JP4163553B2 - Arrayed waveguide diffraction grating type optical multiplexer / demultiplexer - Google Patents

Arrayed waveguide diffraction grating type optical multiplexer / demultiplexer Download PDF

Info

Publication number
JP4163553B2
JP4163553B2 JP2003146457A JP2003146457A JP4163553B2 JP 4163553 B2 JP4163553 B2 JP 4163553B2 JP 2003146457 A JP2003146457 A JP 2003146457A JP 2003146457 A JP2003146457 A JP 2003146457A JP 4163553 B2 JP4163553 B2 JP 4163553B2
Authority
JP
Japan
Prior art keywords
waveguide
arrayed
demultiplexing circuit
arrayed waveguide
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003146457A
Other languages
Japanese (ja)
Other versions
JP2004347971A (en
Inventor
勤 鬼頭
靖之 井上
善典 日比野
彰夫 杉田
保治 大森
勝就 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2003146457A priority Critical patent/JP4163553B2/en
Publication of JP2004347971A publication Critical patent/JP2004347971A/en
Application granted granted Critical
Publication of JP4163553B2 publication Critical patent/JP4163553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透過波長帯域における平坦性を向上させたアレイ導波路回折格子型光合分波回路に関するものである。
【0002】
【従来の技術】
現在、通信容量の拡大のために複数の光波長を用いた光波長多重通信システムの開発が盛んである。この光波長多重通信システムにおいて、送信機側で複数の波長の光信号を合波したり、受信機側で1本の光ファイバ中の複数の光信号を異なるポートに分波する光波長合分波回路として、アレイ導波路回折格子型光合分波回路が広く使用されている。
【0003】
図1は従来のアレイ導波路回折格子型光合分波回路の一例(例えば、非特許文献1参照)を示すもので、平面基板100上に、入力導波路101、第1のスラブ導波路102、アレイ導波路103、第2のスラブ導波路104及び出力導波路105が形成されて構成されている。
【0004】
前記構成において、入力導波路101に導かれた光は第1のスラブ導波路102で拡がり、それぞれのアレイ導波路103へ分岐される。そして、第2のスラブ導波路104で再び合波されて出力導波路105へと導かれる。
【0005】
ここで、第1のスラブ導波路102のアレイ導波路端に投射された光フィールドパターンは、基本的に第2のスラブ導波路104のアレイ導波路側の端にコピーされることになるが、アレイ導波路103では隣り合う光導波路がちょうどΔLだけ光路長が異なるように設計されており、これによって入力された光の波長に依存してフィールドが傾きを有することとなる。この傾きによって、第2のスラブ導波路104の出力導波路側で光フィールドが焦点を結ぶ位置が波長毎に変化し、その結果、波長分波が可能となる。
【0006】
このようなアレイ導波路回折格子型光合分波回路は、1本の光ファイバに異なる波長を有する信号を複数伝送させる光波長多重通信システムにおいて、必要不可欠な光部品となりつつある。
【0007】
図2は従来のアレイ導波路回折格子型光合分波回路の他の例、ここでは波長毎の透過波長特性を平坦化して帯域を拡大した例(例えば、非特許文献2、特許文献1参照)を示すもので、図1に示したアレイ導波路回折格子型光合分波回路の入力導波路101と第1のスラブ導波路102との接合部分に、同図(B)に拡大して示すようなパラボラ導波路106を設けて構成されている。
【0008】
この構成では、入力導波路101とパラボラ導波路106との不連続に起因して2次モードの電界が発生する。この結果、パラボラ導波路106の終端部において0次モードの電界と2次モードの電界との重畳により、図3に示すような双峰性の電界分布が形成される。
【0009】
図3はパラボラ導波路の終端部における電界分布を示すもので、通常のガウス分布を示す0次モードの電界分布201と、2つの山の間に1つの谷を備えた分布を示す2次モードの電界分布202との重畳により、双峰性の電界分布203が形成されている。なお、図3において、縦軸は電界振幅、横軸はコア中心を0としたコアの幅方向の位置(x)を表している。
【0010】
前述した通り、第2のスラブ導波路104の出力導波路側でこの双峰性の電界分布が再生され、出力導波路105と結合するため、透過波長特性の平坦化による帯域の拡大が実現される。
【0011】
【非特許文献1】
K.Okamoto,”Fundamentals of Optical Waveguides”,Academic Press,2000
【非特許文献2】
K.Okamoto and A.Sugita,”Flat sepctral response arrayed−waveguide grating multiplexer with parabolic waveguide horns”,Electronics Letters,Vol.32,No.18,pp.1661−1662,1996
【特許文献1】
特開平9−297228号公報
【0012】
【発明が解決しようとする課題】
しかしながら、図2に示した従来のアレイ導波路回折格子型光合分波回路は、次のような解決すべき課題を持っていた。
【0013】
即ち、図3に示した双峰性の電界分布の起源が、導波路の2次偶モードであるため、2次モードという高次モードが励振され難い導波路(例えば、比屈折率差Δが小さな低Δ導波路)においては、広帯域の光合分波器が得られ難いという問題があった。
【0014】
また、コアのミス・アライメント等により、図4に示すような1次モードが励振された場合、対称な偶モードと非対称な奇モードとの重畳となるため、双峰性の電界分布は、図5に示すように左右非対称になり、この結果、透過スペクトル形状が傾いてパスバンドが狭まるという問題があった。
【0015】
図4は1次モードの電界分布301を、また、図5は1次モードが励振した場合のパラボラ導波路の終端部における電界分布を示すもので、縦軸及び横軸は図3の場合と同一である。図5において、401は図4に示した1次モードが発生した場合の電界分布、402は図4とは山と谷が逆の1次モードが発生した場合の電界分布、403は1次モードがない場合の電界分布をそれぞれ示している。
【0016】
本発明の目的は、前述した課題を解決し、広帯域でかつ平坦性の良好な透過波長帯域特性を有するアレイ導波路回折格子型光合分波回路を提供することにある。
【0017】
【課題を解決するための手段】
上記課題を解決するため、本発明では、従来のアレイ導波路回折格子型光合分波回路におけるパラボラ導波路の代わりに、入力導波路と第1のスラブ導波路との接合部分に、光の伝搬軸zに対して
z=(1/A){(w/2)^γ−a^γ},
γ>2
(但し、A及びγは形状パラメータ、aは入力導波路のコア幅の1/2)なる式(冪乗関数)によって規定されるコア幅wを有するテーパ導波路を設けることによって、広帯域化を実現する。
【0018】
図6は本発明のアレイ導波路回折格子型光合分波回路の要部、即ちテーパ導波路を示すもので、同図(A)はテーパ導波路107の概略形状を、また、同図(B)はγを変化(γ=2、2.5、3.0、3.5)させた場合のテーパ導波路107の詳細な形状(但し、導波路全体ではなく、コア中心から片側のみの形状)を示す。
【0019】
ここで、γ=2とは従来のパラボラ導波路の場合を示しており、γが2より大きい本発明のテーパ導波路の場合、従来に比べて入力端近傍の変化が大きいことが分かる。
【0020】
より定量的に吟味するため、コア幅の変化率dx/dzを図7に示す。この変化率が大きいほど、高次モードが励起され易い。γが2より大きい本発明のテーパ導波路の場合、γ=2の従来のパラボラ導波路の場合に比べて、z=0μmの入力端において、大きな変化率dx/dzを有することが分かる。
【0021】
また、従来のパラボラ導波路において入力端に大きな変化率を与えようとすると、形状パラメータAの値のみを変化させることになるため、入力端を除いた箇所の変化率も必然的に大きな数値となり、放射損失が増加する。
【0022】
しかしながら、本発明におけるテーパ導波路によれば、入力端にのみ大きな不連続性を与えることが出来るため、放射損失の抑圧が可能である。
【0023】
更に、本発明の有効性を明らかにするため、従来例も含めた透過波長帯域特性と形状パラメータγとの関係を図8に示す。ここでは、チャネル間隔100GHz、Δ=0.45%として設計した。γの値が大きくなるに伴い、帯域が拡大している様子が分かる。
【0024】
従来は形状パラメータである係数Aの検討のみであり、本発明の要件であるγ依存性の検討は全くなされていなかった。
【0025】
図9は、本発明における透過波長帯域特性の平坦性と損失のγ依存性を示す。ここで、平坦性を示す指数として3dB帯域幅と1dB帯域幅との比を用いた。即ち、この指数の値が小さいほど、平坦性が良好である。図より、従来(γ=2)の場合に比べて、本発明の構成が優れていることが分かる。また、γ>3.5の領域では平坦性が一定であることより、2<γ≦3.5において本発明の構成が有効である。
【0026】
以上の結果より、本発明によれば、テーパ導波路の入力端に大きな不連続性を有するため、低Δ導波路においても2次モードを容易に励振できる。即ち、広帯域でかつ平坦性の良好な透過波長帯域特性を有するアレイ導波路回折格子型光合分波回路の実現が期待できる。
【0027】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0028】
(第1の実施の形態)
図10は本発明のアレイ導波路回折格子型光合分波回路の第1の実施の形態の製造工程を示すもので、導波路の形状そのものは図6で説明した通りである。
【0029】
シリコン基板501上に、SiO2を主体にした下部クラッドガラススート502と、SiO2にGeO2を添加したコアガラススート503を火炎堆積法で順次堆積する(図10(A))。その後、1000℃以上の高温でガラス透明化を行うが、この時、下部クラッドガラス層504が30μm厚、コアガラス層505が7μm厚となるように前述したガラスの堆積を行うものとする(図10(B))。
【0030】
引き続き、フォトリソグラフィ技術を用いてコアガラス層505上にエッチングマスク506を形成し(図10(C))、反応性イオンエッチングによってコアガラス層505のパターン化を行う。エッチングマスク506を除去した後(図10(D))、上部クラッドガラス507を火炎堆積法で形成する(図10(E))。
【0031】
上部クラッドガラス507にはB23やP25などのドーパントを添加してガラス転移温度を下げ、パターン化されたコアガラス505a同士の狭い隙間にも上部クラッドガラス507が入り込むようにしている。
【0032】
形状パラメータγ=2.8で設計したチャネル間隔100GHzの本実施の形態における透過波長帯域特性を図11に、また、本実施の形態と従来のアレイ導波路回折格子型光合分波回路における特性値の比較を図12に示す。
【0033】
本実施の形態における挿入損失は約4dB、1dB帯域幅は0.49nm以上であり、従来のアレイ導波路回折格子型光合分波回路に比べて1dB帯域幅を20%以上拡大出来ることがわかる。
【0034】
(第2の実施の形態)
図13は本発明の第2の実施の形態、ここでは前述した式で表される形状を複数の直線で近似したテーパ導波路を入力導波路と第1のスラブ導波路との接合部分に備えた例を示すもので、同図(A)は直線近似テーパ導波路108の概略形状を、また、同図(B)は直線近似テーパ導波路108の詳細な形状(但し、導波路全体ではなく、コア中心から片側のみの形状)を示す。
【0035】
本実施の形態によれば、連続的な曲線を複数、ここでは4本の直線に分割して近似しているため、設計が簡易である。
【0036】
図14は本実施の形態における透過波長帯域特性を示すもので、挿入損失は約4dB、1dB帯域幅は0.49nm以上であり、本実施の形態の有効性を確認できた。
【0037】
(第3の実施の形態)
図15は本発明の第3の実施の形態、ここでは入力導波路101とテーパ導波路107との接合部分に、入力導波路101よりコア幅を狭めたモード安定化領域109を設けた例を示す。
【0038】
本実施の形態によれば、コア幅を狭めた導波路をモード安定化領域109として有しているため、擾乱やミス・アライメントによって励起された奇モード、特に1次モードの抑圧が期待出来る。
【0039】
図16は本実施の形態における透過波長帯域特性を従来例の特性とともに示すもので、従来例に比べて、透過スペクトルが傾くことなく、本実施の形態の有効性を確認できた。
【0040】
(その他の実施の形態)
以上述べた本発明の実施の形態では、シリコン基板上の石英系ガラス光導波路を用いたアレイ導波路回折格子型光合分波回路を示したが、その導波路材料がポリイミド、シリコーン、半導体、LiNbO3などであっても本発明の上記の原理は適用可能である。また、基板もシリコンに限定するものではない。
【0041】
また、これまでは従来例も含めて入力導波路が1本の場合について説明したが、入力導波路が2本以上の場合でも、同様に本発明を適用可能なことはいうまでもない。入力導波路が2本以上の場合、出力導波路が1本のものも含むことはいうまでもない。
【0042】
本発明の本質は、従来技術において明らかでなかった設計指針を与えることによって、広帯域でかつ平坦性の良好なアレイ導波路回折格子型光合分波回路を実現したことにある。
【0043】
なお、本明細書において、「α^β」は「αのβ乗」という意味を表すものとする。
【0044】
【発明の効果】
以上説明したように、本発明によれば、従来に比べてアレイ導波路回折格子型光合分波回路の広帯域化、平坦性の向上などの効果が得られる。
【図面の簡単な説明】
【図1】従来のアレイ導波路回折格子型光合分波回路の一例を示す構成図
【図2】従来のアレイ導波路回折格子型光合分波回路の他の例を示す構成図
【図3】図2のパラボラ導波路の終端部における電界分布を示す図
【図4】1次モードの電界分布を示す図
【図5】1次モードが励振した場合のパラボラ導波路の終端部における電界分布を示す図
【図6】本発明のアレイ導波路回折格子型光合分波回路の要部を示す構成図
【図7】本発明のアレイ導波路回折格子型光合分波回路におけるテーパ導波路のコア幅の変化率を示す図
【図8】透過波長帯域特性と形状パラメータγとの関係を示す図
【図9】本発明のアレイ導波路回折格子型光合分波回路における透過波長帯域特性の平坦性と損失のγ依存性を示す図
【図10】本発明のアレイ導波路回折格子型光合分波回路の第1の実施の形態の製造工程の説明図
【図11】本発明の第1の実施の形態における透過波長帯域特性を示す図
【図12】本発明の第1の実施の形態と従来の構成における特性値を比較して示す図
【図13】本発明のアレイ導波路回折格子型光合分波回路の第2の実施の形態の要部を示す構成図
【図14】本発明の第2の実施の形態における透過波長帯域特性を示す図
【図15】本発明のアレイ導波路回折格子型光合分波回路の第3の実施の形態の要部を示す構成図
【図16】本発明の第3の実施の形態における透過波長帯域特性を示す図
【符号の説明】
100:平面基板、101:入力導波路、102:第1のスラブ導波路、103:アレイ導波路、104:第2のスラブ導波路、105:出力導波路、107:テーパ導波路、108:直線近似テーパ導波路、109:モード安定化領域、501:シリコン基板、502:下部クラッドガラススート、503:コアガラススート、504:下部クラッドガラス層、505:コアガラス層、505a:パターン化されたコアガラス、506:エッチングマスク、507:上部クラッドガラス。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an arrayed waveguide grating optical multiplexing / demultiplexing circuit with improved flatness in a transmission wavelength band.
[0002]
[Prior art]
Currently, an optical wavelength division multiplexing communication system using a plurality of optical wavelengths is being actively developed to expand communication capacity. In this optical wavelength division multiplexing communication system, optical wavelength multiplexing / demultiplexing that multiplexes optical signals of a plurality of wavelengths on the transmitter side or demultiplexes a plurality of optical signals in one optical fiber to different ports on the receiver side. As a wave circuit, an arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit is widely used.
[0003]
FIG. 1 shows an example of a conventional arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit (for example, see Non-Patent Document 1). On a flat substrate 100, an input waveguide 101, a first slab waveguide 102, An arrayed waveguide 103, a second slab waveguide 104, and an output waveguide 105 are formed.
[0004]
In the above configuration, the light guided to the input waveguide 101 spreads in the first slab waveguide 102 and is branched to the respective arrayed waveguides 103. Then, it is multiplexed again by the second slab waveguide 104 and guided to the output waveguide 105.
[0005]
Here, the optical field pattern projected on the array waveguide end of the first slab waveguide 102 is basically copied to the end of the second slab waveguide 104 on the array waveguide side. In the arrayed waveguide 103, adjacent optical waveguides are designed so that their optical path lengths are different by exactly ΔL, and the field has an inclination depending on the wavelength of the input light. By this inclination, the position where the optical field is focused on the output waveguide side of the second slab waveguide 104 changes for each wavelength, and as a result, wavelength demultiplexing becomes possible.
[0006]
Such an arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit is becoming an indispensable optical component in an optical wavelength multiplexing communication system in which a plurality of signals having different wavelengths are transmitted through one optical fiber.
[0007]
FIG. 2 shows another example of a conventional arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit, in this example, the transmission wavelength characteristic for each wavelength is flattened to expand the band (for example, see Non-patent Document 2 and Patent Document 1). As shown in FIG. 1B, the joint portion between the input waveguide 101 and the first slab waveguide 102 of the arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit shown in FIG. A parabolic waveguide 106 is provided.
[0008]
In this configuration, a secondary mode electric field is generated due to the discontinuity between the input waveguide 101 and the parabolic waveguide 106. As a result, a bimodal electric field distribution as shown in FIG. 3 is formed by superimposing the electric field of the 0th-order mode and the electric field of the second-order mode at the terminal portion of the parabolic waveguide 106.
[0009]
FIG. 3 shows the electric field distribution at the end portion of the parabolic waveguide. The electric field distribution 201 of the zeroth mode showing a normal Gaussian distribution and the secondary mode showing a distribution having one valley between two peaks. Is superimposed on the electric field distribution 202 to form a bimodal electric field distribution 203. In FIG. 3, the vertical axis represents the electric field amplitude, and the horizontal axis represents the position (x) in the width direction of the core, where the core center is zero.
[0010]
As described above, this bimodal electric field distribution is regenerated on the output waveguide side of the second slab waveguide 104 and coupled to the output waveguide 105, so that the bandwidth can be expanded by flattening the transmission wavelength characteristics. The
[0011]
[Non-Patent Document 1]
K. Okamoto, “Fundamentals of Optical Waveguides”, Academic Press, 2000
[Non-Patent Document 2]
K. Okamoto and A.M. Sugita, “Flat septctral response arrayed-waveguide grading multipleplexer with parabolic waveguide horns”, Electronics Letters, Vol. 32, no. 18, pp. 1661-1662, 1996
[Patent Document 1]
Japanese Patent Laid-Open No. 9-297228
[Problems to be solved by the invention]
However, the conventional arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit shown in FIG. 2 has the following problems to be solved.
[0013]
That is, since the origin of the bimodal electric field distribution shown in FIG. 3 is the second-order even mode of the waveguide, a waveguide in which a high-order mode called a second-order mode is difficult to be excited (for example, the relative refractive index difference Δ is The small low Δ waveguide) has a problem that it is difficult to obtain a broadband optical multiplexer / demultiplexer.
[0014]
In addition, when the primary mode as shown in FIG. 4 is excited due to misalignment of the core or the like, a symmetric even mode and an asymmetric odd mode are superimposed, so the bimodal electric field distribution is As shown in FIG. 5, there is a problem that the left and right are asymmetric, and as a result, the shape of the transmission spectrum is inclined to narrow the passband.
[0015]
4 shows the electric field distribution 301 of the primary mode, and FIG. 5 shows the electric field distribution at the end of the parabolic waveguide when the primary mode is excited. The vertical and horizontal axes are the same as those in FIG. Are the same. In FIG. 5, 401 is an electric field distribution when the primary mode shown in FIG. 4 is generated, 402 is an electric field distribution when a primary mode in which peaks and valleys are opposite to those in FIG. 4 is generated, and 403 is a primary mode. The electric field distribution in the case where there is no is shown.
[0016]
An object of the present invention is to solve the above-described problems and provide an arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit having a transmission wavelength band characteristic having a wide band and good flatness.
[0017]
[Means for Solving the Problems]
In order to solve the above-described problem, in the present invention, instead of the parabolic waveguide in the conventional arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit, light is propagated at the junction between the input waveguide and the first slab waveguide. Z = (1 / A) {(w / 2) ^ γ-a ^ γ} with respect to the axis z
γ> 2
(However, A and γ are shape parameters, and a is ½ of the core width of the input waveguide.) By providing a tapered waveguide having a core width w defined by an expression (power function), the bandwidth can be increased. Realize.
[0018]
FIG. 6 shows a main part of the arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit of the present invention, that is, a tapered waveguide. FIG. 6A shows a schematic shape of the tapered waveguide 107, and FIG. ) Shows the detailed shape of the tapered waveguide 107 when γ is changed (γ = 2, 2.5, 3.0, 3.5) (however, not the entire waveguide but the shape of only one side from the core center) ).
[0019]
Here, γ = 2 indicates the case of the conventional parabolic waveguide, and it can be seen that the change in the vicinity of the input end is larger in the case of the tapered waveguide of the present invention in which γ is larger than 2.
[0020]
In order to examine more quantitatively, the change rate dx / dz of the core width is shown in FIG. The higher the rate of change, the easier the higher order modes are excited. It can be seen that the taper waveguide of the present invention in which γ is larger than 2 has a large change rate dx / dz at the input end of z = 0 μm, as compared with the conventional parabolic waveguide of γ = 2.
[0021]
In addition, if a large change rate is given to the input end in the conventional parabolic waveguide, only the value of the shape parameter A is changed. Therefore, the change rate of the portion excluding the input end is inevitably a large numerical value. , Radiation loss increases.
[0022]
However, according to the tapered waveguide of the present invention, since a large discontinuity can be given only to the input end, radiation loss can be suppressed.
[0023]
Further, in order to clarify the effectiveness of the present invention, the relationship between the transmission wavelength band characteristics including the conventional example and the shape parameter γ is shown in FIG. Here, the channel spacing is designed to be 100 GHz and Δ = 0.45%. It can be seen that the band is expanded as the value of γ increases.
[0024]
Conventionally, only the factor A, which is a shape parameter, is examined, and the γ dependency, which is a requirement of the present invention, has not been studied at all.
[0025]
FIG. 9 shows the flatness of the transmission wavelength band characteristic and the γ dependency of the loss in the present invention. Here, a ratio of 3 dB bandwidth to 1 dB bandwidth was used as an index indicating flatness. That is, the smaller the index value, the better the flatness. From the figure, it can be seen that the configuration of the present invention is superior to the conventional case (γ = 2). Further, since the flatness is constant in the region of γ> 3.5, the configuration of the present invention is effective when 2 <γ ≦ 3.5.
[0026]
From the above results, according to the present invention, since there is a large discontinuity at the input end of the tapered waveguide, the secondary mode can be easily excited even in the low Δ waveguide. That is, it is expected to realize an arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit having a transmission wavelength band characteristic having a wide bandwidth and good flatness.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0028]
(First embodiment)
FIG. 10 shows the manufacturing process of the first embodiment of the arrayed waveguide diffraction grating type optical multiplexer / demultiplexer according to the present invention, and the shape of the waveguide itself is as described in FIG.
[0029]
On the silicon substrate 501, a lower clad glass soot 502 in which the SiO 2 mainly, the core glass soot 503 with the addition of GeO 2 in SiO 2 are successively deposited by flame hydrolysis deposition (FIG. 10 (A)). Thereafter, the glass is made transparent at a high temperature of 1000 ° C. or higher. At this time, the glass is deposited so that the lower cladding glass layer 504 has a thickness of 30 μm and the core glass layer 505 has a thickness of 7 μm (see FIG. 10 (B)).
[0030]
Subsequently, an etching mask 506 is formed on the core glass layer 505 by using a photolithography technique (FIG. 10C), and the core glass layer 505 is patterned by reactive ion etching. After removing the etching mask 506 (FIG. 10D), an upper cladding glass 507 is formed by a flame deposition method (FIG. 10E).
[0031]
A dopant such as B 2 O 3 or P 2 O 5 is added to the upper cladding glass 507 to lower the glass transition temperature so that the upper cladding glass 507 enters a narrow gap between the patterned core glasses 505a. Yes.
[0032]
FIG. 11 shows the transmission wavelength band characteristics in the present embodiment with a channel spacing of 100 GHz designed with the shape parameter γ = 2.8, and the characteristic values in the present embodiment and the conventional arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit. The comparison is shown in FIG.
[0033]
In this embodiment, the insertion loss is about 4 dB and the 1 dB bandwidth is 0.49 nm or more, which indicates that the 1 dB bandwidth can be increased by 20% or more compared to the conventional arrayed waveguide grating optical multiplexing / demultiplexing circuit.
[0034]
(Second Embodiment)
FIG. 13 shows a second embodiment of the present invention, in which a tapered waveguide approximating the shape represented by the above formula with a plurality of straight lines is provided at the junction between the input waveguide and the first slab waveguide. FIG. 4A shows a schematic shape of the linear approximate tapered waveguide 108, and FIG. 3B shows a detailed shape of the linear approximate tapered waveguide 108 (but not the entire waveguide). , The shape of only one side from the core center).
[0035]
According to the present embodiment, since a continuous curve is approximated by dividing it into a plurality of, here, four straight lines, the design is simple.
[0036]
FIG. 14 shows the transmission wavelength band characteristics in this embodiment. The insertion loss is about 4 dB, and the 1 dB bandwidth is 0.49 nm or more, and the effectiveness of this embodiment can be confirmed.
[0037]
(Third embodiment)
FIG. 15 shows a third embodiment of the present invention, in which an example in which a mode stabilization region 109 having a core width narrower than that of the input waveguide 101 is provided at the junction between the input waveguide 101 and the tapered waveguide 107. Show.
[0038]
According to the present embodiment, since the waveguide having a narrow core width is provided as the mode stabilization region 109, suppression of an odd mode excited by disturbance or misalignment, particularly a primary mode can be expected.
[0039]
FIG. 16 shows the transmission wavelength band characteristics in the present embodiment together with the characteristics of the conventional example, and the effectiveness of the present embodiment was confirmed without the transmission spectrum being inclined as compared with the conventional example.
[0040]
(Other embodiments)
In the embodiment of the present invention described above, an arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit using a silica-based glass optical waveguide on a silicon substrate is shown. The waveguide material is polyimide, silicone, semiconductor, LiNbO. The above principle of the present invention can be applied even if the number is 3 or the like. Further, the substrate is not limited to silicon.
[0041]
Further, the case where there is one input waveguide including the conventional example has been described so far, but it goes without saying that the present invention can be similarly applied even when there are two or more input waveguides. Needless to say, when there are two or more input waveguides, one output waveguide is included.
[0042]
The essence of the present invention is that an array waveguide diffraction grating type optical multiplexing / demultiplexing circuit having a wide bandwidth and good flatness is realized by providing a design guideline that has not been clarified in the prior art.
[0043]
In this specification, “α ^ β” represents “α to the power of β”.
[0044]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain effects such as an increase in the bandwidth and flatness of the arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of a conventional arrayed waveguide grating type optical multiplexing / demultiplexing circuit. FIG. 2 is a block diagram showing another example of a conventional arrayed waveguide grating optical multiplexing / demultiplexing circuit. FIG. 4 is a diagram showing the electric field distribution at the end of the parabolic waveguide in FIG. 2. FIG. 4 is a diagram showing the electric field distribution in the primary mode. FIG. 5 is an electric field distribution at the end of the parabolic waveguide when the primary mode is excited. FIG. 6 is a block diagram showing the main part of an arrayed waveguide grating optical multiplexing / demultiplexing circuit of the present invention. FIG. 7 is a core width of a tapered waveguide in the arrayed waveguide grating optical multiplexing / demultiplexing circuit of the present invention. FIG. 8 is a diagram showing the relationship between the transmission wavelength band characteristic and the shape parameter γ. FIG. 9 is a graph showing the flatness of the transmission wavelength band characteristic in the arrayed waveguide grating optical multiplexing / demultiplexing circuit of the present invention. FIG. 10 is a diagram showing the γ dependence of loss. Explanatory drawing of the manufacturing process of 1st Embodiment of a folding-grating type | mold optical multiplexing / demultiplexing circuit. FIG. 11 is a figure which shows the transmission wavelength band characteristic in 1st Embodiment of this invention. FIG. 13 is a diagram showing a comparison of characteristic values between the embodiment of the present invention and the conventional configuration. FIG. 13 is a configuration diagram showing the main part of the second embodiment of the arrayed waveguide grating optical multiplexing / demultiplexing circuit of the present invention. 14 is a diagram showing transmission wavelength band characteristics in the second embodiment of the present invention. FIG. 15 is a block diagram showing the main part of the third embodiment of the arrayed waveguide grating optical multiplexing / demultiplexing circuit of the present invention. FIG. 16 is a diagram showing transmission wavelength band characteristics according to the third embodiment of the present invention.
100: planar substrate, 101: input waveguide, 102: first slab waveguide, 103: array waveguide, 104: second slab waveguide, 105: output waveguide, 107: taper waveguide, 108: straight line Approximate tapered waveguide, 109: mode stabilization region, 501: silicon substrate, 502: lower clad glass soot, 503: core glass soot, 504: lower clad glass layer, 505: core glass layer, 505a: patterned core Glass, 506: Etching mask, 507: Upper clad glass.

Claims (4)

平面基板上に形成されたコア及びその周囲のクラッドからなる光導波路であって、入力導波路と、出力導波路と、アレイ導波路と、入力導波路及びアレイ導波路を接続する第1のスラブ導波路と、アレイ導波路及び出力導波路を接続する第2のスラブ導波路とよりなり、アレイ導波路は所定の導波路長差で順次長くなる複数の導波路を含み、入力導波路または出力導波路の少なくとも一方は複数の導波路を含むアレイ導波路回折格子型光合分波回路において、
入力導波路と第1のスラブ導波路との接合部分に、光の伝搬軸zに対して
z=(1/A){(w/2)^γ−a^γ},
3.5≧γ>2
(但し、A及びγは形状パラメータ、aは入力導波路のコア幅の1/2)
なる式によって規定されるコア幅wを有するテーパ導波路を設けた
ことを特徴とするアレイ導波路回折格子型光合分波回路。
A first slab connecting an input waveguide, an output waveguide, an arrayed waveguide, and an input waveguide and an arrayed waveguide, the optical waveguide comprising a core formed on a planar substrate and a cladding around the core The waveguide includes a second slab waveguide connecting the arrayed waveguide and the output waveguide, and the arrayed waveguide includes a plurality of waveguides that are sequentially lengthened by a predetermined waveguide length difference, and includes an input waveguide or an output waveguide. In the arrayed waveguide grating optical multiplexing / demultiplexing circuit in which at least one of the waveguides includes a plurality of waveguides,
At the junction between the input waveguide and the first slab waveguide, z = (1 / A) {(w / 2) ^ γ-a ^ γ} with respect to the light propagation axis z,
3.5 ≧ γ> 2
(However, A and γ are shape parameters, and a is 1/2 of the core width of the input waveguide.)
A tapered waveguide having a core width w defined by the following equation is provided. An arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit.
請求項1記載のアレイ導波路回折格子型光合分波回路において、
前記式で表される形状を複数の直線で近似した
ことを特徴とするアレイ導波路回折格子型光合分波回路。
In the arrayed waveguide grating type optical demultiplexing circuit according to claim 1 Symbol placement,
An arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit characterized in that the shape represented by the above equation is approximated by a plurality of straight lines.
請求項1または2記載のアレイ導波路回折格子型光合分波回路において、
入力導波路とテーパ導波路との接合部分に、入力導波路よりコア幅を狭めたモード安定化領域を設けた
ことを特徴とするアレイ導波路回折格子型光合分波回路。
The arrayed waveguide grating optical multiplexer / demultiplexer according to claim 1 or 2 ,
An arrayed waveguide diffraction grating type optical multiplexing / demultiplexing circuit characterized in that a mode stabilization region having a narrower core width than the input waveguide is provided at the junction between the input waveguide and the tapered waveguide.
請求項1乃至いずれか記載のアレイ導波路回折格子型光合分波回路において、
各導波路がシリコン基板上の石英系ガラス光導波路で構成されている
ことを特徴とするアレイ導波路回折格子型光合分波回路。
The arrayed waveguide grating optical multiplexing / demultiplexing circuit according to any one of claims 1 to 3 ,
An array waveguide diffraction grating type optical multiplexing / demultiplexing circuit, wherein each waveguide is composed of a silica-based glass optical waveguide on a silicon substrate.
JP2003146457A 2003-05-23 2003-05-23 Arrayed waveguide diffraction grating type optical multiplexer / demultiplexer Expired - Lifetime JP4163553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146457A JP4163553B2 (en) 2003-05-23 2003-05-23 Arrayed waveguide diffraction grating type optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146457A JP4163553B2 (en) 2003-05-23 2003-05-23 Arrayed waveguide diffraction grating type optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JP2004347971A JP2004347971A (en) 2004-12-09
JP4163553B2 true JP4163553B2 (en) 2008-10-08

Family

ID=33533307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146457A Expired - Lifetime JP4163553B2 (en) 2003-05-23 2003-05-23 Arrayed waveguide diffraction grating type optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP4163553B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625420B2 (en) * 2006-04-04 2011-02-02 日本電信電話株式会社 Optical circuit

Also Published As

Publication number Publication date
JP2004347971A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
CA2198836C (en) Optical wavelength multiplexer/demultiplexer
JP3784720B2 (en) Waveguide type optical interferometer
JP3736303B2 (en) Array waveguide grating, multiplexer device, demultiplexer device, node device, and optical communication system
JP4190733B2 (en) Arrayed waveguide grating optical multiplexer / demultiplexer
US20060222296A1 (en) Optical wavelength division multiplexer
WO2002069007A1 (en) Dendritic taper for an integrated optical wavelength router
JP2014182259A (en) Wavelength multiplexer/demultiplexer and optical integrated circuit device
JP2000171661A (en) Array waveguide diffraction grating type optical multiplexer/demultiplexer
US6798952B2 (en) Optical multiplexer/demultiplexer
US6882778B2 (en) Chromatic dispersion compensation in waveguide arrays
JP6286457B2 (en) Optical multiplexing / demultiplexing device and arrayed waveguide diffraction grating type optical wavelength filter
JP4163553B2 (en) Arrayed waveguide diffraction grating type optical multiplexer / demultiplexer
JP3775673B2 (en) Arrayed waveguide grating type optical multiplexer / demultiplexer
JPH11218624A (en) Light wavelength multiplexer/demultiplexer
US6134361A (en) Optical multiplexer/demultiplexer
JP3682000B2 (en) Waveguide type optical multiplexer / demultiplexer
JP4960201B2 (en) Optical wavelength multiplexing / demultiplexing circuit
JP4375256B2 (en) Waveguide-type temperature-independent optical multiplexer / demultiplexer
JPH04163406A (en) Waveguide type optical coupler
JPH10197737A (en) Production of optical waveguide circuit
JP2003035832A (en) Polarization-independent directional coupler and optical circuit using the same
JP3423297B2 (en) Optical waveguide, method of manufacturing the same, and optical waveguide circuit
JP2002341158A (en) Array waveguide grating type optical wavelength multiplexer/demultiplexer
JP3206796B2 (en) Optical equalizer
JP3746776B2 (en) Waveguide type optical wavelength multiplexer / demultiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4163553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term