure 0003775673
【0009】
このようなパラボラ導波路6を用いた場合、パラボラ導波路6が形成する光フィールドは図10に示すような分布となる。図10(a)は、図9(b)に示したパラボラ導波路6での光フィールドの3次元の分布図であり、図10(b)は、パラボラ導波路6の端部、即ち、パラボラ導波路6と第1のスラブ導波路2との境界でのパラボラ導波路6の幅方向(x方向)の光フィールドの2次元の分布図である。
【0010】
図10(a)に示すように、入力導波路1における光フィールドは、1つのピークを有しているが、パラボラ導波路6においては(図10(a)中z=−z0の位置から右側の部分)、2つのピークを有する光フィールド分布を形成する。そして、パラボラ導波路6がスラブ導波路2と接する境界部分での光フィールドの分布は、図10(b)に示すように、ダブルピークを有するものとなる。したがって、第2のスラブ導波路4の出力導波路5側の端部でも、このタブルピークを持った光フィールドが再生されて出力導波路5と結合するため、透過波長帯域の拡大を実現することができる。
【0011】
【非特許文献1】
K. Okamoto, "Fundamentals of Optical Waveguides", Academic Press, pp. 346-381, 2000
【非特許文献2】
K. Okamoto and A. Sugita, "Flat spectral response arrayed-Waveguide grating multiplexer with Parabolic waveguide horns", Electronics Letters, Vol.32, No. 18, pp. 1661-1662, 1996
【0012】
【発明が解決しようとする課題】
しかしながら、上述したパラボラ導波路を備えた従来のパスバンド拡大アレイ導波路格子型光合分波回路は、重大な欠点を有していた。すなわち、パラボラ導波路内の位相分布に起因する大きな波長分散値を有していた。図11に、従来のパスバンド拡大アレイ導波路格子型光合分波回路における光の波長に対する波長分散及び損失のグラフを示す。図11から明らかなように、光の波長に対する波長分散は、中心波長において大きな波長分散値を有し、そこを最大の波長分散値として、その前後の波長において大きく変化していることが分かる。このような波長分散特性は、1つのチャネル内で光の信号スペクトル成分に異なる遅延時間を与えるため、光信号(パルス)の劣化が著しいという問題を引き起こしていた。
【0013】
本発明は上記課題に鑑みなされたもので、波長分散を低減したアレイ導波路格子型光合分波回路を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1に係るアレイ導波路格子型光合分波回路は、平面基板上の屈折率の高いコアとその回りのクラッドから成る光導波路を用いて構成され、複数の第1の光導波路と、前記第1の光導波路に接続された第1のスラブ導波路と、前記第1のスラブ導波路に接続され、所定の導波路長差で順次長くなる複数の光導波路からなるアレイ導波路と、前記アレイ導波路に接続された第2のスラブ導波路と、前記第2のスラブ導波路に接続された複数の第2の光導波路とを有し、前記第1のスラブ導波路に接する前記第1の光導波路の幅wが、光波の伝搬軸zに対して、Aを係数、w0を前記第1の光導波路の幅、z0を前記第1のスラブ導波路からの長さとすると、
【数4】
Figure 0003775673
によって規定されるパラボラ導波路であり、
前記第2のスラブ導波路に接する前記第2の光導波路の幅w’が、光波の伝搬軸zに対して、A’を係数、w’0を前記第2の光導波路の幅、z’0を前記第2のスラブ導波路からの長さとすると、
【数5】
Figure 0003775673
によって規定されるテーパ導波路であり、
前記パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの振幅絶対値の比が0.18以上、0.22以下の範囲であり、かつ、前記パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの相対位相が−2.9ラジアン以上、−2.0ラジアン以下の範囲であるように、前記長さz0を設定したことを特徴とする。
更に、パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの振幅の符号が反転していればより望ましい。
【0016】
上記課題を解決する本発明の請求項に係るアレイ導波路格子型光合分波回路は、前記光導波路が、シリコンの平面基板上の石英系ガラス光導波路で構成されていることを特徴とする。
【0017】
【発明の実施の形態】
アレイ導波路格子型光合分波回路において、平坦な透過特性のパスバンドを有し、更に、低波長分散であるためには、パラボラ導波路を有し、更に、そのパラボラ導波路の遠方界の電界分布が等位相で矩形であることが望ましい。この場合のパラボラ導波路の遠方界の電界分布の振幅は、sinc関数になることが知られている。一般的なsinc関数の数式を以下に示し、sinc関数となる振幅及び位相のグラフを図1に示す。
【数6】
Figure 0003775673
ここで、変数ξは角度(rad.)をπにより規格化したものである。
図1に示すように、sinc関数となる振幅は、中心にメイン・ピークを有し、その両側に対称的に複数の小さいピークを有する分布となる。又、位相は変数ξ=0近傍に平坦な位相(等位相)部分を有する矩形波となる。
【0018】
一方、実際のパラボラ導波路の遠方界の電界分布は図2に示すグラフとなる。図2に示すように、パラボラ導波路の遠方界の電界分布の振幅は、sinc関数に類似しており、メイン・ピークの両側に2つのサイド・ピーク(第1サイド・ピーク)が存在する分布となる。又、位相は角度θ=0近傍に略平坦な位相部分を有する分布となる。なお、図2のグラフにおいて、振幅は絶対値を示し、角度θはパラボラ導波路に入射する光波の進行方向(光軸)を0としたものである。
【0019】
図1、図2の比較からわかるように、理想的な電界分布、即ち、等位相で矩形状の電界分布とするには、実際のパラボラ導波路の遠方界の電界分布において、そのメイン・ピークの振幅、位相を基準として、第1サイド・ピークの振幅、位相を、sinc関数との近似尺度として考えればよい。つまり、本発明は、アレイ導波路格子型光合分波回路において、パラボラ導波路の遠方界の電界分布をsinc関数との近似尺度として規定することにより、等位相で矩形状の電界分布とし、平坦なパスバンドの透過特性及び低波長分散を実現するものである。
【0020】
実際のパラボラ導波路の遠方界の電界分布において、そのメイン・ピークの振幅、位相に対する第1サイド・ピークの振幅、位相を、sinc関数との近似尺度として考えるために図示したものが図3である。これは、メイン・ピークの振幅を1とした場合の第1サイド・ピークの振幅を振幅比とし、メイン・ピークの位相に対する第1サイド・ピークの位相の差を相対位相として、変数ζに対してそれぞれプロットしたものである。この変数ζは、パラボラ導波路の構造を示すパラメータであり、従来のパラボラ導波路の設計値の長さがζ=1となるように規格化したものであり、パラボラ導波路の長さz0に相関する変数である。
【0021】
次に、変数ζにより構造が特定されたパラボラ導波路を有し、パスバンドが拡大されたアレイ導波路格子型光合分波回路での波長分散特性を図4に示す。図4でも、パラボラ導波路の構造を示すパラメータとして変数ζを用い、その変数ζに対する波長分散をプロットした。又、これは、チャネル内で最も大きな波長分散を与える波長(例えば、図11中の1550nm付近の波長)について、パラボラ導波路の構造を示す変数ζへの波長分散の依存性を示したものである。なお、このアレイ導波路格子型光合分波回路は、チャネル間隔が50GHzである。
【0022】
図4のグラフに示すように、変数ζを特定の設定値にすると、従来と比較して波長分散が大幅に低減されることがわかる。つまり、パラボラ導波路の構造を示す変数ζを適切に設定することで、パラボラ導波路の遠方界の電界分布を適切に規定することとなり、結果的に波長分散値が低減されることを意味する。具体的には、「パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの振幅絶対値の比が0.25以下」である、又、「パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの相対位相が3.5ラジアン以内」である条件の下で(図3参照)、変数ζが波長分散を低減する最適な値となる。したがって、従来からパラボラ導波路が有していた透過波長の広帯域特性と、従来は同時に実現することがなかった低波長分散特性とを、同時に実現することができる。
【0023】
更に、従来は、波長分散を導出するためには、アレイ導波路格子型光合分波回路全体を数値計算等によって解析し、その伝達関数の位相角の2階微分より、波長分散を導出していた。しかし、本発明では、変数ζを用いることにより、波長分散を導出する手順が省略できるため、パラボラ導波路の長さを適切に決定する指針を与えることができ、光回路製造における設計時間を大幅に短縮することができる。
【0024】
図5に、上記効果を実現する本発明に係る実施形態の一例となるアレイ導波路格子型光合分波回路の構成図を示し、図面を参照して詳細に説明する。
【0025】
図5(a)に示す本発明に係るアレイ導波路格子型光合分波回路は、図8に示した従来のアレイ導波路格子型光合分波回路と略同等の構成でよい。即ち、第1の光導波路となる入力導波路1と、入力導波路1に接続された第1のスラブ導波路2と、第1のスラブ導波路2に接続され、所定の導波路長差で順次長くなる複数の光導波路からなるアレイ導波路3と、アレイ導波路3に接続された第2のスラブ導波路4と、第2のスラブ導波路4に複数接続された第2の光導波路となる出力導波路5とを有する。これらは、平面な基板10上に形成された屈折率の高いコアとその回りのクラッドから成る光導波路を用いて構成されている。なお、入力導波路1は複数でもよい。
【0026】
又、入力導波路1と第1のスラブ導波路2の間に、放物線状のパラボラ導波路6を設けてある。このパラボラ導波路6も、図9(b)に示したものと同等のものでよく、Aを係数、w0を入力導波路1の幅、z0を第1のスラブ導波路2からのパラボラ導波路6の長さとすると、第1のスラブ導波路2に接する入力光導波路1の幅wが、光波の伝搬軸zに対して、以下の数式で規定されるものである(図5(b)参照)。
【数7】
Figure 0003775673
但し、0≧z≧−z0であり、A>0である。
【0027】
但し、本発明では、上記数式(1)に規定されるパラボラ導波路の構造を、図3、図4に示したグラフより、波長分散の小さい変数ζになるようにz0を設定する。つまり、パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの振幅絶対値の比が0.25以下であること、又、遠方界の電界分布のメイン・ピークと第1サイド・ピークの相対位相が3.5ラジアン以内であることが条件となる。更に、相対位相がπラジアン以上であること、つまり、パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの振幅の符号が反転していればより望ましい。
【0028】
又、本発明に係るアレイ導波路格子型光合分波回路では、第2のスラブ導波路4と出力導波路5との間に、更に、テーパ状のテーパ導波路7を設けてある。このテーパ導波路7は、A’を係数、w’0を出力導波路5の幅、z’0を第2のスラブ導波路4からのテーパ導波路7の長さとすると、第2のスラブ導波路4に接する出力光導波路5の幅w’が、光波の伝搬軸zに対して、以下の数式で規定されるものである(図5(c)参照)。
【数8】
Figure 0003775673
但し、0≧z≧−z’0であり、A≧0である。
なお、上記テーパ導波路は、A’=0の場合、つまり、テーパ導波路の傾きが0である平行な光導波路を含み、必ずしもテーパ形状である必要はない。
【0029】
次に、本発明に係る光回路の導波路の作製方法を、図6を用いて簡単に説明する。
【0030】
平面基板となるシリコン基板11上に火炎堆積法でSiO2を主体にした下部クラッドガラススート12、SiO2にGeO2を添加したコアガラススート13を堆積する(図6の(a)参照)。
【0031】
その後、1000℃以上の高温でガラス透明化を行い、下部クラッドガラススート12は下部クラッドガラス層14となり、コアガラススート13はコアガラス15となる。この時に、下部クラッドガラス層14は30μm厚、コアガラス15は7μm厚となるように、下部クラッドガラススート12、コアガラススート13の堆積は行われている(図6の(b))。
【0032】
引き続き、フォトリソグラフィ技術を用いてコアガラス15上にエッチングマスク16を形成し(図6の(c))、反応性イオンエッチングによってコアガラス15のパターン化を行う(図6の(d))。ここで、図5に示すような形状の光導波路を形成することとなる。
【0033】
エッチングマスク16を除去した後、上部クラッドガラス17を再度火炎堆積法で形成する。上部クラッドガラス17にはB23やP25などのドーパントを添加してガラス転移温度を下げ、パターン化されたコアガラス15同士の狭い隙間にも上部クラッドガラス17が入り込むようにしている(図6の(e))。
【0034】
上記光回路は、本発明に係る実施形態の一例として、光導波路がシリコンの平面基板上の石英系ガラス光導波路で構成されているアレイ導波路格子型光合分波回路を示したものであるが、その光導波路の材料がポリイミド、シリコーン、半導体、LiNbO3などであっても本発明は適用可能である。また、平面基板もシリコンに限定するものではない。
【0035】
本発明に基づいて設計したチャネル間隔50GHzのアレイ導波路格子型光合分波回路の波長分散特性及び損失を図7に示す。図7に示すように、本発明に係るアレイ導波路格子型光合分波回路では、−15ps/nm以下の低波長分散特性が実現されると共に、波長に対する波長分散を3dB帯域内で略平坦化することもできた。この波長分散は、図4に示した従来設計による分散値−58ps/nmと比較して、略1/4(約26%)まで大きく低減されている。
【0036】
【発明の効果】
以上説明したように、本発明によれば、アレイ導波路格子型光合分波回路の透過波長のパスバンドを拡大すると共に、従来同時に達成することができなかった波長分散の低減を実現することができ、又、波長に対する波長分散のばらつきも略平坦化することができる。更に、従来技術において明らかでなかったパラボラ導波路の設計指針を与えることによって、設計の効率化を図ることもできる。
【図面の簡単な説明】
【図1】一般的なsinc関数の振幅及び位相を示すグラフである。
【図2】パラボラ導波路の遠方界の振幅及び位相を示すグラフである。
【図3】メイン・ピークに対する第1サイド・ピークの振幅及び位相とパラボラ導波路の構造を示す変数ζとの関係を示すグラフである。
【図4】波長分散とパラボラ導波路の構造を示す変数ζとの関係を示すグラフである。
【図5】本発明に係る実施形態の一例を示すアレイ導波路格子型光合分波回路の構成図である。(a)は全体図であり、(b)はパラボラ導波路の構成図、(c)はテーパ導波路の構成図である。
【図6】本発明に係るアレイ導波路格子型光合分波回路の製造工程を示す図である。
【図7】本発明に係るアレイ導波路格子型光合分波回路の波長分散特性及び損失を示すグラフである。
【図8】従来のアレイ導波路格子型光合分波回路の構成図である。
【図9】従来のパスバンド拡大アレイ導波路格子型光合分波回路の構成図である。(a)は全体図であり、(b)はパラボラ導波路の構成図である。
【図10】パラボラ導波路の光フィールドの分布図である。
【図11】従来のパスバンド拡大アレイ導波路格子型光合分波回路の波長分散特性及び損失を示すグラフである。
【符号の説明】
1 入力導波路
2 第1のスラブ導波路
3 アレイ導波路
4 第2のスラブ導波路
5 出力導波路
6 パラボラ導波路
7 テーパ導波路
10 基板
11 シリコン基板
12 下部クラッドガラススート
13 コアガラススート
14 下部クラッドガラス層
15 コアガラス
16 エッチングマスク
17 上部クラッドガラス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an arrayed waveguide grating type optical multiplexer / demultiplexer used in an optical wavelength division multiplexing communication system.
[0002]
[Prior art]
Currently, an optical wavelength division multiplexing communication system using a plurality of optical wavelengths is being actively developed to expand communication capacity. In this optical wavelength division multiplexing communication system, an optical wavelength for multiplexing optical signals of a plurality of wavelengths on the transmitter side or demultiplexing a plurality of optical signals in one optical fiber to different ports on the receiver side. As a multiplexing / demultiplexing circuit, an arrayed waveguide grating type optical multiplexing / demultiplexing circuit is widely used.
[0003]
FIG. 8 shows a configuration of a conventional arrayed waveguide grating type optical multiplexing / demultiplexing circuit (see, for example, Non-Patent Document 1).
[0004]
As shown in FIG. 8, the conventional arrayed waveguide grating type optical multiplexing / demultiplexing circuit includes an input waveguide 1, a first slab waveguide 2 connected to the input waveguide 1, and a first slab waveguide 2. , A second slab waveguide 4 connected to the arrayed waveguide 3, and a second slab waveguide 4. And a plurality of output waveguides 5 connected to each other. These are configured by using an optical waveguide composed of a core having a high refractive index formed on a flat substrate 10 and a cladding around the core.
[0005]
In the conventional arrayed waveguide grating type optical multiplexing / demultiplexing circuit shown in FIG. 8, the light guided to the input waveguide 1 is spread by the first slab waveguide 2 and branched to each optical waveguide of the arrayed waveguide 3. The Then, it is multiplexed again by the second slab waveguide 4 and guided to the output waveguide 5. At this time, the optical field pattern projected on the end of the first slab waveguide 2 on the array waveguide 3 side is basically copied to the end of the second slab waveguide 4 on the array waveguide 3 side. Will be. Further, in the arrayed waveguide 3, since the adjacent optical waveguides are provided so that their optical path lengths differ by ΔL, the optical field has an inclination depending on the wavelength of the input light. By this inclination, the position where the optical field is focused on the output waveguide 5 side of the second slab waveguide 4 is changed for each wavelength, and as a result, wavelength demultiplexing becomes possible. When light is incident from the output waveguide 5 side, light of different wavelengths is combined and emitted from the input waveguide 1 due to the reciprocity of the light.
[0006]
Such an arrayed waveguide grating type optical multiplexing / demultiplexing circuit is becoming an indispensable optical component in an optical multiplexing communication system in which a plurality of signals having different wavelengths are transmitted through one optical fiber.
[0007]
Further, various proposals have been made on passband expansion array waveguide grating type optical multiplexing / demultiplexing circuits in which the transmission wavelength bandwidth of the arrayed waveguide grating type optical multiplexing / demultiplexing circuit shown in FIG. 1 is expanded (for example, non-patent literature). 2). FIG. 9 shows the configuration of a proposed conventional passband expansion array waveguide grating type optical multiplexing / demultiplexing circuit.
[0008]
As shown in FIG. 9A, the conventional passband expansion array waveguide grating type optical multiplexing / demultiplexing circuit includes the input waveguide 1 and the first one of the conventional arrayed waveguide grating type optical multiplexing / demultiplexing circuit shown in FIG. A parabolic parabolic waveguide 6 is provided between the two slab waveguides 2. In this parabolic waveguide 6, as shown in FIG. 9B, A is a coefficient, w 0 is the width of the input waveguide 1, and z 0 is the length of the parabolic waveguide 6 from the first slab waveguide 2. Then, the width w of the input optical waveguide 1 in contact with the first slab waveguide 2 is defined by the following formula with respect to the propagation axis z of the light wave.
[Equation 3]
Figure 0003775673
[0009]
When such a parabolic waveguide 6 is used, the optical field formed by the parabolic waveguide 6 has a distribution as shown in FIG. 10A is a three-dimensional distribution diagram of an optical field in the parabolic waveguide 6 shown in FIG. 9B, and FIG. 10B is an end portion of the parabolic waveguide 6, that is, the parabolic structure. FIG. 6 is a two-dimensional distribution diagram of an optical field in the width direction (x direction) of the parabolic waveguide 6 at the boundary between the waveguide 6 and the first slab waveguide 2.
[0010]
As shown in FIG. 10A, the optical field in the input waveguide 1 has one peak, but in the parabolic waveguide 6 (from the position of z = −z 0 in FIG. 10A). (Right part) forms a light field distribution with two peaks. Then, the distribution of the optical field at the boundary portion where the parabolic waveguide 6 is in contact with the slab waveguide 2 has a double peak as shown in FIG. Therefore, since the optical field having this double peak is regenerated and coupled to the output waveguide 5 at the end of the second slab waveguide 4 on the output waveguide 5 side, the transmission wavelength band can be expanded. Can do.
[0011]
[Non-Patent Document 1]
K. Okamoto, "Fundamentals of Optical Waveguides", Academic Press, pp. 346-381, 2000
[Non-Patent Document 2]
K. Okamoto and A. Sugita, "Flat spectral response arrayed-Waveguide grating multiplexer with Parabolic waveguide horns", Electronics Letters, Vol.32, No. 18, pp. 1661-1662, 1996
[0012]
[Problems to be solved by the invention]
However, the conventional passband expansion array waveguide grating type optical multiplexing / demultiplexing circuit including the parabolic waveguide described above has a serious drawback. That is, it has a large chromatic dispersion value due to the phase distribution in the parabolic waveguide. FIG. 11 shows a graph of chromatic dispersion and loss versus wavelength of light in a conventional passband expansion array waveguide grating type optical multiplexing / demultiplexing circuit. As is apparent from FIG. 11, the chromatic dispersion with respect to the wavelength of the light has a large chromatic dispersion value at the center wavelength, which is the maximum chromatic dispersion value, and changes greatly at the wavelengths before and after that. Such chromatic dispersion characteristics give different delay times to the signal spectrum components of light within one channel, causing a problem that the deterioration of the optical signal (pulse) is significant.
[0013]
The present invention has been made in view of the above problems, and an object thereof is to provide an arrayed waveguide grating type optical multiplexing / demultiplexing circuit with reduced chromatic dispersion.
[0014]
[Means for Solving the Problems]
An arrayed waveguide grating type optical multiplexing / demultiplexing circuit according to a first aspect of the present invention for solving the above-mentioned problems is configured by using an optical waveguide comprising a core having a high refractive index on a flat substrate and a clad around the core. A first optical waveguide, a first slab waveguide connected to the first optical waveguide, and a plurality of optical waveguides connected to the first slab waveguide and sequentially longer with a predetermined waveguide length difference An arrayed waveguide comprising: a second slab waveguide connected to the arrayed waveguide; and a plurality of second optical waveguides connected to the second slab waveguide. The width w of the first optical waveguide in contact with the slab waveguide is such that A is a coefficient, w0 is the width of the first optical waveguide, and z0 is the width of the first optical waveguide with respect to the propagation axis z of the light wave. If the length of
[Expression 4]
Figure 0003775673
Is a parabolic waveguide defined by
The width w ′ of the second optical waveguide in contact with the second slab waveguide is a coefficient A ′ with respect to the propagation axis z of the light wave, w′0 is the width of the second optical waveguide, and z ′. If 0 is the length from the second slab waveguide,
[Equation 5]
Figure 0003775673
A tapered waveguide defined by
The ratio of the amplitude absolute value of the main peak and the first side peak of the electric field distribution in the far field of the parabolic waveguide is in the range of 0.18 to 0.22 , and the far field of the parabolic waveguide The length z0 is set so that the relative phase of the main peak and the first side peak of the electric field distribution is in the range of −2.9 radians to −2.0 radians .
Furthermore, it is more desirable if the sign of the amplitude of the main peak and the first side peak in the far field distribution of the parabolic waveguide is inverted.
[0016]
The arrayed waveguide grating type optical multiplexing / demultiplexing circuit according to claim 2 of the present invention for solving the above-mentioned problems is characterized in that the optical waveguide is composed of a silica-based glass optical waveguide on a silicon flat substrate. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In an arrayed waveguide grating type optical multiplexing / demultiplexing circuit, it has a flat transmission characteristic passband, and further has a parabolic waveguide for low wavelength dispersion, and further, a far field of the parabolic waveguide. It is desirable that the electric field distribution is equiphase and rectangular. In this case, it is known that the amplitude of the electric field distribution in the far field of the parabolic waveguide is a sinc function. A formula of a general sinc function is shown below, and a graph of amplitude and phase that becomes a sinc function is shown in FIG.
[Formula 6]
Figure 0003775673
Here, the variable ξ is the angle (rad.) Normalized by π.
As shown in FIG. 1, the amplitude that is a sinc function has a distribution having a main peak at the center and a plurality of small peaks symmetrically on both sides thereof. The phase is a rectangular wave having a flat phase (equal phase) portion in the vicinity of the variable ξ = 0.
[0018]
On the other hand, the far field distribution of the actual parabolic waveguide is shown in the graph of FIG. As shown in FIG. 2, the amplitude of the far-field electric field distribution of the parabolic waveguide is similar to the sinc function, and the distribution has two side peaks (first side peaks) on both sides of the main peak. It becomes. The phase has a distribution having a substantially flat phase portion near the angle θ = 0. In the graph of FIG. 2, the amplitude indicates an absolute value, and the angle θ indicates that the traveling direction (optical axis) of the light wave incident on the parabolic waveguide is zero.
[0019]
As can be seen from the comparison between FIG. 1 and FIG. 2, in order to obtain an ideal electric field distribution, that is, an equiphase rectangular electric field distribution, the main peak in the far field electric field distribution of an actual parabolic waveguide is obtained. The amplitude and phase of the first side peak may be considered as an approximate scale with the sinc function on the basis of the amplitude and phase of. That is, according to the present invention, in the arrayed waveguide grating type optical multiplexing / demultiplexing circuit, the electric field distribution in the far field of the parabolic waveguide is defined as an approximate scale with the sinc function, thereby obtaining a rectangular electric field distribution with an equal phase and a flat shape. This realizes a transmission characteristic of a low passband and low wavelength dispersion.
[0020]
FIG. 3 shows the amplitude of the main peak, the amplitude of the first side peak relative to the phase, and the phase as an approximate measure with the sinc function in the far-field electric field distribution of the actual parabolic waveguide. is there. This is because the amplitude of the amplitude of the first side peak when the amplitude of the main peak is 1 is the amplitude ratio, and the relative phase is the difference between the phase of the first side peak and the phase of the main peak. Are plotted. This variable ζ is a parameter indicating the structure of the parabolic waveguide, which is standardized so that the length of the design value of the conventional parabolic waveguide is ζ = 1, and the length z 0 of the parabolic waveguide. Is a variable that correlates to
[0021]
Next, FIG. 4 shows wavelength dispersion characteristics in an arrayed waveguide grating type optical multiplexing / demultiplexing circuit having a parabolic waveguide whose structure is specified by a variable ζ and having an expanded passband. Also in FIG. 4, the variable ζ is used as a parameter indicating the structure of the parabolic waveguide, and the chromatic dispersion is plotted with respect to the variable ζ. This shows the dependence of the wavelength dispersion on the variable ζ indicating the structure of the parabolic waveguide for a wavelength that gives the largest wavelength dispersion in the channel (for example, a wavelength around 1550 nm in FIG. 11). is there. This arrayed waveguide grating type optical multiplexing / demultiplexing circuit has a channel spacing of 50 GHz.
[0022]
As shown in the graph of FIG. 4, it can be seen that when the variable ζ is set to a specific setting value, the chromatic dispersion is significantly reduced as compared with the conventional case. In other words, by appropriately setting the variable ζ indicating the structure of the parabolic waveguide, the electric field distribution in the far field of the parabolic waveguide is appropriately defined, which means that the chromatic dispersion value is reduced as a result. . Specifically, “the ratio of the absolute value of the amplitude of the main peak of the far field of the parabolic waveguide to the first side peak is 0.25 or less”, and “the far field of the parabolic waveguide is Under the condition that the relative phase of the main peak and the first side peak of the electric field distribution is within 3.5 radians (see FIG. 3), the variable ζ is an optimum value for reducing chromatic dispersion. Therefore, it is possible to simultaneously realize the broadband characteristic of the transmission wavelength that the parabolic waveguide has conventionally had and the low wavelength dispersion characteristic that has not been realized simultaneously.
[0023]
Furthermore, conventionally, in order to derive chromatic dispersion, the entire arrayed waveguide grating type optical multiplexing / demultiplexing circuit is analyzed by numerical calculation or the like, and chromatic dispersion is derived from the second derivative of the phase angle of the transfer function. It was. However, in the present invention, by using the variable ζ, the procedure for deriving the chromatic dispersion can be omitted. Therefore, a guideline for appropriately determining the length of the parabolic waveguide can be provided, which greatly increases the design time in optical circuit manufacturing. Can be shortened.
[0024]
FIG. 5 shows a configuration diagram of an arrayed waveguide grating type optical multiplexing / demultiplexing circuit as an example of an embodiment according to the present invention that realizes the above effect, and will be described in detail with reference to the drawings.
[0025]
The arrayed waveguide grating type optical multiplexing / demultiplexing circuit according to the present invention shown in FIG. 5A may have substantially the same configuration as the conventional arrayed waveguide grating type optical multiplexing / demultiplexing circuit shown in FIG. That is, the input waveguide 1 serving as the first optical waveguide, the first slab waveguide 2 connected to the input waveguide 1, and the first slab waveguide 2 are connected to each other with a predetermined waveguide length difference. An array waveguide 3 composed of a plurality of optical waveguides that become longer in sequence, a second slab waveguide 4 connected to the array waveguide 3, and a second optical waveguide connected to the second slab waveguide 4 Output waveguide 5. These are configured by using an optical waveguide composed of a core having a high refractive index formed on a flat substrate 10 and a cladding around the core. The input waveguide 1 may be plural.
[0026]
Further, a parabolic parabolic waveguide 6 is provided between the input waveguide 1 and the first slab waveguide 2. This parabolic waveguide 6 may be the same as that shown in FIG. 9B, where A is a coefficient, w 0 is the width of the input waveguide 1, z 0 is the parabolic from the first slab waveguide 2. Assuming the length of the waveguide 6, the width w of the input optical waveguide 1 in contact with the first slab waveguide 2 is defined by the following equation with respect to the propagation axis z of the light wave (FIG. 5B). )reference).
[Expression 7]
Figure 0003775673
However, 0 ≧ z ≧ −z 0 and A> 0.
[0027]
However, in the present invention, z 0 is set so that the parabolic waveguide structure defined by the above formula (1) becomes a variable ζ having a small chromatic dispersion from the graphs shown in FIGS. That is, the ratio of the absolute value of the amplitude of the far-field electric field distribution of the parabolic waveguide to the first side peak is 0.25 or less, and the far-field electric field distribution main peak and the first peak. The condition is that the relative phase of the side peak is within 3.5 radians. Furthermore, it is more desirable that the relative phase is π radians or more, that is, the sign of the amplitude of the main peak and the first side peak in the far field distribution of the parabolic waveguide is inverted.
[0028]
In the arrayed waveguide grating type optical multiplexing / demultiplexing circuit according to the present invention, a tapered taper waveguide 7 is further provided between the second slab waveguide 4 and the output waveguide 5. This taper waveguide 7 has a second slab waveguide, where A ′ is a coefficient, w ′ 0 is the width of the output waveguide 5, and z ′ 0 is the length of the taper waveguide 7 from the second slab waveguide 4. The width w ′ of the output optical waveguide 5 in contact with the waveguide 4 is defined by the following formula with respect to the propagation axis z of the light wave (see FIG. 5C).
[Equation 8]
Figure 0003775673
However, 0 ≧ z ≧ −z ′ 0 and A ≧ 0.
The tapered waveguide includes a parallel optical waveguide in which A ′ = 0, that is, the tapered waveguide has an inclination of 0, and does not necessarily have a tapered shape.
[0029]
Next, a method for manufacturing a waveguide of an optical circuit according to the present invention will be briefly described with reference to FIG.
[0030]
A lower clad glass soot 12 mainly composed of SiO 2 and a core glass soot 13 obtained by adding GeO 2 to SiO 2 are deposited on a silicon substrate 11 serving as a flat substrate by a flame deposition method (see FIG. 6A).
[0031]
Thereafter, the glass is made transparent at a high temperature of 1000 ° C. or higher. The lower clad glass soot 12 becomes the lower clad glass layer 14 and the core glass soot 13 becomes the core glass 15. At this time, the lower clad glass soot 12 and the core glass soot 13 are deposited so that the lower clad glass layer 14 is 30 μm thick and the core glass 15 is 7 μm thick (FIG. 6B).
[0032]
Subsequently, an etching mask 16 is formed on the core glass 15 by using a photolithography technique (FIG. 6C), and the core glass 15 is patterned by reactive ion etching (FIG. 6D). Here, an optical waveguide having a shape as shown in FIG. 5 is formed.
[0033]
After removing the etching mask 16, the upper clad glass 17 is formed again by the flame deposition method. A dopant such as B 2 O 3 or P 2 O 5 is added to the upper clad glass 17 to lower the glass transition temperature so that the upper clad glass 17 enters a narrow gap between the patterned core glasses 15. ((E) of FIG. 6).
[0034]
As an example of the embodiment according to the present invention, the above optical circuit shows an arrayed waveguide grating type optical multiplexing / demultiplexing circuit in which the optical waveguide is composed of a silica glass optical waveguide on a silicon flat substrate. Even if the material of the optical waveguide is polyimide, silicone, semiconductor, LiNbO 3 or the like, the present invention can be applied. Further, the planar substrate is not limited to silicon.
[0035]
FIG. 7 shows chromatic dispersion characteristics and loss of an arrayed waveguide grating type optical multiplexing / demultiplexing circuit with a channel spacing of 50 GHz designed based on the present invention. As shown in FIG. 7, in the arrayed waveguide grating type optical multiplexing / demultiplexing circuit according to the present invention, a low chromatic dispersion characteristic of −15 ps / nm or less is realized, and the chromatic dispersion with respect to the wavelength is substantially flattened within the 3 dB band. I was able to. This chromatic dispersion is greatly reduced to about 1/4 (about 26%) as compared with the dispersion value of −58 ps / nm according to the conventional design shown in FIG.
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to expand the passband of the transmission wavelength of the arrayed waveguide grating type optical multiplexing / demultiplexing circuit and to realize the reduction of chromatic dispersion that could not be achieved at the same time in the past. In addition, the dispersion of the wavelength dispersion with respect to the wavelength can be substantially flattened. Furthermore, the design efficiency can be improved by providing a design guideline for the parabolic waveguide that was not obvious in the prior art.
[Brief description of the drawings]
FIG. 1 is a graph showing the amplitude and phase of a general sinc function.
FIG. 2 is a graph showing the far-field amplitude and phase of a parabolic waveguide.
FIG. 3 is a graph showing the relationship between the amplitude and phase of the first side peak with respect to the main peak and the variable ζ indicating the structure of the parabolic waveguide.
FIG. 4 is a graph showing the relationship between chromatic dispersion and a variable ζ indicating the structure of a parabolic waveguide.
FIG. 5 is a configuration diagram of an arrayed waveguide grating type optical multiplexing / demultiplexing circuit showing an example of an embodiment according to the invention. (A) is a general view, (b) is a block diagram of a parabolic waveguide, and (c) is a block diagram of a tapered waveguide.
FIG. 6 is a diagram showing a manufacturing process of an arrayed waveguide grating type optical multiplexing / demultiplexing circuit according to the present invention.
FIG. 7 is a graph showing chromatic dispersion characteristics and loss of an arrayed waveguide grating type optical multiplexer / demultiplexer according to the present invention.
FIG. 8 is a configuration diagram of a conventional arrayed waveguide grating type optical multiplexing / demultiplexing circuit.
FIG. 9 is a block diagram of a conventional passband expansion array waveguide grating type optical multiplexing / demultiplexing circuit. (A) is a general view and (b) is a block diagram of a parabolic waveguide.
FIG. 10 is a distribution diagram of an optical field of a parabolic waveguide.
FIG. 11 is a graph showing chromatic dispersion characteristics and loss of a conventional passband expansion array waveguide grating type optical multiplexing / demultiplexing circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input waveguide 2 1st slab waveguide 3 Array waveguide 4 2nd slab waveguide 5 Output waveguide 6 Parabolic waveguide 7 Tapered waveguide 10 Substrate 11 Silicon substrate 12 Lower clad glass soot 13 Core glass soot 14 Lower Cladding glass layer 15 Core glass 16 Etching mask 17 Upper cladding glass

Claims (2)

平面基板上の屈折率の高いコアとその回りのクラッドから成る光導波路を用いて構成され、
複数の第1の光導波路と、前記第1の光導波路に接続された第1のスラブ導波路と、前記第1のスラブ導波路に接続され、所定の導波路長差で順次長くなる複数の光導波路からなるアレイ導波路と、前記アレイ導波路に接続された第2のスラブ導波路と、前記第2のスラブ導波路に接続された複数の第2の光導波路とを有するアレイ導波路格子型光合分波回路において、
前記第1のスラブ導波路に接する前記第1の光導波路の幅wが、光波の伝搬軸zに対して、Aを係数、w0を前記第1の光導波路の幅、z0を前記第1のスラブ導波路からの長さとすると、
Figure 0003775673
によって規定されるパラボラ導波路であり、
前記第2のスラブ導波路に接する前記第2の光導波路の幅w’が、光波の伝搬軸zに対して、A’を係数、w’0を前記第2の光導波路の幅、z’0を前記第2のスラブ導波路からの長さとすると、
Figure 0003775673
によって規定されるテーパ導波路であり、
前記パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの振幅絶対値の比が0.18以上、0.22以下の範囲であり、かつ、前記パラボラ導波路の遠方界の電界分布のメイン・ピークと第1サイド・ピークの相対位相が−2.9ラジアン以上、−2.0ラジアン以下の範囲であるように、前記長さz0を設定したことを特徴とするアレイ導波路格子型光合分波回路。
It is composed of an optical waveguide consisting of a high refractive index core on a flat substrate and a clad around it.
A plurality of first optical waveguides, a first slab waveguide connected to the first optical waveguide, and a plurality of first optical waveguides which are connected to the first slab waveguide and become longer sequentially with a predetermined waveguide length difference An arrayed waveguide grating having an arrayed waveguide made of an optical waveguide, a second slab waveguide connected to the arrayed waveguide, and a plurality of second optical waveguides connected to the second slab waveguide Type optical multiplexing / demultiplexing circuit,
The width w of the first optical waveguide in contact with the first slab waveguide is a coefficient A with respect to the propagation axis z of the light wave, w0 is the width of the first optical waveguide, and z0 is the first optical waveguide. If the length from the slab waveguide,
Figure 0003775673
Is a parabolic waveguide defined by
The width w ′ of the second optical waveguide in contact with the second slab waveguide is a coefficient A ′ with respect to the propagation axis z of the light wave, w′0 is the width of the second optical waveguide, and z ′. If 0 is the length from the second slab waveguide,
Figure 0003775673
A tapered waveguide defined by
The ratio of the amplitude absolute value of the main peak and the first side peak of the electric field distribution in the far field of the parabolic waveguide is in the range of 0.18 to 0.22 , and the far field of the parabolic waveguide The length z0 is set so that the relative phase of the main peak and the first side peak of the electric field distribution is in the range of -2.9 radians or more and -2.0 radians or less. Waveguide grating type optical multiplexer / demultiplexer.
請求項1記載のアレイ導波路格子型光合分波回路において、
前記光導波路は、シリコンの平面基板上の石英系ガラス光導波路で構成されていることを特徴とするアレイ導波路格子型光合分波回路。
The arrayed waveguide grating type optical multiplexing / demultiplexing circuit according to claim 1,
An arrayed waveguide grating type optical multiplexing / demultiplexing circuit characterized in that the optical waveguide is composed of a silica-based glass optical waveguide on a silicon flat substrate.
JP2002378882A 2002-12-27 2002-12-27 Arrayed waveguide grating type optical multiplexer / demultiplexer Expired - Lifetime JP3775673B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002378882A JP3775673B2 (en) 2002-12-27 2002-12-27 Arrayed waveguide grating type optical multiplexer / demultiplexer
US10/540,789 US7400800B2 (en) 2002-12-27 2003-12-26 Arrayed waveguide grating type optical multiplexer/demultiplexer circuit
DE60331352T DE60331352D1 (en) 2002-12-27 2003-12-26 OPTICAL MULTIPLEXER / DEMULTIPLEXER CIRCUIT OF THE TYPE OF AN ARRAY WAVELINE GRID
PCT/JP2003/017065 WO2004061496A1 (en) 2002-12-27 2003-12-26 Array waveguide lattice type optical multilexer/demultiplexer circuit
CNB200380107773XA CN100381843C (en) 2002-12-27 2003-12-26 Arrayed waveguide grating type optical multilexer/demultiplexer circuit
AU2003292722A AU2003292722A1 (en) 2002-12-27 2003-12-26 Array waveguide lattice type optical multilexer/demultiplexer circuit
EP03768372A EP1577685B1 (en) 2002-12-27 2003-12-26 Arrayed waveguide grating type optical multilexer/demultiplexer circuit
KR1020057012049A KR100722250B1 (en) 2002-12-27 2003-12-26 Array waveguide lattice type optical multiplexer/demultiplexer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378882A JP3775673B2 (en) 2002-12-27 2002-12-27 Arrayed waveguide grating type optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JP2004212435A JP2004212435A (en) 2004-07-29
JP3775673B2 true JP3775673B2 (en) 2006-05-17

Family

ID=32708354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378882A Expired - Lifetime JP3775673B2 (en) 2002-12-27 2002-12-27 Arrayed waveguide grating type optical multiplexer / demultiplexer

Country Status (8)

Country Link
US (1) US7400800B2 (en)
EP (1) EP1577685B1 (en)
JP (1) JP3775673B2 (en)
KR (1) KR100722250B1 (en)
CN (1) CN100381843C (en)
AU (1) AU2003292722A1 (en)
DE (1) DE60331352D1 (en)
WO (1) WO2004061496A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286077A (en) * 2004-05-20 2007-11-01 Nec Corp Optical multiplexer/demultiplexer
US8086105B2 (en) 2007-12-14 2011-12-27 Electronics And Telecommunications Research Institute Wavelength division multiplexer/demultiplexer having flat wavelength response
KR100968891B1 (en) 2007-12-14 2010-07-09 한국전자통신연구원 The wavelength division multiplexer/demultiplexer having flat wavelength response
KR102364302B1 (en) 2015-01-27 2022-02-21 한국전자통신연구원 Flat-top mode controller and arrayed waveguide grating
KR102029739B1 (en) 2015-03-27 2019-11-08 한국전자통신연구원 Arrayed Waveguide Grating Device and Method for Manufacturing Arrayed Waveguide Grating
CN109597162B (en) * 2018-12-27 2021-04-09 华为技术有限公司 Planar optical waveguide, PLC chip, beam shaping structure and WSS

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136671A (en) * 1991-08-21 1992-08-04 At&T Bell Laboratories Optical switch, multiplexer, and demultiplexer
JP3238266B2 (en) 1994-01-28 2001-12-10 松下電器産業株式会社 Switching power supply
JP3201560B2 (en) * 1994-06-13 2001-08-20 日本電信電話株式会社 Optical signal processing circuit
US5467418A (en) * 1994-09-02 1995-11-14 At&T Ipm Corp. Frequency routing device having a spatially filtered optical grating for providing an increased passband width
FR2743234B1 (en) * 1995-12-28 1998-01-23 Alcatel Optronics WAVELENGTH DEMULTIPLEXER
JP3112246B2 (en) 1996-05-01 2000-11-27 日本電信電話株式会社 Array waveguide grating
JP3238890B2 (en) * 1997-11-13 2001-12-17 日本電信電話株式会社 Array waveguide type wavelength multiplexer / demultiplexer
US6069990A (en) * 1997-11-27 2000-05-30 Hitachi Cable Ltd. Optical wavelength multiplexer/demultiplexer
CA2253972C (en) * 1998-05-29 2001-07-31 Hitachi Cable, Ltd. Optical wavelength multiplexer/demultiplexer
KR100293954B1 (en) * 1999-05-11 2001-06-15 윤종용 Low loss awg demultiplexer with flat spectral response
JP3736303B2 (en) * 2000-06-29 2006-01-18 日本電気株式会社 Array waveguide grating, multiplexer device, demultiplexer device, node device, and optical communication system
US6298186B1 (en) * 2000-07-07 2001-10-02 Metrophotonics Inc. Planar waveguide grating device and method having a passband with a flat-top and sharp-transitions
JP3735024B2 (en) * 2000-09-13 2006-01-11 住友電気工業株式会社 Optical multiplexer / demultiplexer
US6633703B2 (en) * 2000-09-13 2003-10-14 Sumitomo Electric Industries, Ltd. Optical multiplexer/demultiplexer
JP4659969B2 (en) * 2000-11-15 2011-03-30 矢崎総業株式会社 Congestion degree display system
JP2002311264A (en) * 2001-04-16 2002-10-23 Nec Corp Array waveguide grating, array waveguide grating module and optical communication system
US6563988B2 (en) * 2001-04-25 2003-05-13 Lightwave Microsystems Corporation Optical apparatus and method having predetermined group velocity dispersion
US6728442B2 (en) * 2001-05-21 2004-04-27 Jds Uniphase Corporation Controlling the dispersion and passband characteristics of an arrayed waveguide grating
JP2003227948A (en) * 2002-02-04 2003-08-15 Ntt Electornics Corp Optical multiplexer/demultiplexer and method of manufacturing the same

Also Published As

Publication number Publication date
WO2004061496A1 (en) 2004-07-22
DE60331352D1 (en) 2010-04-01
CN100381843C (en) 2008-04-16
EP1577685A1 (en) 2005-09-21
KR100722250B1 (en) 2007-05-29
US7400800B2 (en) 2008-07-15
US20060233491A1 (en) 2006-10-19
EP1577685B1 (en) 2010-02-17
EP1577685A4 (en) 2006-04-12
AU2003292722A1 (en) 2004-07-29
KR20050097923A (en) 2005-10-10
JP2004212435A (en) 2004-07-29
AU2003292722A8 (en) 2004-07-29
CN1732397A (en) 2006-02-08

Similar Documents

Publication Publication Date Title
CA2198836C (en) Optical wavelength multiplexer/demultiplexer
JP3736303B2 (en) Array waveguide grating, multiplexer device, demultiplexer device, node device, and optical communication system
JP3784720B2 (en) Waveguide type optical interferometer
JP2005010805A6 (en) Waveguide type optical interferometer
US20060222296A1 (en) Optical wavelength division multiplexer
JP3615069B2 (en) Arrayed waveguide grating optical multiplexer / demultiplexer
US20030206681A1 (en) Integrating element for optical fiber communication systems based on photonic multi-bandgap quasi-crystals having optimized transfer functions
JPH05313029A (en) Light wave combining/splitting instrument
JP3201560B2 (en) Optical signal processing circuit
JP3775673B2 (en) Arrayed waveguide grating type optical multiplexer / demultiplexer
JP7498868B2 (en) Arrayed waveguide grating and its manufacturing method, transceiver, and optical communication system
JP2011158730A (en) Temperature independent optical circuit
JP2003227948A (en) Optical multiplexer/demultiplexer and method of manufacturing the same
EP3669219A1 (en) Broadband star coupler
US6735363B1 (en) Waveguide-grating router with output tapers configured to provide a passband that is optimized for each channel individually
JPH11218624A (en) Light wavelength multiplexer/demultiplexer
WO2003005086A1 (en) Asymmetric arrayed waveguide grating device
JP4163553B2 (en) Arrayed waveguide diffraction grating type optical multiplexer / demultiplexer
JP2002258074A (en) Optical signal processing circuit
JPH10197737A (en) Production of optical waveguide circuit
Takahashi Arrayed Waveguide Grating (AWG)
JP2004212886A (en) Low-dispersion arrayed waveguide diffraction grating optical multiplexing and demultiplexing circuit
JP3931834B2 (en) Optical wavelength multiplexer / demultiplexer
JP2002341158A (en) Array waveguide grating type optical wavelength multiplexer/demultiplexer
Le et al. InP based echelle diffraction grating multiplexer with flat-passband

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7