JPH0850172A - Sound wave direction finding device - Google Patents

Sound wave direction finding device

Info

Publication number
JPH0850172A
JPH0850172A JP20294194A JP20294194A JPH0850172A JP H0850172 A JPH0850172 A JP H0850172A JP 20294194 A JP20294194 A JP 20294194A JP 20294194 A JP20294194 A JP 20294194A JP H0850172 A JPH0850172 A JP H0850172A
Authority
JP
Japan
Prior art keywords
receivers
sound
sound wave
sound source
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20294194A
Other languages
Japanese (ja)
Inventor
Hiroichi Niimi
博一 新美
Toshio Sugano
俊雄 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP20294194A priority Critical patent/JPH0850172A/en
Publication of JPH0850172A publication Critical patent/JPH0850172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To quickly and precisely detect the existing directions of a plurality of navigating ships by a foghorn on the sea with poor visibility by providing a plurality of echo sounder receivers having a receiver directivity wider than the monitor target sector angle of the foghorn sound wave. CONSTITUTION:A level comparing circuit 3 compares the received signal from echo sounder receivers 1, 2 having receiving characteristic wider than the monitor target sector angle of foghorn sound wave. A direction collimating circuit 4 collimates the compared value with the comparison standard value of directivity characteristic of the receivers 1, 2 to a predetermined incident direction to roughly determine a sound source direction. A wavelength number arithmetic circuit 5 converts the sound wave propagation route difference from the sound source to the receivers 1, 2 into wavelength number on the basis of the sound wave frequency detected by a frequency detecting circuit 6 and the rough sound source direction. A phase difference detecting circuit 7 detects the phase difference between the received sound waves of the receivers 1, 2, and 2 direction arithmetic circuit 8 precisely calculates the sound source direction by use of the phase difference, the sound wave frequency, and the wavelength number of route difference. The calculated sound source direction is displayed on a direction indicator 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】霧中航海中の船舶等が視界の悪い
海上で、霧笛によって複数の航行船舶の存在方位をより
迅速、正確に検知し、航行安全を図るシステムに関す
る。
[Field of Industrial Application] The present invention relates to a system for ensuring navigation safety by detecting the azimuths of a plurality of navigating vessels more quickly and accurately by a fog whistle on the sea where a vessel in a fog voyage has poor visibility.

【0002】[0002]

【従来の技術】霧中航海時の他船舶の存在検出は、一般
的にはレーダが用いられるが、計測対象船舶が木造船の
場合は計測が不可能で、この場合各船舶は相互に霧笛に
よってその存在を明らかとし、衝突等の危険を回避して
いる。しかし、霧笛では他船舶の存在は明確に確認でき
るが、その方位については操船者の聴音感覚によって音
波方位を感知しているに過ぎず、その精度はかなり曖昧
なものであった。また、音波を用い方位を計測する場合
は、図4に示すような位置関係においてパルス音波を用
い、2つの受波器の配置間隔dとパルス音波の到着時間
差から伝搬経路差を求め、次式によって音源方位θを算
出することもできる。 音源方位角θ=arcSIN(c・Δt/d) ここで、 d;受波器配置間隔 c;音速 Δt;音波の到達時間差 但しこの方法では、音波が連続波の場合は2つの受波器
による音波の到達時間差は計測できず音源方位の算出も
できない。受信信号間の位相差によって音波伝搬経路差
を算出する方法もあるが、この場合は音波伝搬経路差が
音波周波数の1波長以内でかつ目標の存在方位が監視中
心方位の左右いずれであるかが既知となっている必要が
ある。
2. Description of the Related Art A radar is generally used to detect the presence of another ship during voyage in fog, but if the measurement target ship is a wooden ship, it is impossible to measure it. Its existence is clarified to avoid the danger of collision. However, although the presence of other vessels can be clearly confirmed by the fog whistle, the azimuth of the sound was detected only by the sense of hearing of the operator, and its accuracy was rather vague. Further, when the azimuth is measured using the sound wave, the pulse sound wave is used in the positional relationship shown in FIG. 4, and the propagation path difference is obtained from the arrangement interval d of the two wave receivers and the arrival time difference of the pulse sound wave, and It is also possible to calculate the sound source direction θ. Sound source azimuth angle θ = arcSIN (c · Δt / d) where: d: receiver arrangement interval c: sound velocity Δt; arrival time difference of sound waves However, in this method, when the sound waves are continuous waves, two receivers are used. The arrival time difference of sound waves cannot be measured, and the sound source direction cannot be calculated. There is also a method of calculating the sound wave propagation path difference by the phase difference between the received signals. In this case, it is determined whether the sound wave propagation path difference is within one wavelength of the sound wave frequency and whether the target azimuth is on the right or left of the monitoring center azimuth. Must be known.

【0003】[0003]

【発明が解決しようとする課題】霧中航海中の船舶等に
おいて他船舶の霧笛を聴知した場合、即時にその発生方
位を計測し、航行安全を図るシステムの構築。
[Problem to be Solved by the Invention] When a fog whistle of another ship is heard in a ship or the like while navigating in a fog, the system immediately measures the direction of the fog whistle and establishes a navigation safety system.

【0004】[0004]

【課題を解決するための手段】霧中航海中の他船舶の霧
笛により他船舶の存在方位を確認し、航行の安全確保を
図るシステムに関し、霧笛音波の監視対象セクタ角より
広い受波指向性を持った2台の受波器を、該監視対象セ
クタ角の中心に対し、受波器の受波指向性中心を、有効
な受波指向方位の半値幅以内で開いて配置し、2台の受
波器の受信信号のレベルの比較値と、それぞれの受波器
の音波入射方位に対する受波指向特性の比較基準値との
照合により、音波の入射方位角を粗く算出し、更に2台
の受波器の受信信号の位相差計測と周波数計測により精
密な音波の到来方位を算出することによって、他船舶の
存在方位を計測し航行安全を図る。
[Means for Solving the Problems] Regarding a system for ensuring the safety of navigation by confirming the presence direction of another ship by the fog whistle of another ship during fog navigation, a receiving direction wider than the sector angle of the fog whistle sound wave is monitored. With the two wave receivers held, the wave receiving directivity center of the wave receiver is arranged within the full width at half maximum of the effective wave receiving direction, with respect to the center of the monitored sector angle. By comparing the comparison value of the received signal level of the wave receiver and the comparison reference value of the wave receiving directional characteristic with respect to the sound wave incident azimuth of each wave receiver, the incident azimuth angle of the sound wave is roughly calculated. Accurate direction of arrival of sound waves is calculated by measuring the phase difference and frequency of the received signal of the receiver, thereby measuring the direction of existence of other vessels and improving navigation safety.

【0005】[0005]

【実施例】図1は本発明の1実施例を示すブロック図で
ある。本実施例では、霧笛音監視セクタ角を、−60°
〜+60°としている。図1において、1及び2は受波
器、3は受波器1及び2からの受信信号レベルを比較す
るレベル比較回路、4は該レベル比較回路3で得られた
比較値と予め求められている音波入射方位に対する両受
波器1、2の受波指向特性の比較基準値とを照合するこ
とにより音源方位を粗く求める方位照合回路、6は前記
受波器1の受信信号より受信音波周波数を検出する周波
数検出回路、5は該周波数検出回路6が検出した音波周
波数と前記方位照合回路4が求めた粗い音源方位を元に
音源からの前記受波器1と2との音波伝搬経路差の距離
を音波の波長数に換算する波長数演算回路、7は前記受
波器1及び2の受信信号により両受信音波の位相差を検
出する位相検出回路、8は該位相差検出回路7が検出し
た位相差と前記周波数検出回路6が検出した音波周波数
と前記波長数演算回路5が算出した経路差の波長数とを
用いて正確に音源方位を算出する方位演算回路、9は該
方位演算回路8が算出した音源方位を表示する方位表示
器である。また、図1における受波器1及び2は、図2
に示すごとく、両受波器の指向性中心を、霧笛音監視セ
クタ中心方位に対して±10゜ずつ開き距離dを隔てて
配置している。図2のごとく配置された両受波器は、図
3に示すように音源の方位により同一音源に対し異なっ
た受信信号レベルを持つ。
1 is a block diagram showing an embodiment of the present invention. In the present embodiment, the fog whistle sound monitoring sector angle is set to −60 °.
It is set to + 60 °. In FIG. 1, 1 and 2 are wave receivers, 3 is a level comparison circuit for comparing the received signal levels from the wave receivers 1 and 2, and 4 is a comparison value obtained by the level comparison circuit 3 and is previously obtained. An azimuth matching circuit for roughly determining the sound source azimuth by comparing the received directional characteristics of both receivers 1 and 2 with respect to the sound wave incident azimuth, 6 is a sound wave frequency from the received signal of the receiver 1. Is a frequency detection circuit for detecting the difference between the sound wave propagation paths between the wave receivers 1 and 2 from the sound source based on the sound wave frequency detected by the frequency detection circuit 6 and the rough sound source direction obtained by the direction matching circuit 4. The number-of-wavelengths arithmetic circuit for converting the distance into the number of wavelengths of sound waves, 7 is a phase detection circuit for detecting the phase difference between the two received sound waves by the reception signals of the wave receivers 1 and 2, and 8 is the phase difference detection circuit 7. The detected phase difference and the frequency detection circuit 6 detect A direction calculation circuit for accurately calculating the sound source direction using the sound wave frequency and the number of wavelengths of the path difference calculated by the wavelength number calculation circuit 5, and 9 is a direction indicator for displaying the sound source direction calculated by the direction calculation circuit 8. Is. In addition, the wave receivers 1 and 2 in FIG.
As shown in Fig. 3, the directivity centers of both receivers are arranged at an opening distance d of ± 10 ° with respect to the center direction of the fog whistle sound monitoring sector. As shown in FIG. 3, both receivers arranged as shown in FIG. 2 have different received signal levels for the same sound source depending on the direction of the sound source.

【0006】このように構成された音波方位計測装置に
おける動作を以下に説明する。まず、受波器1及び2の
個別での音源方位θをパラメータとした受波指向特性D
(θ)は次式で表される。 D(θ)=A・COS(θ) θ: −90゜〜
+90゜ A: 定数 両受波器の指向性中心を、霧笛音監視セクタ中心方位に
対して±10゜ずつ開いて配置しているので、霧笛音発
生方位をθとした場合の両受波器における受信信号のレ
ベルの比は、D(θ−10゜)/D(θ+10゜)とし
て表1のごとく予め得られる。尚、表1では10゜毎の
方位に対する受信信号のレベルの比を示しているが、必
要に応じて方位は細分できる。
The operation of the sonic azimuth measuring device configured as described above will be described below. First, the reception directional characteristic D using the sound source direction θ of each of the wave receivers 1 and 2 as a parameter.
(Θ) is expressed by the following equation. D (θ) = A · COS (θ) θ: −90 ° to
+ 90 ° A: Constant Since the directivity center of both receivers is placed ± 10 ° apart from the center direction of the fog whistle sound monitoring sector, both receivers when the fog whistle sound generation direction is θ The ratio of the levels of the received signals in is obtained in advance as D (θ-10 °) / D (θ + 10 °) as shown in Table 1. Although Table 1 shows the ratio of the level of the received signal to the azimuth every 10 °, the azimuth can be subdivided as necessary.

【表1】 従って、方位照合回路4は、レベル比較回路3が検出し
た両受波器の受信信号のレベルの比較値と表1のデータ
とを照合することにより、霧笛音方位を粗く求めること
ができる。該方位照合回路4が算出した粗い霧笛音方位
をψとする。
[Table 1] Therefore, the azimuth collation circuit 4 can roughly determine the fog whistle sound azimuth by collating the comparison value of the levels of the reception signals of the both receivers detected by the level comparison circuit 3 with the data in Table 1. The coarse fog whistle sound azimuth calculated by the azimuth matching circuit 4 is ψ.

【0007】また、 図3で示した配置関係で、音源方
位角をθとすると2つの受波器間の音波伝搬の経路差c
・Δtは次式で与えられる。 c・Δt=d・SIN(θ) この式の関係を用い、音源周波数をfとし、θに上記方
位照合回路4で求めたψを代入して、2つの受波器の受
信信号の位相差Φを求めると、 Φ=(2πf)Δt =(2πf)d・SIN(ψ)/c ここで Φ= 2πn+φ とし n=((2πf)d・SIN(ψ)/c)/2π の整
数部 を求めると、nは経路差に含まれる音波の波長数で、φ
は2つの受波器の受信信号の1波長(2π)以内の位相
差となる。この式に基づき、方位照合回路4の出力であ
る粗い方位角ψと周波数検出回路6の出力である音源周
波数fを用いて、波長数演算回路5は受波器1及び2の
音波伝搬経路差における波長数nを算出する。
Further, in the arrangement relationship shown in FIG. 3, when the sound source azimuth angle is θ, the path difference c of the sound wave propagation between the two receivers c
-At is given by the following equation. c · Δt = d · SIN (θ) Using the relation of this equation, the sound source frequency is set to f, and ψ obtained by the above-mentioned azimuth matching circuit 4 is substituted into θ, and the phase difference between the received signals of the two wave receivers is obtained. When Φ is obtained, Φ = (2πf) Δt = (2πf) d · SIN (ψ) / c where Φ = 2πn + φ and n = ((2πf) d · SIN (ψ) / c) / 2π When calculated, n is the number of wavelengths of the sound wave included in the path difference, and φ
Is the phase difference within one wavelength (2π) of the received signals of the two wave receivers. Based on this equation, using the rough azimuth angle ψ that is the output of the azimuth matching circuit 4 and the sound source frequency f that is the output of the frequency detection circuit 6, the wavelength number calculation circuit 5 determines the difference between the sound wave propagation paths of the wave receivers 1 and 2. The wavelength number n in is calculated.

【0008】ここで上式の方位角ψは粗い計測値であ
り、Φは多くの誤差を含んでいるがその誤差は受波器の
単体指向性の精度により定まるものであり、一般的に1
波長以内に収まり位相差φの範囲内とすることができ
る。 更に位相差φは、2つの受信信号の位相差として
正確に計測できるものであり、位相差検出回路7によっ
て計測される。
Here, the azimuth angle ψ in the above equation is a rough measurement value, and Φ includes many errors, but these errors are determined by the accuracy of the directivity of the receiver unit, and are generally 1
It can be set within the wavelength range and within the range of the phase difference φ. Further, the phase difference φ can be accurately measured as the phase difference between the two received signals, and is measured by the phase difference detection circuit 7.

【0009】次に、この位相差検出回路7で計測した位
相差φと波長数演算回路5で算出した経路差内の波長数
nと前記周波数検出回路6で計測した音源周波数fを用
いることにより、図4の位置関係から次式により音源方
位角θを精密に算出することができる。方位演算回路8
がこの音源方位角θの算出を行う。 θ=arcSIN(c・Δt/d) =arcSIN(c・(n+(φ/2π))/f/d) 方位表示器9は方位演算回路8が出力する音源方位角θ
に基づいてディスプレイ上に霧笛音方位を表示する。
Next, by using the phase difference φ measured by the phase difference detecting circuit 7, the number of wavelengths n in the path difference calculated by the wavelength number calculating circuit 5 and the sound source frequency f measured by the frequency detecting circuit 6, , The sound source azimuth angle θ can be accurately calculated from the positional relationship of FIG. Direction calculation circuit 8
Calculates the sound source azimuth angle θ. θ = arcSIN (c · Δt / d) = arcSIN (c · (n + (φ / 2π)) / f / d) The azimuth indicator 9 is the sound source azimuth θ output from the azimuth calculation circuit 8.
Based on, the fog whistle sound direction is displayed on the display.

【0010】本実施例では、2台の受波器の受信信号の
比較値を、予め用意した2台の受波器の音波入射方位に
対する受波指向特性の比較基準値のデータと照合して音
源方位を求めたが、この受波指向特性の比較基準値は、
受波器の指向特性関数から直接計算によって求め計測し
た受信信号比較値と照合することも同様にできる。
In this embodiment, the comparison value of the reception signals of the two wave receivers is collated with the data of the comparison reference value of the wave reception directional characteristic with respect to the sound wave incident direction of the two wave receivers prepared in advance. The sound source azimuth was obtained, and the comparison reference value of this receiving directional characteristic is
It is also possible to compare with the received signal comparison value obtained by direct calculation from the directional characteristic function of the receiver.

【0011】[0011]

【発明の効果】同一海域の他船舶の発する霧笛音によ
り、瞬時(1秒以内)にその発生方位を検出できるた
め、周囲の多数の船舶が交互に発する霧笛音を円周上に
配置した複数の受波器の組み合わせにより聴知して、そ
の方位を全て算出できる。霧笛等単一周波数の簡単な音
源を有した全ての船舶について、短時間の音波発信によ
って方位の確定が可能なため小型舟艇も検出対象とする
ことができる。方位の検出精度が高く、自船及び目標船
の運動に伴う方位変化により衝突の危険性のある接近目
標か否かのある程度の判別ができる。
[Effects of the Invention] Since the direction of the fog whistle generated by another ship in the same sea area can be detected instantaneously (within 1 second), a plurality of fog whistle sounds alternately emitted by a number of surrounding ships are arranged on the circumference. All the directions can be calculated by hearing with the combination of the receivers. For all ships that have a simple sound source with a single frequency, such as a fog whistle, it is possible to determine the bearing by transmitting sound waves for a short time, so small boats can also be detected. The azimuth detection accuracy is high, and it is possible to determine to some extent whether or not the approach target has a risk of collision based on the azimuth changes caused by the motions of the own ship and the target ship.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】実施例における2台の受波器の配置を示す図。FIG. 2 is a diagram showing an arrangement of two wave receivers in the embodiment.

【図3】音源方位と2台の受波器の受信信号レベルを示
す図。
FIG. 3 is a diagram showing a sound source direction and received signal levels of two wave receivers.

【図4】音源方位と2台の受波器における経路差の関係
を示す図。
FIG. 4 is a diagram showing a relationship between a sound source direction and a path difference between two wave receivers.

【符号の説明】[Explanation of symbols]

1、2 受波器 3 レベル比較回路 4 方位照合回路 5 波長数演算回路 6 周波数検出回路 7 位相差検出回路 8 方位演算回路 9 方位表示器 1, 2 Wave receiver 3 Level comparison circuit 4 Direction matching circuit 5 Wavelength number calculation circuit 6 Frequency detection circuit 7 Phase difference detection circuit 8 Direction calculation circuit 9 Direction indicator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】霧笛によって他船舶の存在を確認し航行安
全を図るシステムに関し、霧笛音波の監視対象セクタ角
より広い受波指向性を持ち、該監視対象セクタ角の中心
に対しそれぞれの受波器の受波指向性中心を、有効な受
波指向方位の半値幅以内で開いて配置した2台の受波器
と、前記2台の受波器から受信信号を入力し、両受信信
号のレベルの比較値と、前記2台の受波器の音波入射方
位に対する受波指向特性の比較基準値との照合により、
音波入射方位を概算する演算部と、前記2台の受波器の
受信音波の位相差及び周波数を計測し、計測した位相差
と周波数と前記概算演算部が概算した音波入射方位とに
より真の音波入射方位を算出する演算部とを備えた音波
方位計測装置。
1. A system for confirming the presence of another ship by a fog whistle to ensure navigation safety, which has a reception directivity wider than a sector angle of a fog whistle to be monitored, and receives each wave with respect to the center of the sector angle of the fog. Two wave receivers in which the center of the wave receiving directivity of the receiver is arranged within the half width of the effective wave receiving direction, and the received signals are input from the two receivers. By comparing the level comparison value and the comparison reference value of the reception directional characteristics with respect to the sound wave incident directions of the two receivers,
A true value is obtained by a calculation unit that roughly estimates the sound wave incident direction and the phase difference and frequency of the received sound waves of the two receivers, and the measured phase difference and frequency and the sound wave incident direction that is calculated by the rough calculation unit. A sound wave direction measurement apparatus comprising: a calculation unit that calculates a sound wave direction.
JP20294194A 1994-08-05 1994-08-05 Sound wave direction finding device Pending JPH0850172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20294194A JPH0850172A (en) 1994-08-05 1994-08-05 Sound wave direction finding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20294194A JPH0850172A (en) 1994-08-05 1994-08-05 Sound wave direction finding device

Publications (1)

Publication Number Publication Date
JPH0850172A true JPH0850172A (en) 1996-02-20

Family

ID=16465703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20294194A Pending JPH0850172A (en) 1994-08-05 1994-08-05 Sound wave direction finding device

Country Status (1)

Country Link
JP (1) JPH0850172A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102308A1 (en) * 2006-03-06 2007-09-13 Murata Manufacturing Co., Ltd. Radar apparatus
JP2010151496A (en) * 2008-12-24 2010-07-08 Nippon Soken Inc Azimuth detection device
JP2011017646A (en) * 2009-07-09 2011-01-27 Nec Computertechno Ltd Active sonar device, and atm terminal device loaded with the same
JP2022090400A (en) * 2020-12-07 2022-06-17 博一 新美 Acoustic wave guidance system for moving object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102308A1 (en) * 2006-03-06 2007-09-13 Murata Manufacturing Co., Ltd. Radar apparatus
JP2010151496A (en) * 2008-12-24 2010-07-08 Nippon Soken Inc Azimuth detection device
JP2011017646A (en) * 2009-07-09 2011-01-27 Nec Computertechno Ltd Active sonar device, and atm terminal device loaded with the same
JP2022090400A (en) * 2020-12-07 2022-06-17 博一 新美 Acoustic wave guidance system for moving object

Similar Documents

Publication Publication Date Title
US7193930B2 (en) Quantitative echo sounder and method of quantitative sounding of fish
JP6469357B2 (en) Underwater detection device, underwater detection method, and underwater detection program
US4052693A (en) Depth sounder
JPH0850172A (en) Sound wave direction finding device
US10073175B2 (en) Method and sonar device for determining the speed of movement of a naval vehicle in relation to the sea bed
JP2015014472A (en) Echo signal processing device, ocean wave radar, echo signal processing method, and echo signal processing program
JP2008304329A (en) Measuring device
KR20100016545A (en) Method for the passive determination of target data
JP4211218B2 (en) Target discrimination method
JP2004184341A (en) Azimuth detection device
JP3506605B2 (en) Apparatus and method for detecting speed of navigation object
JP3506604B2 (en) Distance detecting device and distance detecting method for navigating object
JP2000241545A (en) Device and method for detecting distance to navigation object
JPH10206537A (en) Radar auxiliary device
RU2702696C1 (en) Ship speed measurement method with doppler log
JPH08146118A (en) Distress finding system
JPH07128082A (en) Apparatus for measuring relative position of vessel to quay
JPH11352225A (en) Speed-measuring apparatus
JPS58184525A (en) Device for measuring temperature in water
JPH04204075A (en) Sonar angle measuring apparatus
JPH0648453Y2 (en) Fish finder for fish length discrimination
SU1255913A1 (en) Method of determining coordinates of acoustical emission signal source
JPH11304898A (en) Ranging method and device
JPH05240718A (en) Ultrasonic remote water temperature measuring device
JPH07204204A (en) Ultrasonic blood-flow measuring device