JPH07333331A - Accoustic position measuring equipment based on correlation - Google Patents
Accoustic position measuring equipment based on correlationInfo
- Publication number
- JPH07333331A JPH07333331A JP6132042A JP13204294A JPH07333331A JP H07333331 A JPH07333331 A JP H07333331A JP 6132042 A JP6132042 A JP 6132042A JP 13204294 A JP13204294 A JP 13204294A JP H07333331 A JPH07333331 A JP H07333331A
- Authority
- JP
- Japan
- Prior art keywords
- correlation
- wave
- signal
- receiver
- correlator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 abstract description 2
- 230000002596 correlated effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は音響により水中の受波
器位置を測定する相関による音響位置測定装置に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic position measuring device by means of correlation for acoustically measuring the position of a receiver in water.
【0002】[0002]
【従来の技術】図5は従来の音響(音波)により水中の
受波器の位置を測定する音響位置測定装置の一構成例を
示すブロック図である。図5において、1は例えば海面
10より上の水上にある発振器、2は発振器1の発する
音波を受けてこのこの音波を送信する水中の送波器、3
は水中に存在する受波器、4は受波器3からの反射波と
発振器1からの信号を記録する水上のレベル記録器であ
る。なお、5は水中において送波器2から受波器3への
直接波、6は送波器2から受波器3への音波の内海面1
0に反射されて到達する海面反射波、8は発振器1から
発する測定のためのスタート信号を示している。2. Description of the Related Art FIG. 5 is a block diagram showing a structural example of a conventional acoustic position measuring apparatus for measuring the position of a receiver in water by means of sound (sound wave). In FIG. 5, reference numeral 1 is an oscillator above the sea surface 10, for example, and 2 is an underwater transmitter which receives a sound wave emitted from the oscillator 1 and transmits this sound wave.
Is a wave receiver existing in the water, and 4 is a level recorder on the water for recording the reflected wave from the wave receiver 3 and the signal from the oscillator 1. In addition, 5 is a direct wave from the wave transmitter 2 to the wave receiver 3 in water, and 6 is the inner sea surface 1 of the sound wave from the wave transmitter 2 to the wave receiver 3.
A reflected wave of the sea surface that arrives after being reflected by 0, and 8 indicates a start signal for measurement emitted from the oscillator 1.
【0003】以下図5の従来例装置の動作及び位置測定
方法について説明する。まず、発振器1で発生したバー
スト波(高周波パルス波)を送波器2を介して送信し、
送波器2より送信された信号を受波器3で受信する。こ
の時、音波の伝搬経路の違いにより直接波5及び海面反
射波6が発生する。このように受波器3へは海面反射波
6の方が直接波5より遅れて到達する。一方、発振器1
で発生したバースト波を、スタート信号8として受波器
3で受信した信号と共にレベル記録器4で受信し、各信
号のレベルを記録する。図6はレベル記録例を示す波形
図である。図6にみられるように、スタート信号の横軸
に対して、受信信号には直接波及び海面反射波が逐時記
録される。図6の記録データから、直接波5の伝搬時間
td及び海面反射波6の伝搬時間trが求められる。The operation and position measuring method of the conventional device shown in FIG. 5 will be described below. First, a burst wave (high frequency pulse wave) generated by the oscillator 1 is transmitted via the wave transmitter 2,
The wave receiver 3 receives the signal transmitted from the wave transmitter 2. At this time, the direct wave 5 and the sea surface reflected wave 6 are generated due to the difference in the propagation path of the sound wave. In this way, the sea surface reflected wave 6 arrives at the wave receiver 3 later than the direct wave 5. On the other hand, oscillator 1
The burst wave generated in 1 is received by the level recorder 4 together with the signal received by the wave receiver 3 as the start signal 8, and the level of each signal is recorded. FIG. 6 is a waveform diagram showing an example of level recording. As shown in FIG. 6, the direct wave and the sea surface reflected wave are recorded in the received signal with respect to the horizontal axis of the start signal. From the recorded data in FIG. 6, the propagation time td of the direct wave 5 and the propagation time tr of the sea surface reflected wave 6 are obtained.
【0004】求めた直接波5の伝搬時間td及び海面反
射波6の伝搬時間trを用い、次に示す2つの式によ
り、送波器2と受波器3間の距離L及び受波器3の深度
DH を、送波器2の深度Dsが既知又は所定値として算
出する。なお、式中cは水中の音速である。 DH ={(tr×c)2−(td×c)2}/(4×D
s) L={(td×c)2−(Ds−DH )2}1/2 Using the propagation time td of the direct wave 5 and the propagation time tr of the sea surface reflected wave 6 thus obtained, the distance L between the wave transmitter 2 and the wave receiver 3 and the wave receiver 3 are calculated by the following two equations. The depth D H of the wave transmitter 2 is calculated as a known value or a predetermined value. In the equation, c is the speed of sound in water. DH = {(tr × c) 2 − (td × c) 2 } / (4 × D
s) L = {(td * c) 2- (Ds-DH) 2 } 1/2
【0005】上述のような方法により、2台の送波位置
の決まった送波器(発振器1及び送波器2)を用いて、
受波器3の位置を求めることができ、受波器を設置した
物体の位置測定が可能となる。なお、ここでいう“受波
器を設置した物体”は直接波5及び海面反射波6の音波
を受ける。そして、受波器アレイのような場合には、各
受波器の位置を測定することにより、このアレイ姿勢を
測定することができるようになっている。According to the above-described method, two wave transmitters (oscillator 1 and wave transmitter 2) having fixed wave transmitting positions are used,
The position of the wave receiver 3 can be obtained, and the position of the object on which the wave receiver is installed can be measured. It should be noted that the “object with the wave receiver installed” here receives the sound waves of the direct wave 5 and the sea surface reflected wave 6. In the case of a wave receiver array, the array attitude can be measured by measuring the position of each wave receiver.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上述の
ような構成の従来の音響位置測定装置では、水中を介し
て水中の送波器から水中の受波器へ伝搬する直接波及び
海面反射波の2つの伝搬時間測定を行うレベル記録器に
おいて、図6で表示されたような送信信号の波形と受信
信号の波形との特徴(差異)を比較しながら行ってい
る。しかし、この方法では、距離分解能が送信信号の波
長によって制限される。このため、計測精度を高めるた
めには、送信周波数を上げる必要があるが、水中では十
分な信号−雑音比を得るための技術が確立されていな
い。However, in the conventional acoustic position measuring device having the above-mentioned structure, the direct wave and the sea surface reflected wave propagating from the underwater transmitter to the underwater receiver via the underwater. In a level recorder that measures two propagation times, the characteristics (difference) between the waveform of the transmission signal and the waveform of the reception signal as shown in FIG. 6 are compared. However, in this method, the range resolution is limited by the wavelength of the transmitted signal. Therefore, in order to increase the measurement accuracy, it is necessary to increase the transmission frequency, but a technique for obtaining a sufficient signal-noise ratio in water has not been established.
【0007】[0007]
【課題を解決するための手段】この発明に係る相関によ
る音響位置測定装置は、水上の音源からの送信信号によ
って起動し、この送信信号を受けて送信する水中の送波
器からの送信信号の水中伝搬時間を測定して水中の受波
器位置を測定する音響位置測定装置であって、水上の音
源からの送信信号と水中受波器からの受信信号との相関
を求める相関処理回路を有するものである。An acoustic position measuring apparatus by correlation according to the present invention is activated by a transmission signal from a sound source on the water, and receives a transmission signal to transmit a transmission signal from an underwater transmitter. An acoustic position measuring device for measuring an underwater receiver position by measuring an underwater propagation time, which has a correlation processing circuit for obtaining a correlation between a transmission signal from a sound source on the water and a reception signal from the underwater receiver. It is a thing.
【0008】また、上述の相関による音響位置測定装置
において、上述の相関処理回路により求められた相関値
のピークを検出するケプストラム処理回路を上述の相関
を求める相関処理回路に付設する構成がさらに好適であ
る。Further, in the acoustic position measuring apparatus based on the above correlation, it is further preferable that the cepstrum processing circuit for detecting the peak of the correlation value obtained by the above correlation processing circuit is attached to the above correlation processing circuit for obtaining the correlation. Is.
【0009】[0009]
【作用】この発明においては、まず、音響による水中の
受波器位置の測定装置で、水中信号の伝搬時間を測定す
るために、音源の送信信号と受波器の受信信号との相関
を求める処理回路を用いるから、送信信号との相関をと
る(相関検出する)ことにより、受信信号の信号−雑音
比が小さくても送信信号との相関の低い雑音の影響が低
減される。従って、この相関値ピークから伝搬時間の計
測が正確なものとなる。According to the present invention, first, in order to measure the propagation time of an underwater signal with an acoustic underwater receiver position measuring device, the correlation between the transmission signal of the sound source and the reception signal of the receiver is obtained. Since the processing circuit is used, by correlating with the transmission signal (correlation detection), the influence of noise having low correlation with the transmission signal is reduced even if the signal-noise ratio of the reception signal is small. Therefore, the propagation time can be accurately measured from this correlation value peak.
【0010】さらに、もう1つの発明構成では、上述の
相関を求める処理回路により得られた相関波形について
ケプストラム処理するから、相関値スペクトルをさらに
フーリエ変換した周波数スペクトルのスペクトルが得ら
れたこととなりはつきりしたシャープなケプストラムが
得られるので、送信時間が短くても、あるいは、さらに
測定精度を上げるために送信時間を長くしても、送信時
間に関係なく相関値波形のピーク位置の測定精度が向上
する。Further, in another aspect of the invention, since the cepstrum processing is performed on the correlation waveform obtained by the processing circuit for obtaining the above correlation, it means that the spectrum of the frequency spectrum obtained by further Fourier transforming the correlation value spectrum is obtained. Since a sharp and sharp cepstrum can be obtained, even if the transmission time is short, or the transmission time is lengthened to further improve the measurement accuracy, the measurement accuracy of the peak position of the correlation value waveform is independent of the transmission time. improves.
【0011】[0011]
[実施例1]図1はこの発明の一実施例を示す模式構成
図である。図1において、4及び7を除く1〜8及び1
0は、図5の従来例の説明で示した符号と同一又は相当
部材であるので、その説明は省略する。図1の実施例装
置においては、図5の従来例のレベル記録器4を相関器
7に置き換えた構成としたものとなっている。相関器7
は、バースト波8のスタート信号及び受波器3からの受
信信号を受けて、バースト波8の波形と最も相互相関が
大きくなる受波器3の受信信号の時間遅延量を記録する
ものである。[Embodiment 1] FIG. 1 is a schematic diagram showing an embodiment of the present invention. In FIG. 1, 1 to 8 and 1 except 4 and 7
Since 0 is the same as or equivalent to the reference numeral shown in the description of the conventional example of FIG. 5, the description thereof is omitted. In the apparatus of the embodiment shown in FIG. 1, the level recorder 4 of the conventional example shown in FIG. 5 is replaced with a correlator 7. Correlator 7
Receives the start signal of the burst wave 8 and the received signal from the wave receiver 3, and records the time delay amount of the received signal of the wave receiver 3 having the largest cross-correlation with the waveform of the burst wave 8. .
【0012】この実施例構成において、まず発振器1で
発生したバースト波のスタート信号8は送波器2及び相
関器7に送られる。送波器2ではスタート信号8のバー
スト波を送波し、受波器3でこの送信信号を受信する。
この受信信号は相関器7に送られ、この信号と発振器1
から直接相関器7へのスタート信号8のバースト波との
相関を相関器7により求出する。図2の波形線図によっ
て相関器において得られた相関処理結果の一例を示す。
実際に受信される信号−雑音比すなわちSN比の低い受
信信号(2段目の波形)とSN比の高いスタート信号
(1段目の波形)との相関処理によって、3段目の波形
が相関値として得られる。図示の相関値波形は通常の相
関値波形(後述の図4の相関値波形参照)の絶対値を示
したもので、送信信号を比較的長い時間かけて得られた
ものである。なお、送信信号をもっと長くすると、山形
全体がよりブロードになり、ピーク位置の検出が困難に
なるので、好適な送信時間の設定が望ましい。図2から
明らかなように、相関値波形には直接波及び海面反射波
の時間位置にはっきりとしたピークがそれぞれ得られて
いる。そしてこの場合、スタート信号のパルス幅の中心
から各ピークまでの時間がそれぞれの伝搬時間として求
められる。すなわち、送信開始から送信信号と受信信号
との相互相関が最も大きくなる時間が図中で示したよう
な受信信号の伝搬時間となる。このようにして、直接波
及び海面反射波の伝搬時間(それぞれtd及びtr)を
従来より正確に求め、前述の2つの式に代入することに
よって、受波器の位置(送波器2と受波器3間の距離L
及び受波器3の深度DH )を精度よく測定することがで
きる。In the configuration of this embodiment, first, the start signal 8 of the burst wave generated by the oscillator 1 is sent to the wave transmitter 2 and the correlator 7. The wave transmitter 2 transmits a burst wave of the start signal 8, and the wave receiver 3 receives this transmission signal.
This received signal is sent to the correlator 7, and this signal and the oscillator 1
The correlation with the burst wave of the start signal 8 is directly obtained from the correlator 7 to the correlator 7. An example of the correlation processing result obtained in the correlator is shown by the waveform diagram of FIG.
Correlation processing of the third stage waveform by the correlation processing of the signal-noise ratio that is actually received, that is, the received signal having a low SN ratio (waveform of the second stage) and the start signal having a high SN ratio (waveform of the first stage) Obtained as a value. The illustrated correlation value waveform shows the absolute value of a normal correlation value waveform (see the correlation value waveform in FIG. 4 described later), and the transmission signal is obtained over a relatively long time. If the transmission signal is made longer, the entire mountain shape becomes broader and it becomes difficult to detect the peak position. Therefore, it is desirable to set a suitable transmission time. As is clear from FIG. 2, clear peaks are obtained at the time positions of the direct wave and the sea surface reflected wave in the correlation value waveform. In this case, the time from the center of the pulse width of the start signal to each peak is obtained as each propagation time. That is, the time when the cross-correlation between the transmission signal and the reception signal becomes maximum from the start of transmission is the propagation time of the reception signal as shown in the figure. In this way, the propagation times (td and tr) of the direct wave and the sea surface reflected wave are obtained more accurately than in the conventional case, and by substituting them into the above two equations, the position of the receiver (transmitter 2 and receiver Distance L between wave instruments 3
Also, the depth DH of the wave receiver 3 can be accurately measured.
【0013】そして、この測定手法においては、スター
ト信号8と海中雑音との相関は低く、スタート信号8と
受波器3からの受信信号のうち送波器2を介する受信信
号との相関は高いことから、スタート信号8と受波器3
の受信信号との相関をとることにより、海中雑音の影響
が低くなる。つまり、スタート信号8の信号と受波器3
からの受信信号のうち海中雑音を除いた送波器2からの
受信信号との相関をとることになるからである。従っ
て、従来の目視による方法に比べ、海中雑音の影響を著
しく低く抑えることができる。このような相関処理(相
関検出)により、受信信号の信号−雑音比(SN比)が
従来の場合よりもっと低い場合であっても、正確な受信
信号の水中伝搬時間の測定が可能となった。In this measuring method, the correlation between the start signal 8 and the underwater noise is low, and the correlation between the start signal 8 and the received signal from the wave receiver 3 through the wave transmitter 2 is high. Therefore, start signal 8 and wave receiver 3
The effect of underwater noise is reduced by taking the correlation with the received signal of. That is, the signal of the start signal 8 and the receiver 3
This is because the correlation with the received signal from the wave transmitter 2 from which the undersea noise is removed from the received signal from is taken. Therefore, the influence of underwater noise can be suppressed to a considerably low level as compared with the conventional visual method. Such correlation processing (correlation detection) enables accurate measurement of the underwater propagation time of the received signal even when the signal-noise ratio (SN ratio) of the received signal is lower than the conventional case. .
【0014】[実施例2]図3はこの発明の他の実施例
を示す模式構成図である。図3において、4を除く1〜
8及び10は、図1の実施例1での説明で示した符号と
同一又は相当部材であるので、その説明は省略する。図
3の装置においては、図1の相関器7にケプストラム処
理器9を付加した構成のものとなっている。ケプストラ
ム処理器9は、実施例1で説明したような相関器7で得
られた相関値(図2の波形図参照)に対してケプストラ
ム処理を行ってケプストラムを導出し、このピークから
受波器3の受信信号の時間遅延量を記録するものであ
る。[Embodiment 2] FIG. 3 is a schematic diagram showing another embodiment of the present invention. In FIG. 3, 1 excluding 4
Reference numerals 8 and 10 are the same as or equivalent to the reference numerals used in the description of the first embodiment in FIG. The apparatus of FIG. 3 has a configuration in which a cepstrum processor 9 is added to the correlator 7 of FIG. The cepstrum processor 9 performs cepstrum processing on the correlation value (see the waveform diagram in FIG. 2) obtained by the correlator 7 as described in the first embodiment to derive the cepstrum, and the wave receiver from this peak. The time delay amount of the reception signal of No. 3 is recorded.
【0015】この実施例構成において、まず発振器1で
発生したバースト波のスタート信号8は送波器2及び相
関器7に送られる。送波器2ではスタート信号8のバー
スト波を送信し、受波器3でこの送信信号を受信する。
一方この受信信号は相関器7にも送られているから、こ
の受信信号と発振器1から直接相関器7へのスタート信
号8のバースト波との相関を相関器7により求め、実施
例1の場合と同様に相関値を表示する。そして、この相
関値をケプストラム処理器9によって相関値に対するケ
プストラムを算出するようになっている。In the configuration of this embodiment, first, the start signal 8 of the burst wave generated by the oscillator 1 is sent to the wave transmitter 2 and the correlator 7. The wave transmitter 2 transmits a burst wave of the start signal 8, and the wave receiver 3 receives this transmission signal.
On the other hand, since this received signal is also sent to the correlator 7, the correlation between this received signal and the burst wave of the start signal 8 from the oscillator 1 directly to the correlator 7 is obtained by the correlator 7, and in the case of the first embodiment. Display the correlation value as in. Then, the cepstrum processor 9 calculates the correlation value with respect to the correlation value.
【0016】図4の波形線図によって、得られたケプス
トラム処理結果の一例を示す。実際に受信されるSN比
の低い受信信号(2段目の波形)とSN比の高いスター
ト信号(1段目の波形)との相関処理によって、3段目
の波形(スペクトル)が相関値として得られる。そして
この相関値を、相関器7に付設されたケプストラム処理
器9でケプストラム処理し、図の4段目に示すケプスト
ラムを得る。図から明らかなように、ケプストラム波形
には直接波及び海面反射波の時間位置にはっきりとした
シャープなピークがそれぞれ得られている。そしてこの
場合、スタート信号のパルス幅の中心から各ケプストラ
ムピークまでの時間が、それぞれの伝搬時間として求め
られる。すなわち、送信開始から送信信号と受信信号と
の相互相関を求め、この相関値をケプストラム処理して
得られたケプストラムのピークまでの時間が、図中で示
したような2つの受信信号の伝搬時間として測定され
る。An example of the obtained cepstrum processing result is shown by the waveform diagram of FIG. By the correlation processing of the received signal having a low SN ratio (second stage waveform) and the start signal having a high SN ratio (first stage waveform), the third stage waveform (spectrum) is used as a correlation value. can get. Then, this correlation value is cepstrum-processed by a cepstrum processor 9 attached to the correlator 7 to obtain a cepstrum shown in the fourth stage of the figure. As is clear from the figure, the cepstrum waveform has clear and sharp peaks at the time positions of the direct wave and the sea surface reflected wave, respectively. In this case, the time from the center of the pulse width of the start signal to each cepstrum peak is obtained as each propagation time. In other words, the time from the start of transmission to the cross-correlation between the transmission signal and the reception signal and the peak of the cepstrum obtained by cepstrum processing of this correlation value is the propagation time of the two reception signals as shown in the figure. Is measured as
【0017】この装置構成において、実施例1でも説明
したように、スタート信号8と海中雑音との相関は低
く、スタート信号8と受波器3からの受信信号のうち送
波器2を介する受信信号との相関は高いことから、スタ
ート信号8と受波器3の受信信号との相関をとることに
より、海中雑音の影響が低くなる。その上、この実施例
の場合は、得られた相関値スペクトルをケプストラム処
理することにより、図示のように変化の急峻な信号に変
換することができ、ピークの時間位置検出が容易になる
ばかりでなくその精度が著しく向上する。これは、実施
例1で得られた図2の波形図で示した相関値スペクトル
が、バースト波の送波時間を比較的に長くしているため
に、スペクトルが緩か(ブロード)になっていることと
対照的な結果を示すものである。ただし、ケプストラム
処理の場合は、測定精度を上げようとして送信時間を長
くとっても、シヤープなケプストラムが得られる特徴が
ある。In this device configuration, as described in the first embodiment, the correlation between the start signal 8 and the underwater noise is low, and the start signal 8 and the received signal from the wave receiver 3 are received via the wave transmitter 2. Since the correlation with the signal is high, by taking the correlation between the start signal 8 and the received signal of the wave receiver 3, the influence of undersea noise is reduced. Moreover, in the case of this embodiment, the obtained correlation value spectrum can be converted into a signal having a sharp change as shown by cepstrum processing, which not only facilitates the time position detection of the peak. The accuracy is significantly improved. This is because the correlation value spectrum shown in the waveform diagram of FIG. 2 obtained in Example 1 has a relatively long transmission time of the burst wave, and thus the spectrum becomes loose (broad). It shows the results in contrast to the existence. However, in the case of the cepstrum processing, there is a feature that a sharp cepstrum can be obtained even if the transmission time is long in order to improve the measurement accuracy.
【0018】以上のようにこの実施例構成によれば、実
施例1で示したように、バースト信号(送信信号)の送
波時間を長くした場合、底辺幅の大きな相関値が得られ
るようになり、受信信号のSN比が小さくても相関は得
られるがピーク位置の検出が難しいために音響の水中伝
搬時間の測定が容易でなくなるという実施例1の装置の
かかえる問題を解決できるようになっている。つまり、
図4で示した相関値スペクトルは、バースト信号の送波
時間が比較的短い場合の相関値を示すものであるが、こ
れをケプストラム処理した4段目のケプストラムは細い
シャープなものとなり、ピーク位置の測定も格段に容易
なものとなって、優れた位置測定性能を有するから、従
来の装置に比べて、正確な受波器位置が測定可能な範囲
(距離)を拡大できることが明らかである。なお、送波
時間が比較的長い場合でも支障なくシャープなケプスト
ラムが得られることは、前述の通りである。As described above, according to the configuration of this embodiment, as shown in the first embodiment, when the transmission time of the burst signal (transmission signal) is lengthened, a correlation value having a large base width can be obtained. Therefore, even if the SN ratio of the received signal is small, the correlation can be obtained, but it is difficult to detect the peak position, which makes it difficult to measure the acoustic underwater propagation time. ing. That is,
The correlation value spectrum shown in FIG. 4 shows the correlation value when the transmission time of the burst signal is relatively short. It is obvious that the measurement range (distance) in which the accurate receiver position can be measured can be expanded as compared with the conventional device because the measurement of (1) becomes much easier and the position measurement performance is excellent. As described above, a sharp cepstrum can be obtained without any problem even when the transmission time is relatively long.
【0019】[0019]
【発明の効果】以上のようにこの発明によれば、音響に
よる水中の受波器位置の測定装置において、水中信号の
伝搬時間を測定するために、音源の送信信号と受波器の
受信信号との相関を求める処理回路を用い、さらに必要
に応じて相関を求める処理回路により得られた相関波形
についてケプストラム処理するようになっているから、
まず、始めの相関をとることにより、受信信号のSN比
が小さい場合でも、送信信号と相関の低い雑音の影響を
低減でき、正確に伝搬時間が計測できるようになり、再
現性の高い正確な受波器位置測定ができるようになっ
た。さらに、別の発明構成では、上述の相関を求める処
理回路により得られた相関波形についてケプストラム処
理するようになっているので、得られたケプストラムか
ら、送信時間の長さに関係なく、相関による方法よりさ
らに正確な受波信号の伝搬時間が計測できるようになっ
た。従ってこの発明のケプストラム処理を含む相関によ
る音響位置測定装置により、従来のレベル法等に比べ
て、正確かつ迅速な受波器位置の測定可能な範囲拡大が
達成される。As described above, according to the present invention, in the apparatus for measuring the position of the underwater receiver by sound, in order to measure the propagation time of the underwater signal, the transmission signal of the sound source and the reception signal of the receiver are measured. Since a processing circuit for obtaining the correlation with and is used, and if necessary, cepstrum processing is performed on the correlation waveform obtained by the processing circuit for obtaining the correlation,
First, by taking the initial correlation, even if the SN ratio of the received signal is small, it is possible to reduce the influence of noise having a low correlation with the transmitted signal, and it becomes possible to measure the propagation time accurately, and it is possible to accurately measure with high reproducibility. The position of the receiver can now be measured. Further, in another invention configuration, since the cepstrum processing is performed on the correlation waveform obtained by the processing circuit for obtaining the above-described correlation, the method based on the correlation is obtained from the obtained cepstrum regardless of the length of the transmission time. It has become possible to measure the propagation time of the received signal more accurately. Therefore, the acoustic position measuring apparatus based on the correlation including the cepstrum processing according to the present invention achieves an accurate and quick expansion of the measurable range of the receiver position as compared with the conventional level method.
【図1】この発明の一実施例を示す模式構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
【図2】図1の実施例装置で得られた相関処理結果の一
例を示す波形線図である。FIG. 2 is a waveform diagram showing an example of a correlation processing result obtained by the apparatus of the embodiment shown in FIG.
【図3】この発明の他の実施例を示す模式構成図であ
る。FIG. 3 is a schematic configuration diagram showing another embodiment of the present invention.
【図4】図3の実施例装置で得られたケプストラム処理
結果の一例を示す波形線図である。4 is a waveform diagram showing an example of a cepstrum processing result obtained by the apparatus of the embodiment shown in FIG.
【図5】従来の水中の受波器の位置を測定する音響位置
測定装置の一構成例を示すブロック構成図である。FIG. 5 is a block configuration diagram showing a configuration example of a conventional acoustic position measuring device for measuring the position of a wave receiver in water.
【図6】図5の従来装置で得られるレベル記録例を示す
波形線図である。FIG. 6 is a waveform diagram showing an example of level recording obtained by the conventional apparatus of FIG.
1 発振器 2 送波器 3 受波器 4 レベル記録器 5 直接波 6 海面反射波 7 相関器 8 スタート信号 9 ケプストラム処理器 10 海面 1 oscillator 2 wave transmitter 3 wave receiver 4 level recorder 5 direct wave 6 sea surface reflected wave 7 correlator 8 start signal 9 cepstrum processor 10 sea surface
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永 成和 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 佐山 信一 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigekazu Matsunaga 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (72) Shinichi Sayama 1-12-12 Toranomon, Minato-ku, Tokyo No. Oki Electric Industry Co., Ltd.
Claims (2)
し、この送信信号を受けて送信する水中の送波器からの
送信信号の水中伝搬時間を測定して水中の受波器位置を
測定する音響位置測定装置であって、 前記水上の音源からの送信信号と前記水中受波器からの
受信信号との相関を求める相関処理回路を有することを
特徴とする相関による音響位置測定装置。1. An underwater receiver position is measured by measuring an underwater propagation time of a transmission signal from an underwater transmitter which is activated by a transmission signal from a sound source on the water and receives and transmits the transmission signal. An acoustic position measuring device by correlation, comprising a correlation processing circuit that obtains a correlation between a transmission signal from a sound source on the water and a reception signal from the underwater receiver.
れ、この相関処理回路により得られた相関値のピークを
検出するケプストラム処理回路を有することを特徴とす
る請求項1記載の相関による音響位置測定装置。2. The acoustic position by correlation according to claim 1, further comprising a cepstrum processing circuit attached to a correlation processing circuit for obtaining the correlation and detecting a peak of a correlation value obtained by the correlation processing circuit. measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6132042A JPH07333331A (en) | 1994-06-14 | 1994-06-14 | Accoustic position measuring equipment based on correlation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6132042A JPH07333331A (en) | 1994-06-14 | 1994-06-14 | Accoustic position measuring equipment based on correlation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07333331A true JPH07333331A (en) | 1995-12-22 |
Family
ID=15072157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6132042A Pending JPH07333331A (en) | 1994-06-14 | 1994-06-14 | Accoustic position measuring equipment based on correlation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07333331A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5937294B2 (en) * | 2007-12-28 | 2016-06-22 | 日本電気株式会社 | POSITION DETERMINING SYSTEM, TRANSMITTING DEVICE, RECEIVING DEVICE, AND POSITION DETERMINING METHOD |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5780582A (en) * | 1980-11-07 | 1982-05-20 | Furuno Electric Co Ltd | Measurement of distance to sea bottom from transponder |
JPS63249069A (en) * | 1987-04-03 | 1988-10-17 | Mitsubishi Heavy Ind Ltd | Apparatus for searching abnormal sound generating place |
JPH01118786A (en) * | 1987-10-31 | 1989-05-11 | Nec Corp | Underwater noise source detecting device |
JPH03277987A (en) * | 1990-03-28 | 1991-12-09 | Unyusho Kowan Gijutsu Kenkyusho | Ultrasonic range finder |
-
1994
- 1994-06-14 JP JP6132042A patent/JPH07333331A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5780582A (en) * | 1980-11-07 | 1982-05-20 | Furuno Electric Co Ltd | Measurement of distance to sea bottom from transponder |
JPS63249069A (en) * | 1987-04-03 | 1988-10-17 | Mitsubishi Heavy Ind Ltd | Apparatus for searching abnormal sound generating place |
JPH01118786A (en) * | 1987-10-31 | 1989-05-11 | Nec Corp | Underwater noise source detecting device |
JPH03277987A (en) * | 1990-03-28 | 1991-12-09 | Unyusho Kowan Gijutsu Kenkyusho | Ultrasonic range finder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5937294B2 (en) * | 2007-12-28 | 2016-06-22 | 日本電気株式会社 | POSITION DETERMINING SYSTEM, TRANSMITTING DEVICE, RECEIVING DEVICE, AND POSITION DETERMINING METHOD |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4086560A (en) | Secret depth sounder | |
JPH11125688A (en) | Reactor vibration monitor | |
JP4828120B2 (en) | Underwater detector | |
US8264909B2 (en) | System and method for depth determination of an impulse acoustic source by cepstral analysis | |
JPH07333331A (en) | Accoustic position measuring equipment based on correlation | |
JP3169534B2 (en) | Inundation detection method | |
JP6610224B2 (en) | Bistatic active sonar device and its receiver | |
JP2916362B2 (en) | Apparatus and method for correcting sound velocity in position measurement | |
JP2000266832A (en) | Method and device for measuring sound source direction | |
JPH08233788A (en) | Ultrasonic test equipment and test method | |
JPWO2005119182A1 (en) | Fluid flow rate measuring method and flow rate measuring device | |
JP4572681B2 (en) | Acoustic characteristic measurement method | |
GB2378756A (en) | Apparatus for detecting leaks in or determing the nature of a pipe. | |
EP0074204A1 (en) | Determination of system response | |
JPH07280542A (en) | Ultrasonic thickness gauge | |
JP2625666B2 (en) | Active sonar experiment equipment | |
JP6637592B2 (en) | Signal processing system, signal processing method, signal processing device, and program | |
JPH10160615A (en) | Acoustic device for specifying leakage position | |
JPS59218973A (en) | On-vehicle obstacle detector | |
JPH04318455A (en) | Ultrasonic concentration measuring instrument | |
JPH06347548A (en) | Ship speed measuring instrument | |
JPH0354796B2 (en) | ||
SU1494744A1 (en) | Method of receiving acoustic signals in atmosphere | |
JPH0545456A (en) | Ultrasonic detector | |
SE9403028D0 (en) | Ways of measuring vibration of a measuring object |