JP2000266832A - Method and device for measuring sound source direction - Google Patents

Method and device for measuring sound source direction

Info

Publication number
JP2000266832A
JP2000266832A JP7376499A JP7376499A JP2000266832A JP 2000266832 A JP2000266832 A JP 2000266832A JP 7376499 A JP7376499 A JP 7376499A JP 7376499 A JP7376499 A JP 7376499A JP 2000266832 A JP2000266832 A JP 2000266832A
Authority
JP
Japan
Prior art keywords
sound
sound source
frequency
interval
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7376499A
Other languages
Japanese (ja)
Other versions
JP3069663B1 (en
Inventor
Ryuichi Sato
隆一 佐藤
Hisaya Suzuki
尚也 鈴木
Kouzou Ishimae
浩蔵 石前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
JRC Tokki Co Ltd
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
JRC Tokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency, JRC Tokki Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP11073764A priority Critical patent/JP3069663B1/en
Application granted granted Critical
Publication of JP3069663B1 publication Critical patent/JP3069663B1/en
Publication of JP2000266832A publication Critical patent/JP2000266832A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure a sound source direction without being restricted by the interval of a sensor by receiving a sound wave from the sound source by a plurality of sound wave sensors being arranged at intervals, and by calculating the angle of the arrival direction of the sound wave from a phase difference change rate to the frequency between extracted reception signals, an interval, and the speed of sound. SOLUTION: In sensors 11 and 12 being installed at intervals, a sound wave from a sound source is received, and the reception signal is converted to a frequency region signal by a two-channel Fast Fourier transform part 13. At a phase information analysis part 14, the maximum phase change rate ϕ of a frequency band with a high correlation of the converted frequency region signal is extracted. Then, according to θ=cos-1(cϕ/2πL) (c and L are the speed of sound under water and the interval of the sensor, respectively), an angle θof a sound source direction is calculated, thus obtaining the sound source direction without the restriction of wavelength by the interval of the sensor when a bandwidth where the phase change rate can be detected exists in the sound source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、音源方向測定方法
及び装置に関し、特に周波数帯域の広がりを持つ音波の
到来方向を高い信頼度で測定できる音源方向測定方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound source direction measuring method and apparatus, and more particularly, to a sound source direction measuring method and apparatus capable of measuring the arrival direction of a sound wave having a wide frequency band with high reliability.

【0002】[0002]

【従来の技術】到来する音波を解析して音源方向を測定
する音源方向測定装置は、例えば十分に離れた2点、も
しくは3点において到来する水中音の音源方向を測定す
ることにより、3角法を用いて音源の位置を特定するソ
ナー等に広く応用されており、例えば特開平2−664
81号公報には移動する音源から到来する水中音のドッ
プラー効果をも併せて解析することにより、音源の位置
及び移動方向や速度を検出する目標位置検出装置等も提
案されている。
2. Description of the Related Art A sound source direction measuring device for analyzing an incoming sound wave and measuring a sound source direction is, for example, capable of measuring a sound source direction of an underwater sound arriving at two or three points distant from each other by triangulation. The method is widely applied to sonar and the like for specifying the position of a sound source using the method.
Japanese Patent Publication No. 81 proposes a target position detection device and the like that detects the position, the moving direction, and the speed of a sound source by also analyzing the Doppler effect of underwater sound coming from a moving sound source.

【0003】図2は、このような従来の音源方向測定装
置の基本原理を説明する概念図であリ、間隔Lをおいて
設置された2つのセンサ11、12を用いて到来音波を
測定する。間隔Lに比べて音源が十分に遠い場合は、到
来音波を平面波と見なすことができるので、同位相の音
波の受信時間差μを計測することにより音速をcとする
とき、次式にしたがって両センサ11、12を結ぶ線分
に対する音源方向の角度θを求めることができる。 θ=cos-1(μc/L)・・・(1) さらに例えば、センサ11に対してセンサ11、12を
結ぶ線分と直角方向にセンサ13を設置してセンサ11
とセンサ13を結ぶ線分に対する音源方向の角度を求め
ることによりセンサ平面に対する音源方向を特定するこ
とができる。また、十分に離れた2点で、同様にして音
源方向を特定することにより、両方向線の交点から音源
位置を算出することができる。
FIG. 2 is a conceptual diagram for explaining the basic principle of such a conventional sound source direction measuring apparatus, in which an incoming sound wave is measured using two sensors 11 and 12 arranged at an interval L. . If the sound source is far enough compared to the interval L, the incoming sound wave can be regarded as a plane wave. Therefore, when the sound speed is c by measuring the reception time difference μ of the sound wave having the same phase, when the sound speed is c, The angle θ of the sound source direction with respect to the line segment connecting 11 and 12 can be obtained. θ = cos -1 (μc / L) (1) Further, for example, the sensor 11 is installed by mounting the sensor 13 in a direction perpendicular to a line connecting the sensors 11 and 12 with the sensor 11.
By determining the angle of the sound source direction with respect to the line segment connecting the sensor and the sensor 13, the sound source direction with respect to the sensor plane can be specified. In addition, by specifying the sound source direction in the same way at two sufficiently separated points, the sound source position can be calculated from the intersection of the two-directional lines.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の音源方向測定装置には、次のような問題点が
あった。すなわち、同位相の音波の受信時間差μを計測
しているため、音波長をλとする時、到来音波のうちλ
/2>L(センサ間隔)の周波数成分しか計測に利用す
ることが出来ない。このため、例えば低周波成分の多い
海中雑音を避け、高周波領域で計測するためにはセンサ
間隔Lを大きくとることが出来ず、このことにより計測
精度が制約されてしまう問題があった。
However, such a conventional sound source direction measuring apparatus has the following problems. That is, since the reception time difference μ of the in-phase sound wave is measured, when the sound wavelength is λ, λ
Only frequency components of / 2> L (sensor interval) can be used for measurement. For this reason, for example, in order to avoid undersea noise having many low-frequency components and to measure in a high-frequency region, the sensor interval L cannot be made large, and there has been a problem that the measurement accuracy is limited.

【0005】また、上記制約から通常到来音波の基本波
を用いて受信時間差を計測しているが、基本波長が2L
以下の音源の測定ができず、また基本波長が2L以上で
あっても、当該周波数領域に環境雑音が多い場合に正し
い測定が出来ない等、測定可能音源周波数が制約される
問題があった。
[0005] In addition, the reception time difference is measured using the fundamental wave of the normally arriving sound wave due to the above-mentioned restrictions.
The following sound sources cannot be measured, and even if the fundamental wavelength is 2L or more, there is a problem that the measurable sound source frequency is restricted such that correct measurement cannot be performed when there is a lot of environmental noise in the frequency region.

【0006】さらに、音源の周波数が測定可能領域にあ
る場合でも、通常到来音の基本波一波を用いて受信時間
差μを測定するため十分な確信度が得られない場合があ
った。また確信度を上げるために複数の周波数成分を利
用しようとすると上記制約を受ける他、複雑な操作を必
要とする問題点があった。
Furthermore, even when the frequency of the sound source is in the measurable region, sufficient confidence may not be obtained because the reception time difference μ is measured using one fundamental wave of the normally arriving sound. In addition, if a plurality of frequency components are to be used to increase the certainty factor, the above-mentioned restrictions are imposed, and a complicated operation is required.

【0007】本発明は、かかる問題点を解消し、センサ
間距離により制約されることのない、従って、所望の精
度に応じたセンサ間隔を設定することができ、音源、ま
た測定環境に応じて容易に最適の周波数帯域の到来波を
選択的に解析して音源方向を計測でき、さらに広帯域の
到来波を活用することにより確信度の高い計測結果の得
られる音源方向計測方法及び装置を提供することを目的
とする。
The present invention solves such a problem and is not restricted by the distance between the sensors. Therefore, it is possible to set a sensor interval according to a desired accuracy, and it is possible to set a sensor interval according to a sound source and a measurement environment. Provided is a sound source direction measurement method and apparatus that can easily analyze an incoming wave in an optimal frequency band to selectively measure a sound source direction and obtain a highly confident measurement result by utilizing a broadband incoming wave. The purpose is to:

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る音源方向測定方法は、ある音源から到
来する音波を、間隔をおいて設置された複数の音波セン
サで受信する段階と、前記複数の音波センサで受信した
前記音波の受信信号間の周波数に対する位相差変化率を
抽出する位相情報抽出段階と、この位相差変化率と前記
間隔及び音速から、前記間隔の方向と前記音波の到来方
向のなす角度を算出する段階とを備えたことを特徴とす
る。
In order to achieve the above object, a sound source direction measuring method according to the present invention comprises the steps of: receiving a sound wave coming from a certain sound source by a plurality of sound wave sensors arranged at intervals. And, phase information extraction step of extracting a phase difference change rate with respect to the frequency between the received signals of the sound waves received by the plurality of sound wave sensors, and from the phase difference change rate and the interval and sound speed, the direction of the interval and the Calculating the angle between the arrival directions of the sound waves.

【0009】また、前記位相情報抽出段階は、前記受信
信号のそれぞれを周波数領域信号に変換するFFT(高
速フーリエ変換)処理段階と、この周波数領域信号間の
相関度を算出する段階と、この周波数領域信号間の位相
差を算出する段階と、この相関度が一定のしきい値以上
の周波数帯域の、前記位相差の周波数に対する変化率か
ら前記位相差変化率を抽出する段階とを備えたことを特
徴とする。
The phase information extracting step includes an FFT (Fast Fourier Transform) processing step of converting each of the received signals into a frequency domain signal, a step of calculating a degree of correlation between the frequency domain signals, Calculating a phase difference between the area signals, and extracting the phase difference change rate from a change rate of the frequency difference of the phase difference with respect to the frequency in a frequency band having a degree of correlation equal to or more than a predetermined threshold value. It is characterized by.

【0010】またさらに、本発明に係る音源方向測定装
置は、間隔をおいて設置され、到来音波を時間領域電気
信号に変換する2つの音波センサと、この時間領域電気
信号のそれぞれを周波数領域信号に変換する2チャンネ
ルFFT処理部と、この周波数領域信号の相関度が一定
のしきい値以上の周波数帯域の、位相差の周波数に対す
る変化率と前記間隔及び音速から前記間隔の方向と前記
音波の到来方向のなす角度を算出する位相情報解析部と
を備えたことを特徴とする。
Still further, a sound source direction measuring apparatus according to the present invention is provided with two sound wave sensors installed at intervals to convert an incoming sound wave into a time domain electric signal, and converts each of the time domain electric signals into a frequency domain signal. A two-channel FFT processing unit for converting the frequency domain signal into a frequency band having a correlation degree equal to or higher than a predetermined threshold, a change rate of the phase difference with respect to the frequency, the interval and the sound speed, the direction of the interval, and the A phase information analyzer for calculating an angle between the arrival directions.

【0011】従って、本発明の音源方向測定方法及び測
定装置によれば、受信波長によってセンサ間隔の制約を
受けないため、所望の精度に応じたセンサ間隔を設定す
ることができる。また、相関度を参照することにより、
音源、また測定環境に応じて容易に最適の周波数帯域の
到来波を選択することができ、広帯域の到来波を活用す
ることにより確信度の高い計測結果を得ることができ
る。
Therefore, according to the sound source direction measuring method and measuring apparatus of the present invention, the sensor interval is not restricted by the reception wavelength, so that the sensor interval can be set according to the desired accuracy. Also, by referring to the degree of correlation,
An incoming wave in an optimal frequency band can be easily selected according to a sound source and a measurement environment, and a highly reliable measurement result can be obtained by using an incoming wave in a wide band.

【0012】[0012]

【発明の実施の形態】本発明では、両センサ11、12
の受信時間差μによって生ずる到来音波の位相差φの周
波数による変化(周波数微分)を抽出することにより、
受信時間差μを得て、上記(1)式により音源方向を求
める。図2を参照して、同一音源から両センサ11、1
2に到来する音波のある周波数成分の位相差φは当該周
波数をfとするとき下式によって表される。 φ=2πf・μ・・・(2) 従って(1)式より、 φ=2πf・(Lcosθ/c)・・・(3) が得られる。ここで、センサ間αと音源周波数fの波長
λとの比をrとすると、その関係は下記の式で表せる。 λ=c/f c:水中音速(m/s) r=λ/α 図3はセンサ間隔L(m)、音源周波数fの波長λとの
比rを、r=5.5E-4〜3、音源方向の角度θ=0°
〜180°(10°ステップ)の範囲で、(3)式に従
って位相差φ(度)の変化を表したグラフ図で、図3に
見られるように位相差φのグラフの傾き、すなわちその
周波数微分φ’=dφ/dfを求めることにより、10
°〜170°の範囲で十分実用的に音源方向を計測する
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, both sensors 11, 12 are used.
By extracting the change in frequency (frequency derivative) of the phase difference φ of the arriving sound wave caused by the reception time difference μ of
The reception time difference μ is obtained, and the sound source direction is obtained by the above equation (1). With reference to FIG.
The phase difference φ of a certain frequency component of the sound wave arriving at 2 is represented by the following equation when the frequency is f. φ = 2πf · μ (2) Therefore, from equation (1), φ = 2πf · (Lcos θ / c) (3) is obtained. Here, assuming that the ratio between the inter-sensor α and the wavelength λ of the sound source frequency f is r, the relationship can be expressed by the following equation. λ = c / fc: Underwater sound velocity (m / s) r = λ / α FIG. 3 shows the ratio r between the sensor interval L (m) and the wavelength λ of the sound source frequency f, r = 5.5E −4 to 3 , Sound source direction angle θ = 0 °
FIG. 3 is a graph showing the change of the phase difference φ (degree) according to the equation (3) in the range of 180 ° (10 ° steps). As shown in FIG. By calculating the derivative φ ′ = dφ / df, 10
The sound source direction can be measured practically sufficiently within the range of ° to 170 °.

【0013】すなわち、センサ受信信号から位相差の周
波数に対する変化率φ’が抽出できれば、次式により音
源方向の角度θを算出することができる。 θ=cos-1(cφ’/2πL)・・・(4) この位相差変化率は、例えば両センサ11、12の受信
信号を2チャンネルFFT(高速フーリエ変換)処理
し、クロススペクトラムの位相情報を解析することによ
り、両受信信号間の相関度と共に容易に求めることがで
きる。
That is, if the rate of change φ ′ of the phase difference with respect to the frequency can be extracted from the sensor reception signal, the angle θ in the direction of the sound source can be calculated by the following equation. θ = cos −1 (cφ ′ / 2πL) (4) The phase difference change rate is obtained, for example, by performing a two-channel FFT (fast Fourier transform) process on the reception signals of both sensors 11 and 12 and obtaining phase information of the cross spectrum. Can be easily obtained together with the degree of correlation between the two received signals.

【0014】以下、図面を参照して本発明の実施の形態
について説明する。図1は、本発明に係る音源方向測定
装置の一実施形態を説明するブロック図であり、間隔を
おいて設置された2つのセンサ11及び12と、この2
つのセンサ11及び12の受信信号を周波数領域信号に
変換する2チャンネルFFT部13と、この周波数領域
信号の、相関度の高い周波数帯域の最尤位相変化率φ’
を抽出し、(4)式に従って音源方向の角度θを算出す
る位相情報解析部14とを備えている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram for explaining an embodiment of a sound source direction measuring apparatus according to the present invention, in which two sensors 11 and 12 arranged at an interval and the two sensors 11 and 12 are arranged.
A two-channel FFT unit 13 for converting received signals of the two sensors 11 and 12 into frequency domain signals, and a maximum likelihood phase change rate φ ′ of the frequency domain signals in a frequency band having a high degree of correlation.
And a phase information analyzer 14 for calculating the angle θ of the sound source direction according to the equation (4).

【0015】図5及び図6は本実施形態の動作を説明す
るための実測データ例であり、図4に示す環境で測定を
行った。図4を参照して、実測は、間隔L=αmでセン
サ11、12を設置した剛体をセンサ間隔α(m)に対
して水深約10α(m)、実海面下約6α(m)に吊下
し、送波器を音源位置1〜7の各点に吊下して、r≒1
〜3のランダムノイズを送波した。図5及び図6はそれ
ぞれ、音源位置2及び6からの受信信号を2チャンネル
FFT部13で周波数領域信号に変換し、位相情報解析
部14で解析して得られた位相差及び相関度の例であ
る。
FIGS. 5 and 6 show examples of actual measurement data for explaining the operation of the present embodiment. Measurement was performed in the environment shown in FIG. Referring to FIG. 4, the actual measurement is performed by suspending a rigid body having sensors 11 and 12 installed at an interval L = αm at a water depth of about 10α (m) with respect to the sensor interval α (m) and about 6α (m) below the actual sea level. And the transmitter is suspended at each of the sound source positions 1 to 7 so that r ≒ 1
33 random noises were transmitted. FIGS. 5 and 6 show examples of the phase difference and the correlation obtained by converting the reception signals from the sound source positions 2 and 6 into frequency domain signals by the two-channel FFT unit 13 and analyzing by the phase information analysis unit 14, respectively. It is.

【0016】例えば、図5の位相差の周波数変化を見る
と海面反射の影響によると思われる周期的なばらつきが
見られるが、相関度を参照して十分な相関が得られるr
≒1〜3の帯域の位相変化率から、例えば最小二乗法等
により最尤値を推定することにより、十分に確信度の高
い位相変化率が得られることが解る。海底反射の影響を
受ける図6についても同様のことがいえる。
For example, when the frequency change of the phase difference shown in FIG. 5 is seen, a periodic variation which is considered to be due to the influence of sea surface reflection is seen, but a sufficient correlation can be obtained by referring to the degree of correlation.
By estimating the maximum likelihood value by, for example, the least squares method from the phase change rates of the bands of # 1 to # 3, it can be seen that a phase change rate with sufficiently high certainty can be obtained. The same can be said for FIG. 6 affected by seafloor reflection.

【0017】位相情報解析部14では、このようにし
て、相関度が一定のしきい値以上の周波数帯域を選定
し、位相変化率の最尤値φ’を求め、(3)式に従っ
て、音源方向とセンサ間を結ぶ線分のなす角度θを算
出、出力する。
In this way, the phase information analyzer 14 selects a frequency band in which the degree of correlation is equal to or greater than a predetermined threshold, obtains the maximum likelihood value φ 'of the phase change rate, and obtains the sound source according to the equation (3). The angle θ formed by the line segment connecting the direction and the sensor is calculated and output.

【0018】図4の各音源位置1〜7に付した矢印は、
このようにして測定された音源方向と、実際の音源方向
との差を摸式的に示したものである。音源入射角が鋭角
になる音源位置1、2、7では海面、海底の影響や近距
離音源からの球面波を平面波で近似していること等によ
り若干の誤差が見られるが、音源位置3〜6では十分に
正確な音源方向の角度θを得ることが出来た。
The arrows attached to the sound source positions 1 to 7 in FIG.
The difference between the sound source direction measured in this way and the actual sound source direction is schematically shown. At the sound source positions 1, 2, and 7 where the sound source incident angle becomes an acute angle, slight errors are seen due to the influence of the sea surface and the sea floor, and the approximation of a spherical wave from a short-range sound source by a plane wave. In No. 6, a sufficiently accurate angle θ of the direction of the sound source could be obtained.

【0019】[0019]

【発明の効果】以上述べたように本発明に係る音源測定
方法及び装置によれば、音源に位相変化率を検出できる
だけの帯域幅があれば、センサ間隔Lによる波長の制約
を受けることなく音源方向を求めることができる。一般
にソナー等の計測対象が純音源に近いことはまれである
ので従来の音源測定装置に比べ、応用性の高い音源測定
装置を得ることができる。
As described above, according to the sound source measuring method and apparatus according to the present invention, if the sound source has a bandwidth capable of detecting the rate of phase change, the sound source is not restricted by the wavelength of the sensor interval L. The direction can be determined. Generally, it is rare that a measurement target such as a sonar is close to a pure sound source, so that a sound source measuring device having higher applicability than a conventional sound source measuring device can be obtained.

【0020】また、機械雑音等のように純音に近いスパ
イク性の音源についても、その高調波等の複数のスパイ
クを解析することにより、位相変化率を求めることがで
きるので、やはり応用性の高い音源測定装置を得ること
ができる。
Also, for a sound source having a spike characteristic close to a pure tone such as a mechanical noise, the phase change rate can be obtained by analyzing a plurality of spikes such as harmonics, so that the application is also highly applicable. A sound source measuring device can be obtained.

【0021】また、(3)式の示すようにセンサ間隔L
を広げることにより、位相差φの解像度を高めることが
できるので、従来の音源測定装置に比べ精度の高い測定
が可能となる。
Further, as shown in the equation (3), the sensor interval L
Can increase the resolution of the phase difference φ, so that a more accurate measurement can be performed as compared with the conventional sound source measuring device.

【0022】またさらに、相関度を参照することによ
り、雑音の多い周波数帯を除外して、有意な広帯域での
位相差情報から最尤位相変化率を求めることができるの
で確度の高い測定が可能となる。
Furthermore, by referring to the degree of correlation, the maximum likelihood phase change rate can be obtained from the phase difference information in a significant wide band, excluding a frequency band with much noise, so that highly accurate measurement is possible. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る音源方向測定装置の一実施形態を
説明するブロック図である。
FIG. 1 is a block diagram illustrating an embodiment of a sound source direction measuring device according to the present invention.

【図2】音源方向測定の原理を説明する概念図である。FIG. 2 is a conceptual diagram illustrating the principle of sound source direction measurement.

【図3】周波数による位相差の変化を表したグラフ図で
ある。
FIG. 3 is a graph showing a change in a phase difference depending on a frequency.

【図4】図1の音源方向測定装置による実測例を説明す
る摸式図である。
FIG. 4 is a schematic diagram illustrating an example of actual measurement by the sound source direction measuring device in FIG. 1;

【図5】図4の音源位置2からの受信信号の位相差、相
関度の実測例を示すグラフ図である。
FIG. 5 is a graph showing an example of actual measurement of a phase difference and a degree of correlation of a received signal from a sound source position 2 in FIG. 4;

【図6】図4の音源位置6からの受信信号の位相差、相
関度の実測例を示すグラフ図である。
6 is a graph showing an example of actual measurement of a phase difference and a correlation degree of a received signal from a sound source position 6 in FIG.

【符号の説明】[Explanation of symbols]

1〜7 音源位置 11、12 センサ 14 2チャンネルFFT 15 位相情報解析部 1-7 Sound source position 11, 12 Sensor 14 2-channel FFT 15 Phase information analyzer

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年11月26日(1999.11.
26)
[Submission Date] November 26, 1999 (1999.11.
26)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石前 浩蔵 神奈川県横浜市港北区新吉田町781番地 ジェイ・アール・シー特機株式会社内 Fターム(参考) 5J083 AA05 AB12 AC17 AC32 AD18 AE07 AF01 BE07 BE39 BE43 CA07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hirozo Ishimae 781 Shin-Yoshida-cho, Kohoku-ku, Yokohama-shi, Kanagawa Japan FRC Terminator FJ (reference) 5J083 AA05 AB12 AC17 AC32 AD18 AE07 AF01 BE07 BE39 BE43 CA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ある音源から到来する音波を、間隔をお
いて設置された複数の音波センサで受信する段階と、 前記複数の音波センサで受信した前記音波の受信信号間
の周波数に対する位相差変化率を抽出する位相情報抽出
段階と、 この位相差変化率と前記間隔及び音速から、前記間隔の
方向と前記音波の到来方向のなす角度を算出する段階と
を備えたことを特徴とする音源方向測定方法。
1. A step of receiving sound waves arriving from a certain sound source by a plurality of sound sensors arranged at intervals, and a phase difference change with respect to a frequency between reception signals of the sound waves received by the plurality of sound sensors. A phase information extracting step of extracting a rate; and a step of calculating an angle between the direction of the interval and the direction of arrival of the sound wave from the phase difference change rate and the interval and the speed of sound. Measuring method.
【請求項2】 前記位相情報抽出段階は、 前記受信信号のそれぞれを周波数領域信号に変換するF
FT(高速フーリエ変換)処理段階と、 この周波数領域信号間の相関度を算出する段階と、 この周波数領域信号間の位相差を算出する段階と、 この相関度が一定のしきい値以上の周波数帯域の、前記
位相差の周波数に対する変化率から前記位相差変化率を
抽出する段階とを備えたことを特徴とする請求項1に記
載の音源方向測定方法。
2. The phase information extracting step comprises: converting each of the received signals into a frequency domain signal.
FT (Fast Fourier Transform) processing; calculating a degree of correlation between the frequency domain signals; calculating a phase difference between the frequency domain signals; Extracting the phase difference change rate from the change rate of the band with respect to the frequency of the phase difference with respect to the frequency.
【請求項3】 間隔をおいて設置され、到来音波を時間
領域電気信号に変換する2つの音波センサと、 この時間領域電気信号のそれぞれを周波数領域信号に変
換する2チャンネルFFT処理部と、 この周波数領域信号の相関度が一定のしきい値以上の周
波数帯域の、位相差の周波数に対する変化率と前記間隔
及び音速から前記間隔の方向と前記音波の到来方向のな
す角度を算出する位相情報解析部とを備えたことを特徴
とする音源方向測定装置。
3. Two sound wave sensors installed at intervals and converting an incoming sound wave into a time domain electric signal; a two-channel FFT processing unit converting each of the time domain electric signals into a frequency domain signal; Phase information analysis for calculating the angle between the direction of the interval and the direction of arrival of the sound wave from the rate of change of the phase difference with respect to the frequency and the interval and the speed of sound in the frequency band in which the degree of correlation of the frequency domain signal is equal to or greater than a predetermined threshold And a sound source direction measuring device.
JP11073764A 1999-03-18 1999-03-18 Sound source direction measuring method and device Expired - Lifetime JP3069663B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11073764A JP3069663B1 (en) 1999-03-18 1999-03-18 Sound source direction measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11073764A JP3069663B1 (en) 1999-03-18 1999-03-18 Sound source direction measuring method and device

Publications (2)

Publication Number Publication Date
JP3069663B1 JP3069663B1 (en) 2000-07-24
JP2000266832A true JP2000266832A (en) 2000-09-29

Family

ID=13527624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11073764A Expired - Lifetime JP3069663B1 (en) 1999-03-18 1999-03-18 Sound source direction measuring method and device

Country Status (1)

Country Link
JP (1) JP3069663B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127503A (en) * 2005-11-02 2007-05-24 Nippon Soken Inc Object location detection apparatus
US8155346B2 (en) 2007-10-01 2012-04-10 Panasonic Corpration Audio source direction detecting device
KR101424911B1 (en) 2013-01-04 2014-07-31 김정근 Real-time automatic video monitoring system including audio sensor array
KR20200013172A (en) * 2018-07-20 2020-02-06 한국해양대학교 산학협력단 Method and apparatus for direction detection of ship whistle based on frequency detection and phase difference estimation for ships

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195652B2 (en) 2008-06-11 2013-05-08 ソニー株式会社 Signal processing apparatus, signal processing method, and program
CN102445680A (en) * 2011-09-29 2012-05-09 成都中安频谱科技有限公司 Shortwave broadband correlation interferometer projection technology
CN115236597B (en) * 2022-06-30 2022-12-23 哈尔滨工程大学 Double-accelerometer-coupled phase velocity characteristic-based ice-crossing positioning method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127503A (en) * 2005-11-02 2007-05-24 Nippon Soken Inc Object location detection apparatus
US8155346B2 (en) 2007-10-01 2012-04-10 Panasonic Corpration Audio source direction detecting device
KR101424911B1 (en) 2013-01-04 2014-07-31 김정근 Real-time automatic video monitoring system including audio sensor array
KR20200013172A (en) * 2018-07-20 2020-02-06 한국해양대학교 산학협력단 Method and apparatus for direction detection of ship whistle based on frequency detection and phase difference estimation for ships
KR102084315B1 (en) * 2018-07-20 2020-03-03 한국해양대학교 산학협력단 Method and apparatus for direction detection of ship whistle based on frequency detection and phase difference estimation for ships

Also Published As

Publication number Publication date
JP3069663B1 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
JP2021009161A (en) Radar angle resolution
JP6225118B2 (en) Sound source position estimation
US20070058488A1 (en) Sonar system and process
JP3069663B1 (en) Sound source direction measuring method and device
KR101681187B1 (en) Localization system and method of robot
JP4046905B2 (en) Inter-vehicle distance measuring device
ES2233746T3 (en) PROCEDURE TO DETERMINE THE POSITION OF A WHITE THAT IRRADIES SOUND.
JP4266669B2 (en) Bistatic orientation detection system and detection method
RU2612201C1 (en) Method of determining distance using sonar
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
JP2944481B2 (en) Underwater active sound detector
JPH11211809A (en) Underwater position measuring method
JP3506604B2 (en) Distance detecting device and distance detecting method for navigating object
RU2791163C1 (en) Method for detecting probing signals
JP6311230B2 (en) Target detection apparatus, target detection method, program, and recording medium
RU2795375C1 (en) Hydroacoustic complex for detecting a moving underwater sound source, measuring the bearing to the sound source and the horizon of the sound source in the shallow sea in the infrasonic frequency range
JP3162873B2 (en) Ship speed measuring device
JP2000241545A (en) Device and method for detecting distance to navigation object
JP2024030330A (en) Underwater positioning system and underwater positioning method
JP3506605B2 (en) Apparatus and method for detecting speed of navigation object
WO2001025816A1 (en) Method and apparatus for extracting physical parameters from an acoustic signal
JP2865090B2 (en) Passive sonar device
JPH0850172A (en) Sound wave direction finding device
JPH11352225A (en) Speed-measuring apparatus
US20050135632A1 (en) Method and apparatus for detecting and locating noise sources not correlated

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term