WO2007102308A1 - Radar apparatus - Google Patents

Radar apparatus Download PDF

Info

Publication number
WO2007102308A1
WO2007102308A1 PCT/JP2007/053071 JP2007053071W WO2007102308A1 WO 2007102308 A1 WO2007102308 A1 WO 2007102308A1 JP 2007053071 W JP2007053071 W JP 2007053071W WO 2007102308 A1 WO2007102308 A1 WO 2007102308A1
Authority
WO
WIPO (PCT)
Prior art keywords
azimuth
signal
reception
transmission
antenna
Prior art date
Application number
PCT/JP2007/053071
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Nagai
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2007102308A1 publication Critical patent/WO2007102308A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/424Stacked beam radar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns

Definitions

  • the present invention relates to an FM-CW radar device used for preventing collision of an automobile, and more particularly to a radar device that detects an azimuth using an array antenna.
  • the radar apparatus of Patent Document 1 includes one transmitter having one transmission antenna and one receiver having a plurality of reception antennas.
  • the radar device of Patent Document 1 detects the azimuth of the phase difference force detection object of the received signal obtained from each receiving antenna by switching a plurality of receiving antennas at high speed with a switch.
  • Patent Document 1 Japanese Patent No. 3622565
  • the interval between the reception antennas is reduced. While maintaining this, the number of receiving antennas must be increased tl, or the arrangement interval of receiving antennas must be increased without increasing the number of receiving antennas.
  • a grating lobe is generated.
  • a grating lobe is a phenomenon in which a peak of the received signal intensity (radiation intensity) occurs in a different direction from the main lobe that occurs in the originally desired direction of the received beam. May be misunderstood.
  • some conventional radar apparatuses perform azimuth detection by comparing received signal strengths of receiving antennas having different detection directions, and this apparatus performs wide-angle detection by widening the receiving antenna interval.
  • this apparatus performs wide-angle detection by widening the receiving antenna interval.
  • no grating lobe is generated.
  • the direction detection result by this method cannot be as accurate as the direction detection result using the phase difference.
  • an object of the present invention is to realize a radar apparatus capable of detecting a bearing with high accuracy and high speed without erroneous recognition even when performing wide-angle detection.
  • the present invention provides a transmission antenna that transmits a transmission wave subjected to predetermined modulation to a detection region, a plurality of reception antennas that receive a reflected wave of the transmission wave and output a reception signal, and a reception antenna
  • the present invention relates to a radar apparatus including detection means for detecting a direction based on each received signal.
  • the plurality of receiving antennas of the radar apparatus of the present invention include receiving antennas arranged in a straight line and having different directivity center directions, and the detection means calculates based on the signal strength of each received signal. It is characterized in that the amplitude calculation direction is compared with the phase difference calculation direction calculated based on the phase difference of each received signal, and the matching direction is output as the object detection direction.
  • a plurality of receiving antennas receive reflected waves from a region having a predetermined width including the central direction of each directivity.
  • the directivity of each receiving antenna has a predetermined spread
  • a reflected wave from one object is received by a plurality of receiving antennas.
  • the reception signals of the respective reception antennas have a phase difference corresponding to the arrangement interval of the reception antennas, and by combining the reception signals based on this phase difference, reception beams having different azimuths as the central directions. Is formed.
  • the detection means acquires the azimuth angle distribution (angle spectrum) of the received signal intensity from the signal intensity of each received signal, and determines the azimuth angle distribution of the received beam intensity from each of the formed received beam curves. Get the cloth (angle spectrum). At this time, in the azimuth distribution of the received signal strength, only a peak having a relatively wide azimuth width due to the main lobe exists. On the other hand, in the azimuth distribution of received beam intensity, a peak with a narrow azimuth width due to the main lobe and a peak with a predetermined azimuth width due to a virtual image such as a grating tube are mixed. The detection means compares these two azimuth angle distributions, compares the signal intensity and the beam intensity peak, and outputs this azimuth when it detects that the azimuth coincides.
  • the detection means of the radar apparatus according to the present invention is characterized in that the phase difference calculation azimuth is calculated only within a predetermined azimuth angle range including the amplitude calculation azimuth.
  • the azimuth angle specific calculation is performed only within a predetermined azimuth angle range including the azimuth obtained by the signal intensity. The calculation amount is small, and the load on the signal processing circuit is reduced.
  • the radar apparatus is characterized in that the arrangement interval of the plurality of receiving antennas is at least one wavelength of the transmission wave! /
  • the azimuth angle detection range by the reception beam is expanded by widening the arrangement interval of the reception antennas.
  • a grating globe is generated by setting the arrangement interval to one or more wavelengths of the transmitted wave, but the azimuth angle detection without being affected by the above-described configuration (method) is performed.
  • the radar apparatus is characterized by comprising selection means for switching the output signals of the plurality of reception antennas in synchronization with the modulation period of the transmission wave and giving the detection signals to the detection means.
  • the radar apparatus according to the present invention is characterized in that there is one transmission antenna and the transmission wave is transmitted to the entire detection region by the one transmission antenna.
  • the azimuth distribution is correlated between the received signal intensity of each receiving antenna of the plurality of arranged antennas and the received beam intensity of the plurality of arranged antennas.
  • the azimuth By detecting the azimuth angle, the azimuth can be detected reliably and with high accuracy.
  • the azimuth detection is reliably and highly accurate even in wide-angle detection in which the arrangement interval of the receiving antennas is set to one or more wavelengths of the transmission wave. It can be performed.
  • the amount of azimuth angle specifying calculation processing can be reduced, and higher speed can be achieved. It is possible to detect the direction.
  • the switching noise included in the received signal is reduced, and the azimuth detection can be performed more reliably.
  • the constituent elements are simplified, and a radar apparatus that performs wide-angle azimuth detection reliably and with high accuracy is realized in a small size and at low cost. be able to.
  • FIG. 1 is a block diagram showing a main part of a radar apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing the configuration of each of the receiving antennas 5A to 5F shown in FIG.
  • FIG. 3 is a diagram showing directivity characteristics 500A to 500F of receiving antennas 5A to 5F.
  • FIG. 4 is a diagram showing a frequency modulation pattern of a transmission signal and assignment of receiving antennas 5A to 5F that perform reception.
  • FIG. 5 is a flowchart showing a direction detection process of the signal processing circuit 1.
  • FIG. 6 is a diagram showing an example of an angle spectrum obtained by the signal processing circuit 1;
  • FIG. 7 is a diagram showing another example of an angular spectrum obtained by the signal processing circuit 1;
  • FIG. 8 is a flowchart showing a direction detection process of the signal processing circuit 1 according to the second embodiment.
  • FIG. 9 is a diagram showing the directivity characteristics of other receiving antennas.
  • a radar apparatus according to the first embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 is a block diagram showing the main part of the radar apparatus of this embodiment.
  • FIG. 2 is a diagram showing the configuration of each of the receiving antennas 5A to 5F shown in FIG.
  • FIG. 3 is a diagram showing the directivity characteristics 500A to 500F of the receiving antennas 5A to 5F.
  • FIG. 4 is a diagram showing the frequency modulation pattern of the transmission signal and the assignment of the receiving antennas 5A to 5F for receiving.
  • the number of receiving antennas is six, but the number of receiving antennas is not limited to this and may be set as appropriate.
  • the radar apparatus of this embodiment includes a signal processing circuit 1, a VC02, a branch circuit 3, a transmitting antenna 4, receiving antennas 5A to 5F, a switch circuit 6, an LNA 7, a mixer 8, and an IF.
  • a signal processing circuit 1 a VC02, a branch circuit 3, a transmitting antenna 4, receiving antennas 5A to 5F, a switch circuit 6, an LNA 7, a mixer 8, and an IF.
  • amplifier 9 With amplifier 9.
  • the signal processing circuit 1 generates a control voltage signal for frequency modulation of the transmission signal and supplies it to VC02. In addition, the signal processing circuit 1 detects an object and detects an object direction by a method described later based on the IF beat signal of the input reception signal.
  • VC02 is based on the control voltage signal! A triangular wave modulated transmission signal whose frequency changes in a triangular wave shape over time, as shown in Figs. 4 (A) and (C), and Fig. 4 (B) A sawtooth modulation transmission signal whose frequency changes in a sawtooth shape with time is generated. At this time, the modulation period of the transmission signal is set according to the period of the control voltage signal.
  • a transmission signal whose frequency changes repeatedly with time is used.
  • any transmission signal that includes a pulse signal or the like and that is modulated at a predetermined period may be used.
  • the branch circuit 3 gives the transmission signal output from the VC02 to the transmission antenna 4, and gives a part of the transmission signal to the mixer 8 as a local signal.
  • the transmission antenna 4 is formed by a microstrip antenna or the like, and is arranged so as to coincide with the front direction of an automobile or the like on which the antenna front direction force S radar apparatus is mounted. Send The antenna 4 transmits a transmission wave to the entire desired detection area with the front direction as the center of radiation directivity.
  • the receiving antennas 5A to 5F are each formed in a structure as shown in FIG. 2, and are arranged in a straight line at intervals d as shown in FIG.
  • the arrangement interval d is set to a length of one or more wavelengths of the transmission signal.
  • Each of the reception antennas 5A to 5F is installed such that the front direction is perpendicular to the arrangement direction and faces the same direction. And the front direction of each receiving antenna 5A-5F corresponds with the front direction of the said motor vehicle.
  • Each of the receiving antennas 5A to 5F is a microstrip antenna provided with six patch antennas 551 to 556 and 561 to 566 arranged in a straight line on the dielectric substrate 57, respectively.
  • Notch antennas 551 to 556 are connected in series via transmission line 55
  • Notch antennas 561 to 566 are connected in series via transmission line 56.
  • These two patch antenna groups connected in series are arranged in parallel to the arrangement direction of the notch antennas, and are connected to the transmission line 53 and the transmission line 54 at one end respectively.
  • the transmission lines 53 and 54 are formed in a shape extending in a direction perpendicular to the arrangement direction of the patch antennas, and are connected to the feed line 51 at the connection point 52.
  • the antenna directivity as shown can be set. That is, the receiving antennas 5A to 5F are configured with the same components, and the directivity is set in different directions by changing the length ratio of the transmission lines 53 and 54 for each receiving antenna 5A to 5F. It is set to be the center position of.
  • the length ratio of transmission paths 53 and 54 is reversed between reception antenna 5A and reception antenna 5F, and the length ratio of transmission paths 53 and 54 is reversed between reception antenna 5B and reception antenna 5E.
  • the length ratio of the transmission lines 53 and 54 is reversed between the receiving antenna 5C and the receiving antenna 5D.
  • the directivity of the receiving antenna 5A and the directivity of the receiving antenna 5F are symmetrical with respect to the front axis of the receiving antenna passing through the center in the arrangement direction.
  • the receiving antennas 5B and 5E have symmetric characteristics
  • the receiving antennas 5C and 5D have symmetric characteristics.
  • each of the receiving antennas 5A to 5F has directivity characteristics 500A to 500F as shown in FIG.
  • the switch circuit 6 connects any one of the receiving antennas 5A to 5F to the LNA 7. Specifically, in the case of the transmission signal of FIG. 4 (A), the reception antennas 5A to 5F are sequentially selected for each triangular wave modulation period, and the reception signals of the reception antennas 5A to 5F are output to the LNA 7. In this way, by switching the receiving antenna at the division of the modulation period, the switching noise generated at the time of switching is generated at the timing corresponding to the end of the modulation period, so the upstream modulation section and the downstream modulation section which are the main observation periods The received signal can be acquired effectively without being affected by noise at intermediate frequencies.
  • LNA 7 amplifies the input received signal and outputs it to mixer 8.
  • Mixer 8 mixes the received signal from LNA 7 with the local signal from branch circuit 6 to generate an IF beat signal. To do.
  • the IF amplifier 9 amplifies the IF beat signal and outputs it to the signal processing circuit 1.
  • FIG. 5 is a flowchart showing the direction detection processing of the signal processing circuit 1.
  • FIG. 6A and 6B are diagrams showing an example of an angle spectrum obtained by the signal processing circuit 1.
  • FIG. 6A shows an angle spectrum based on the received signal intensity
  • FIG. 6B shows an angle spectrum based on the received beam intensity.
  • the reference direction of the azimuth is the front direction of the receiving antennas 5A to 5F, and this direction is the direction of the azimuth 0 °.
  • the signal processing circuit 1 includes I based on the reception signals of the reception antennas 5A to 5F that are switched for each frequency modulation period of the transmission signal in accordance with the switching of the switch circuit 6.
  • An F beat signal is input (S101).
  • the signal processing circuit 1 performs object detection, distance, and relative velocity calculation using the known FMCW technique using the acquired IF beat signal of the received signal (S102).
  • the signal processing circuit 1 receives the reception signals (IF beat signals) of all the reception antennas 5A to 5F. And signal strength is detected. Then, an angle spectrum that is a distribution of the received signal intensity in each direction as shown in FIG. 6A is formed (S103).
  • the signal processing circuit 1 acquires the reception signals (IF beat signals) of all the reception antennas 5A to 5F and uses a known beamformer method or the like to detect the signals in all detectable directions. Calculation based on the phase difference of each received signal is performed (S104). Then, an angle spectrum of each direction as shown in FIG. 6 (B) is formed (S105). More specifically, the signal processing circuit 1 uses exp (—j ⁇ 2 ⁇ d ⁇ (sin ⁇ ) Z) and exp ( ⁇ ⁇ 2 ⁇ 2 ⁇ ⁇ (sin0 ⁇ ) for each received signal (IF beat signal).
  • is the azimuth (angle)
  • d is the receiving antenna spacing
  • is the wavelength of the transmission signal
  • the wavelength of the transmission signal changes from time to time because the frequency of the transmission signal is modulated.
  • the modulation frequency width is about 3 OO MHz, so the wavelength of the transmission signal is set to a wavelength corresponding to the center frequency of the transmission frequency.
  • the signal processing circuit 1 detects the peak of the signal intensity in each angle spectrum formed in this way, and detects the corresponding azimuth (S106). In the case of FIG. 6 (A), the signal processing circuit 1 detects the signal intensity peak P11 and detects the corresponding azimuth angle + 45 °. In the case of FIG. 6 (B), the signal intensity peaks P21 and P22 are detected, and the corresponding azimuth angles + 45 ° and 17 ° are detected.
  • the signal processing circuit 1 determines the direction of the detected object based on the fact that a peak is detected in the direction of the azimuth angle + 45 ° regardless of the received signal strength or the signal strength based on the phase difference. Output as a bearing (S107 ⁇ S108 ⁇ S109). On the other hand, the signal processing circuit 1 determines that it is a false image due to a grating lobe based on the fact that there is no peak at the azimuth angle 17 ° of the angle spectrum based on the received signal strength, and this azimuth (one 17 °) It is not output as (S107 ⁇ S108 ⁇ S110).
  • FIG. 7 is a diagram showing another example of an angular spectrum obtained by the signal processing circuit 1, (A) is an angular spectrum based on received signal strength, and (B) is an angular spectrum based on a phase difference. Indicates.
  • the reference direction of the azimuth is the front direction of the receiving antenna 5A 5F, and this direction is the direction with an azimuth of 0 °.
  • the signal processing circuit 1 when the angle spectrum force formed based on the received signal strength also detects peaks Pl1, P12, the corresponding azimuth + 45 ° Detects 17 °.
  • the signal processing circuit 1 detects the peaks P21 and P22 as the angular spectrum force formed based on the received signal strength, and the corresponding azimuth angle + 45 ° 17 ° Detect.
  • the signal processing circuit 1 detects objects in directions corresponding to these two peaks, respectively. Therefore, these two directions are output as object detection directions.
  • the radar apparatus of the present embodiment has the same configuration as the radar apparatus shown in the first embodiment and differs only in the azimuth detection method.
  • FIG. 8 is a flowchart showing the direction detection processing of the signal processing circuit 1.
  • the signal processing circuit 1 acquires an IF beat signal based on the reception signal of each reception antenna 5A 5F (S101), detects an object using a known FMCW method, The distance and relative speed are calculated (S102), and an angle spectrum, which is a distribution of received signal strength in each direction, is formed (S103).
  • the signal processing circuit 1 detects the angle spectrum force peak due to the received signal strength, and calculates a direction (corresponding to the "amplitude calculation direction" of the present invention) based on the received signal strength (Sll).
  • the signal processing circuit 1 sets a partial azimuth range having a predetermined angular width centered on the azimuth based on the detected received signal strength (S 112), and performs calculation based on the received signal phase difference within the partial azimuth range (S 113). ).
  • the signal processing circuit 1 forms an angle spectrum that is a signal intensity distribution based on the phase difference within the partial azimuth range (S114).
  • the signal processing circuit 1 detects the peak of the signal intensity in the angle spectrum due to the received beam signal intensity in the partial direction range thus formed, and detects the corresponding azimuth (S115).
  • the signal processing circuit 1 outputs the detected azimuth as the azimuth of the detected object from the azimuth detection result (S116).
  • processing for comparing the orientations of the detected peaks as in the first embodiment may be performed.
  • the calculation angle range for specifying the azimuth can be narrowed, so that the calculation processing is performed rather than performing the calculation for specifying the azimuth for all azimuths. Can be reduced. Thereby, the direction detection processing can be speeded up.
  • the power of each of the receiving antennas 5A to 5F is shown as an example in which the spread of directivity is set to be approximately the same as shown in FIG.
  • the antennas may have different directivity spreads.
  • the directivity characteristics shown in FIG. 9 are merely examples, and may be set as appropriate according to the required detection specifications.
  • FIG. 9 is a diagram showing the directivity characteristics of the receiving antenna.
  • (A) shows an example in which the directivity of the receiving antenna is concentrated in the front direction (direction 0 ° direction).
  • An example is shown in which the directivity of the receiving antenna is concentrated in the direction (within ⁇ 45 °).
  • the receiving antennas 5A, 5F (directivity 500A, 500F) are set to have a center of directivity from the front (center) to a predetermined amount (about ⁇ 30 °) toward both sides. Wide directivity range is set.
  • the receiving antennas 5B to 5E are set so that the center of directivity is set within a range of approximately ⁇ 10 ° in the front (center), and the directivity width is set narrow. Such a set of directivity By using matching, it is possible to improve the direction detection accuracy near the center of the front.
  • the receiving antennas 5C and 5D (directivity 500C and 500D) have a directivity center set near the front (center) (approximately ⁇ 15 °) and the directivity width is Widely set.
  • Receiving antennas 5A, 5B, 5E, and 5F have a directivity center set in the direction of both sides from the front (center) by a predetermined amount (about ⁇ 45 °), and the directivity width is set narrow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Receiving antennas (5A to 5F) are arranged in a line at intervals of at least one wavelength of a transmission wave, and the central directions of the directivities of the receiving antennas (5A to 5F) are so set as to be different from one another. A signal processing circuit (1) forms an angular spectrum according to the signal intensity distribution of a signal received at each of the receiving antennas (5A to 5F) and also forms an angular spectrum generated by performing phase difference processing on each received signal. The signal processing circuit (1) compares the peaks of these two angular spectrums with each other and outputs the direction in which the peak positions match each other as a direction in which an object is detected.

Description

明 細 書  Specification
レーダ装置  Radar equipment
技術分野  Technical field
[0001] この発明は、自動車の衝突防止用等に用いられる FM— CW方式のレーダ装置、 特にアレイアンテナを用いて方位検出を行うレーダ装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an FM-CW radar device used for preventing collision of an automobile, and more particularly to a radar device that detects an azimuth using an array antenna.
背景技術  Background art
[0002] 従来、ミリ波帯の高周波信号を用いて物体の方位を検出する自動車搭載型のレー ダ装置として、周波数変調した連続波を用い、配列された複数の受信アンテナで連 続波の反射波を受信して方位を検出する FM— CW方式のレーダ装置が各種考案さ れている。例えば、特許文献 1のレーダ装置は、 1つの送信アンテナを備えた 1つの 送信機と、複数の受信アンテナを備えた 1つの受信機とを備える。そして、特許文献 1のレーダ装置は、複数の受信アンテナをスィッチで高速に切り替えて、各受信アン テナより得られる受信信号の位相差力 検出物体の方位を検出している。  [0002] Conventionally, as a vehicle-mounted radar device that detects the orientation of an object using a high-frequency signal in the millimeter wave band, continuous waves reflected by a plurality of arrayed receiving antennas using frequency-modulated continuous waves Various FM-CW radar devices have been devised that receive waves and detect their orientation. For example, the radar apparatus of Patent Document 1 includes one transmitter having one transmission antenna and one receiver having a plurality of reception antennas. The radar device of Patent Document 1 detects the azimuth of the phase difference force detection object of the received signal obtained from each receiving antenna by switching a plurality of receiving antennas at high speed with a switch.
特許文献 1:特許第 3622565号公報  Patent Document 1: Japanese Patent No. 3622565
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 特許文献 1のように各受信アンテナの受信信号の位相差を用いて複数の方位角へ 受信ビームを形成するレーダ装置で広角の方位検出を行うためには、受信アンテナ の間隔を狭く維持したままで受信アンテナ数を増力 tlさせるか、受信アンテナ数を増加 させることなく受信アンテナの配置間隔を広くしなければならない。  In order to perform wide-angle azimuth detection with a radar device that forms a reception beam at a plurality of azimuth angles using the phase difference between the reception signals of each reception antenna as in Patent Document 1, the interval between the reception antennas is reduced. While maintaining this, the number of receiving antennas must be increased tl, or the arrangement interval of receiving antennas must be increased without increasing the number of receiving antennas.
[0004] 受信アンテナ数を増加させる場合、部品点数が増カロして小型化することができな!/、 とともに、受信アンテナを切り替えるスィッチの選択数やスィッチ数が増加するためス イッチ損失が大きくなり、ひいては受信損失が大きくなる。さらに、受信ビームを構成 する受信信号数が増加するので処理演算量が増加し、元々位相差による受信ビー ムの形成演算処理には時間が力かる上に、さらに演算処理時間が長くなつてしまう。  [0004] When the number of receiving antennas is increased, the number of parts cannot be increased to reduce the size! /, And the number of switches for switching receiving antennas and the number of switches increase, resulting in a large switch loss. As a result, reception loss increases. Furthermore, since the number of received signals that make up the receive beam increases, the amount of processing calculations increases, and it takes time to form the receiving beam due to the phase difference, and the calculation processing time becomes longer. .
[0005] 受信アンテナ数を増カロさせることなく受信アンテナ間隔を広くする場合、特に、隣接 するアンテナ間隔が送信波の 1波長以上となる場合には、グレーティングローブが発 生する。このようなグレーティングローブは、受信ビームの本来所望とする方位に発生 するメインローブとは異なる方位に受信信号強度 (放射強度)のピークが発生する現 象であり、グレーティングローブの方位を物体検出方位と誤認識してしまう可能性が ある。 [0005] When the interval between the receiving antennas is increased without increasing the number of receiving antennas, particularly when the interval between adjacent antennas is one or more wavelengths of the transmission wave, a grating lobe is generated. To be born. Such a grating lobe is a phenomenon in which a peak of the received signal intensity (radiation intensity) occurs in a different direction from the main lobe that occurs in the originally desired direction of the received beam. May be misunderstood.
[0006] また、従来のレーダ装置には、それぞれに検出方向の異なる受信アンテナの受信 信号強度を比較して方位検出を行うものもあり、この装置では、受信アンテナ間隔を 広げて広角検出を行ってもグレーティングローブは発生しない。しかしながら、この方 法による方位検出結果は位相差を用いた方位検出結果ほどの高精度を得ることがで きない。  [0006] In addition, some conventional radar apparatuses perform azimuth detection by comparing received signal strengths of receiving antennas having different detection directions, and this apparatus performs wide-angle detection by widening the receiving antenna interval. However, no grating lobe is generated. However, the direction detection result by this method cannot be as accurate as the direction detection result using the phase difference.
[0007] したがって、本発明の目的は、広角検出を行う場合でも、誤認識することなく高精度 且つ高速に方位を検出することができるレーダ装置を実現することにある。  Accordingly, an object of the present invention is to realize a radar apparatus capable of detecting a bearing with high accuracy and high speed without erroneous recognition even when performing wide-angle detection.
課題を解決するための手段  Means for solving the problem
[0008] この発明は、所定変調が行われた送信波を検出領域に送信する送信アンテナと、 送信波の反射波を受信してそれぞれに受信信号を出力する複数の受信アンテナと、 受信アンテナの各受信信号に基づき方位検出を行う検出手段とを備えたレーダ装置 に関するものである。そして、本発明のレーダ装置の複数の受信アンテナは、一直線 状に配列され、且つ、互いに指向性の中心方位が異なる受信アンテナを含み、検出 手段は、各受信信号の信号強度に基づいて算出した振幅算出方位と各受信信号の 位相差に基づいて算出した位相差算出方位とを比較し、一致した方位を物体検出 方位として出力することを特徴としている。  [0008] The present invention provides a transmission antenna that transmits a transmission wave subjected to predetermined modulation to a detection region, a plurality of reception antennas that receive a reflected wave of the transmission wave and output a reception signal, and a reception antenna The present invention relates to a radar apparatus including detection means for detecting a direction based on each received signal. The plurality of receiving antennas of the radar apparatus of the present invention include receiving antennas arranged in a straight line and having different directivity center directions, and the detection means calculates based on the signal strength of each received signal. It is characterized in that the amplitude calculation direction is compared with the phase difference calculation direction calculated based on the phase difference of each received signal, and the matching direction is output as the object detection direction.
[0009] この構成では、複数の受信アンテナでそれぞれの指向性の中心方位を含む所定 幅の領域からの反射波が受信される。この場合、各受信アンテナの指向性は所定の 広がりを有するので、 1つの物体による反射波は複数の受信アンテナで受信される。 そして、各受信アンテナの受信信号は、受信アンテナの配置間隔に応じた位相差を 有し、この位相差に基づいて各受信信号を合成することで、それぞれに異なる方位 を中心方向とする受信ビームが形成される。  [0009] With this configuration, a plurality of receiving antennas receive reflected waves from a region having a predetermined width including the central direction of each directivity. In this case, since the directivity of each receiving antenna has a predetermined spread, a reflected wave from one object is received by a plurality of receiving antennas. The reception signals of the respective reception antennas have a phase difference corresponding to the arrangement interval of the reception antennas, and by combining the reception signals based on this phase difference, reception beams having different azimuths as the central directions. Is formed.
[0010] 検出手段は、各受信信号の信号強度から受信信号強度の方位角分布 (角度スぺ クトラム)を取得するとともに、形成した各受信ビームカゝら受信ビーム強度の方位角分 布 (角度スペクトラム)を取得する。この際、受信信号強度の方位角分布では、メイン ローブによる比較的方位角幅の広いピークのみが存在する。一方で、受信ビーム強 度の方位角分布には、メインローブによる方位角幅の狭いピークとグレーティング口 ーブ等の虚像による所定方位角幅のピークとが混在する。検出手段は、これら 2つの 方位角分布を比較して、信号強度とビーム強度のピークを比較し、方位が一致するこ とを検出すると、この方位を出力する。 [0010] The detection means acquires the azimuth angle distribution (angle spectrum) of the received signal intensity from the signal intensity of each received signal, and determines the azimuth angle distribution of the received beam intensity from each of the formed received beam curves. Get the cloth (angle spectrum). At this time, in the azimuth distribution of the received signal strength, only a peak having a relatively wide azimuth width due to the main lobe exists. On the other hand, in the azimuth distribution of received beam intensity, a peak with a narrow azimuth width due to the main lobe and a peak with a predetermined azimuth width due to a virtual image such as a grating tube are mixed. The detection means compares these two azimuth angle distributions, compares the signal intensity and the beam intensity peak, and outputs this azimuth when it detects that the azimuth coincides.
[0011] また、この発明のレーダ装置の検出手段は、振幅算出方位を含む所定方位角範囲 内でのみ位相差算出方位を算出することを特徴としている。 [0011] Further, the detection means of the radar apparatus according to the present invention is characterized in that the phase difference calculation azimuth is calculated only within a predetermined azimuth angle range including the amplitude calculation azimuth.
[0012] この構成では、受信ビームの位相差を用いて方位を算出する場合に、信号強度に より得られる方位を含む所定方位角範囲内に対してのみ方位角特定計算が行われ るため、計算量が少なくて済み、信号処理回路の負荷が軽減される。 In this configuration, when the azimuth is calculated using the phase difference of the received beam, the azimuth angle specific calculation is performed only within a predetermined azimuth angle range including the azimuth obtained by the signal intensity. The calculation amount is small, and the load on the signal processing circuit is reduced.
[0013] また、この発明のレーダ装置は、複数の受信アンテナの配置間隔を送信波の 1波 長以上とすることを特徴として!/、る。 [0013] In addition, the radar apparatus according to the present invention is characterized in that the arrangement interval of the plurality of receiving antennas is at least one wavelength of the transmission wave! /
[0014] この構成では、受信アンテナの配置間隔が広がることで、受信ビームによる方位角 検出範囲が広がる。この際、配置間隔を送信波の 1波長以上とすることでグレーティ ングローブが発生するが、前述の構成 (方法)により、その影響を受けることなぐ方位 角検出が行われる。 [0014] In this configuration, the azimuth angle detection range by the reception beam is expanded by widening the arrangement interval of the reception antennas. In this case, a grating globe is generated by setting the arrangement interval to one or more wavelengths of the transmitted wave, but the azimuth angle detection without being affected by the above-described configuration (method) is performed.
[0015] また、この発明のレーダ装置は、複数の受信アンテナの出力信号を送信波の変調 周期に同期して切り替え、検出手段に与える選択手段を備えたことを特徴としている  [0015] Further, the radar apparatus according to the present invention is characterized by comprising selection means for switching the output signals of the plurality of reception antennas in synchronization with the modulation period of the transmission wave and giving the detection signals to the detection means.
[0016] この構成では、変調期間、すなわち実質的な観測期間の切り替わるタイミングで受 信アンテナが切り替えられるので、受信信号に対する切り替え時のノイズの重畳が低 減される。 [0016] With this configuration, since the receiving antenna is switched at the timing when the modulation period, that is, the substantial observation period is switched, noise superposition at the time of switching with respect to the received signal is reduced.
[0017] また、この発明のレーダ装置は、送信アンテナが 1つであり、当該 1つの送信アンテ ナで検出領域全体に送信波を送信することを特徴としている。  [0017] Further, the radar apparatus according to the present invention is characterized in that there is one transmission antenna and the transmission wave is transmitted to the entire detection region by the one transmission antenna.
[0018] この構成では、送信アンテナ力^つであることで、送信アンテナの切り替え手段を備 える必要がなぐ小型化、低コストィ匕が容易になる。 [0018] With this configuration, since the transmission antenna power is high, it is easy to reduce the size and cost without having to provide a means for switching the transmission antenna.
発明の効果 [0019] この発明によれば、配列された複数のアンテナのうちの各受信アンテナの受信信号 強度と配列された複数のアンテナによる受信ビーム強度とで方位角分布の相関をとりThe invention's effect According to the present invention, the azimuth distribution is correlated between the received signal intensity of each receiving antenna of the plurality of arranged antennas and the received beam intensity of the plurality of arranged antennas.
、方位角を検出することで、確実且つ高精度に方位検出を行うことができる。 By detecting the azimuth angle, the azimuth can be detected reliably and with high accuracy.
この際、この方法は方位角範囲には影響を受けないので、受信アンテナの配置間 隔が送信波の 1波長以上に設定されるような広角検出であっても、確実且つ高精度 に方位検出を行うことができる。  At this time, since this method is not affected by the azimuth angle range, the azimuth detection is reliably and highly accurate even in wide-angle detection in which the arrangement interval of the receiving antennas is set to one or more wavelengths of the transmission wave. It can be performed.
[0020] また、この発明によれば、受信信号強度で検出された方位角に基づく所定範囲内 でのみ受信ビーム強度による方位検出を行うことで、方位角特定演算処理量が低減 され、より高速に方位検出を行うことができる。 [0020] Further, according to the present invention, by performing azimuth detection based on the received beam intensity only within a predetermined range based on the azimuth angle detected based on the received signal strength, the amount of azimuth angle specifying calculation processing can be reduced, and higher speed can be achieved. It is possible to detect the direction.
[0021] また、この発明によれば、変調周期に同期させて受信アンテナを切り替えることで、 受信信号に含まれるスイッチングノイズが低減され、さらに確実に方位検出を行うこと ができる。 [0021] Further, according to the present invention, by switching the receiving antenna in synchronization with the modulation period, the switching noise included in the received signal is reduced, and the azimuth detection can be performed more reliably.
[0022] また、この発明によれば、送信アンテナの切り替えが必要な 、ので、構成要素が簡 素になり、確実且つ高精度に広角の方位検出を行うレーダ装置を小型で安価に実 現することができる。  [0022] Further, according to the present invention, since it is necessary to switch the transmission antenna, the constituent elements are simplified, and a radar apparatus that performs wide-angle azimuth detection reliably and with high accuracy is realized in a small size and at low cost. be able to.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]第 1の実施形態のレーダ装置の主要部を示すブロック図である。 FIG. 1 is a block diagram showing a main part of a radar apparatus according to a first embodiment.
[図 2]図 1に示した各受信アンテナ 5A〜5Fの構成を示す図である。  2 is a diagram showing the configuration of each of the receiving antennas 5A to 5F shown in FIG.
[図 3]受信アンテナ 5A〜5Fの指向性特性 500A〜500Fを示す図である。  FIG. 3 is a diagram showing directivity characteristics 500A to 500F of receiving antennas 5A to 5F.
[図 4]送信信号の周波数変調パターンと、受信を行う受信アンテナ 5A〜5Fの割り当 てを示す図である。  FIG. 4 is a diagram showing a frequency modulation pattern of a transmission signal and assignment of receiving antennas 5A to 5F that perform reception.
[図 5]信号処理回路 1の方位検出の処理を示すフローチャートである。  FIG. 5 is a flowchart showing a direction detection process of the signal processing circuit 1.
[図 6]信号処理回路 1で得られる角度スペクトラムの一例を示す図である。  FIG. 6 is a diagram showing an example of an angle spectrum obtained by the signal processing circuit 1;
[図 7]信号処理回路 1で得られる角度スペクトラムの他の一例を示す図である。  FIG. 7 is a diagram showing another example of an angular spectrum obtained by the signal processing circuit 1;
[図 8]第 2の実施形態の信号処理回路 1の方位検出の処理を示すフローチャートであ る。  FIG. 8 is a flowchart showing a direction detection process of the signal processing circuit 1 according to the second embodiment.
[図 9]その他の受信アンテナの指向性特性を示す図である。  FIG. 9 is a diagram showing the directivity characteristics of other receiving antennas.
符号の説明 [0024] 1一信号処理回路、 2— VCO、 3 分岐回路、 4 送信アンテナ、 5A〜5F 受信 アンテナ、 6—スィッチ回路、 7— LNA、 8—ミキサ、 9— IFアンプ Explanation of symbols [0024] 1 Single signal processing circuit, 2—VCO, 3 branch circuit, 4 Transmitting antenna, 5A to 5F Receiving antenna, 6—Switch circuit, 7—LNA, 8—Mixer, 9—IF amplifier
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明の第 1の実施形態に係るレーダ装置について図 1〜図 7を参照して説明す る。 A radar apparatus according to the first embodiment of the present invention will be described with reference to FIGS.
図 1は本実施形態のレーダ装置の主要部を示すブロック図である。  FIG. 1 is a block diagram showing the main part of the radar apparatus of this embodiment.
図 2は図 1に示した各受信アンテナ 5A〜5Fの構成を示す図である。  FIG. 2 is a diagram showing the configuration of each of the receiving antennas 5A to 5F shown in FIG.
図 3は受信アンテナ 5A〜5Fの指向性特性 500A〜500Fを示す図である。  FIG. 3 is a diagram showing the directivity characteristics 500A to 500F of the receiving antennas 5A to 5F.
図 4は送信信号の周波数変調パターンと、受信を行う受信アンテナ 5A〜5Fの割り 当てを示す図である。  FIG. 4 is a diagram showing the frequency modulation pattern of the transmission signal and the assignment of the receiving antennas 5A to 5F for receiving.
なお、本実施形態では受信アンテナ数を 6本としたが、これに限らず受信アンテナ 数は適宜設定すればよい。  In this embodiment, the number of receiving antennas is six, but the number of receiving antennas is not limited to this and may be set as appropriate.
[0026] 図 1に示すように、本実施形態のレーダ装置は、信号処理回路 1、 VC02、分岐回 路 3、送信アンテナ 4、受信アンテナ 5A〜5F、スィッチ回路 6、 LNA7、ミキサ 8、 IF アンプ 9を備える。 As shown in FIG. 1, the radar apparatus of this embodiment includes a signal processing circuit 1, a VC02, a branch circuit 3, a transmitting antenna 4, receiving antennas 5A to 5F, a switch circuit 6, an LNA 7, a mixer 8, and an IF. With amplifier 9.
[0027] 信号処理回路 1は、送信信号の周波数変調用の制御電圧信号を生成して VC02 に与える。また、信号処理回路 1は、入力される受信信号の IFビート信号に基づき、 後述する方法で、物体の検出および物体方位の検出を行う。  [0027] The signal processing circuit 1 generates a control voltage signal for frequency modulation of the transmission signal and supplies it to VC02. In addition, the signal processing circuit 1 detects an object and detects an object direction by a method described later based on the IF beat signal of the input reception signal.
[0028] VC02は、制御電圧信号に基づ!/ヽて図 4 (A)、 (C)に示すような周波数が経時的 に三角波状に変化する三角波変調送信信号や、図 4 (B)に示すような周波数が経時 的に鋸波状に変化する鋸波変調送信信号を生成する。この際、送信信号の変調周 期は、制御電圧信号の周期に準じて設定される。なお、以下の説明では、周波数が 経時的に繰り返し変化する送信信号を用いた例を示すが、パルス信号等を含み、所 定周期で変調が行われる送信信号であればょ 、。  [0028] VC02 is based on the control voltage signal! A triangular wave modulated transmission signal whose frequency changes in a triangular wave shape over time, as shown in Figs. 4 (A) and (C), and Fig. 4 (B) A sawtooth modulation transmission signal whose frequency changes in a sawtooth shape with time is generated. At this time, the modulation period of the transmission signal is set according to the period of the control voltage signal. In the following description, an example is shown in which a transmission signal whose frequency changes repeatedly with time is used. However, any transmission signal that includes a pulse signal or the like and that is modulated at a predetermined period may be used.
[0029] 分岐回路 3は、 VC02から出力された送信信号を送信アンテナ 4に与えるとともに、 その一部をローカル信号としてミキサ 8に与える。  The branch circuit 3 gives the transmission signal output from the VC02 to the transmission antenna 4, and gives a part of the transmission signal to the mixer 8 as a local signal.
[0030] 送信アンテナ 4は、マイクロストリップアンテナ等により形成され、アンテナ正面方向 力 Sレーダ装置の搭載される自動車等の正面方向と一致するように配置される。送信 アンテナ 4は、正面方向を放射指向性の中心として、所望とする検出領域全体に送 信波を送信する。 [0030] The transmission antenna 4 is formed by a microstrip antenna or the like, and is arranged so as to coincide with the front direction of an automobile or the like on which the antenna front direction force S radar apparatus is mounted. Send The antenna 4 transmits a transmission wave to the entire desired detection area with the front direction as the center of radiation directivity.
[0031] 受信アンテナ 5A〜5Fは、それぞれが図 2に示すような構造で形成され、図 1に示 すように一直線状に間隔 dで配列されて設置されている。ここで、配置間隔 dは、送信 信号の 1波長以上の長さに設定されている。また、各受信アンテナ 5A〜5Fは、正面 方向が配列方向に対して垂直な方向で、且つ同じ方向を向くように設置されている。 そして、各受信アンテナ 5A〜5Fの正面方向は前記自動車の正面方向に一致する。  [0031] The receiving antennas 5A to 5F are each formed in a structure as shown in FIG. 2, and are arranged in a straight line at intervals d as shown in FIG. Here, the arrangement interval d is set to a length of one or more wavelengths of the transmission signal. Each of the reception antennas 5A to 5F is installed such that the front direction is perpendicular to the arrangement direction and faces the same direction. And the front direction of each receiving antenna 5A-5F corresponds with the front direction of the said motor vehicle.
[0032] 各受信アンテナ 5A〜5Fは、誘電体基板 57上にそれぞれに一直線状に配置され た 6つのパッチアンテナ 551〜556、 561〜566を備えたマイクロストリップアンテナ である。ノツチアンテナ 551〜556は伝送路 55で直列接続され、ノツチアンテナ 56 1〜566は伝送路 56で直列接続されている。そして、これら二つの直列接続された パッチアンテナ群は、ノツチアンテナの配列方向に対して平行に配置され、それぞ れに一方端で伝送路 53と伝送路 54とに接続する。伝送路 53、 54はパッチアンテナ の配列方向に垂直な方向に延びる形状で形成され、接続点 52で給電路 51に接続 する。この伝送路 53, 54の長さの比を調整することで、パッチアンテナ 551〜556で 受信する反射波とパッチアンテナ 561〜566で受信する反射波との位相差を調整し て、図 3に示すようなアンテナ指向性を設定することができる。すなわち、各受信アン テナ 5A〜5Fは、同じ構成要素で構成されている力 それぞれの受信アンテナ 5A〜 5F毎に伝送路 53、 54の長さの比を異ならせることで、異なる方向を指向性の中心方 位とするように設定される。  Each of the receiving antennas 5A to 5F is a microstrip antenna provided with six patch antennas 551 to 556 and 561 to 566 arranged in a straight line on the dielectric substrate 57, respectively. Notch antennas 551 to 556 are connected in series via transmission line 55, and Notch antennas 561 to 566 are connected in series via transmission line 56. These two patch antenna groups connected in series are arranged in parallel to the arrangement direction of the notch antennas, and are connected to the transmission line 53 and the transmission line 54 at one end respectively. The transmission lines 53 and 54 are formed in a shape extending in a direction perpendicular to the arrangement direction of the patch antennas, and are connected to the feed line 51 at the connection point 52. By adjusting the ratio of the lengths of the transmission lines 53 and 54, the phase difference between the reflected waves received by the patch antennas 551 to 556 and the reflected waves received by the patch antennas 561 to 566 is adjusted, and the result shown in FIG. The antenna directivity as shown can be set. That is, the receiving antennas 5A to 5F are configured with the same components, and the directivity is set in different directions by changing the length ratio of the transmission lines 53 and 54 for each receiving antenna 5A to 5F. It is set to be the center position of.
[0033] ここで、受信アンテナ 5Aと受信アンテナ 5Fとで、伝送路 53、 54の長さ比を逆にし、 受信アンテナ 5Bと受信アンテナ 5Eとで、伝送路 53、 54の長さ比を逆にし、受信アン テナ 5Cと受信アンテナ 5Dとで、伝送路 53、 54の長さ比を逆にする。これにより、受 信アンテナ 5Aの指向性と受信アンテナ 5Fの指向性とは、配列方向の中心を通る前 記受信アンテナの正面方向の軸に対して対称な特性となる。同様に、受信アンテナ 5B, 5Eが対称な特性となり、受信アンテナ 5C, 5Dが対称な特性となる。具体的に は、受信アンテナ 5Aの指向性の中心方位が γ ° であれば、受信アンテナ 5Fの指 向性の中心方位が + γ ° となり、受信アンテナ 5Βの指向性の中心方位が |8 ° で あれば、受信アンテナ 5Eの指向性の中心方位が + 。 となり、受信アンテナ 5Cの 指向性の中心方位が α ° であれば、受信アンテナ 5Dの指向性の中心方位が + α ° となる。このような構成とすることで、各受信アンテナ 5A〜5Fは、図 3に示すよう な指向特性 500A〜500Fを備える。 [0033] Here, the length ratio of transmission paths 53 and 54 is reversed between reception antenna 5A and reception antenna 5F, and the length ratio of transmission paths 53 and 54 is reversed between reception antenna 5B and reception antenna 5E. The length ratio of the transmission lines 53 and 54 is reversed between the receiving antenna 5C and the receiving antenna 5D. As a result, the directivity of the receiving antenna 5A and the directivity of the receiving antenna 5F are symmetrical with respect to the front axis of the receiving antenna passing through the center in the arrangement direction. Similarly, the receiving antennas 5B and 5E have symmetric characteristics, and the receiving antennas 5C and 5D have symmetric characteristics. Specifically, if the central orientation of the directivity of the receiving antenna 5A is γ °, the central orientation of the directivity of the receiving antenna 5F is + γ °, and the central orientation of the directivity of the receiving antenna 5Β is | 8 °. so If there is, the central direction of the directivity of the receiving antenna 5E is +. Thus, if the central orientation of the directivity of the receiving antenna 5C is α °, the central orientation of the directivity of the receiving antenna 5D is + α °. With such a configuration, each of the receiving antennas 5A to 5F has directivity characteristics 500A to 500F as shown in FIG.
[0034] スィッチ回路 6は各受信アンテナ 5A〜5Fのいずれか 1つを LNA7に接続する。具 体的に図 4 (A)の送信信号であれば、三角波変調期間毎に受信アンテナ 5A〜5Fを 順次選択して、各受信アンテナ 5A〜5Fの受信信号を LNA7に出力する。このように 、変調周期の区切りで受信アンテナを切り替えることで、切り替え時に発生するスイツ チングノイズが変調周期の端に対応するタイミングで発生するため、主な観測期間で ある上り変調区間や下り変調区間の中間の周波数でノイズの影響を受けず、効果的 に受信信号を取得することができる。  [0034] The switch circuit 6 connects any one of the receiving antennas 5A to 5F to the LNA 7. Specifically, in the case of the transmission signal of FIG. 4 (A), the reception antennas 5A to 5F are sequentially selected for each triangular wave modulation period, and the reception signals of the reception antennas 5A to 5F are output to the LNA 7. In this way, by switching the receiving antenna at the division of the modulation period, the switching noise generated at the time of switching is generated at the timing corresponding to the end of the modulation period, so the upstream modulation section and the downstream modulation section which are the main observation periods The received signal can be acquired effectively without being affected by noise at intermediate frequencies.
[0035] LNA7は、入力された受信信号を増幅してミキサ 8に出力し、ミキサ 8は、 LNA7か らの受信信号と分岐回路 6からのローカル信号とをミキシングして、 IFビート信号を生 成する。 IFアンプ 9は、 IFビート信号を増幅して信号処理回路 1に出力する。  [0035] LNA 7 amplifies the input received signal and outputs it to mixer 8. Mixer 8 mixes the received signal from LNA 7 with the local signal from branch circuit 6 to generate an IF beat signal. To do. The IF amplifier 9 amplifies the IF beat signal and outputs it to the signal processing circuit 1.
[0036] 次に、信号処理回路 1での方位検出方法について説明する。なお、以下の説明で は、図 4 (A)に示す送信信号および受信アンテナの割り当てを用いた場合について 説明する。  Next, a direction detection method in the signal processing circuit 1 will be described. In the following description, the case of using the transmission signal and reception antenna assignment shown in FIG. 4 (A) will be described.
[0037] 図 5は、信号処理回路 1の方位検出の処理を示すフローチャートである。  FIG. 5 is a flowchart showing the direction detection processing of the signal processing circuit 1.
図 6は、信号処理回路 1で得られる角度スペクトラムの一例を示す図であり、(A)は 受信信号強度による角度スペクトラム、 (B)は受信ビーム強度による角度スペクトラム を示す。なお、図 6では、方位角の基準方向は前記受信アンテナ 5A〜5Fの正面方 向であり、この方向を方位角 0° の方向とする。  6A and 6B are diagrams showing an example of an angle spectrum obtained by the signal processing circuit 1. FIG. 6A shows an angle spectrum based on the received signal intensity, and FIG. 6B shows an angle spectrum based on the received beam intensity. In FIG. 6, the reference direction of the azimuth is the front direction of the receiving antennas 5A to 5F, and this direction is the direction of the azimuth 0 °.
[0038] 信号処理回路 1には、前述のようにスィッチ回路 6の切り替えに応じて、送信信号の 周波数変調周期毎に切り替えられた各受信アンテナ 5A〜5Fの受信信号に基づく I[0038] As described above, the signal processing circuit 1 includes I based on the reception signals of the reception antennas 5A to 5F that are switched for each frequency modulation period of the transmission signal in accordance with the switching of the switch circuit 6.
Fビート信号が入力される(S101)。 An F beat signal is input (S101).
[0039] 信号処理回路 1は、取得した受信信号の IFビート信号を用いて、既知の FMCWの 手法を用いて物体の検出、距離、相対速度算出を行う (S102)。 [0039] The signal processing circuit 1 performs object detection, distance, and relative velocity calculation using the known FMCW technique using the acquired IF beat signal of the received signal (S102).
[0040] 信号処理回路 1は、全ての受信アンテナ 5A〜5Fの受信信号 (IFビート信号)を取 得し、信号強度を検出する。そして、図 6(A)に示すような各方位の受信信号強度の 分布である角度スペクトラムを形成する(S103)。 [0040] The signal processing circuit 1 receives the reception signals (IF beat signals) of all the reception antennas 5A to 5F. And signal strength is detected. Then, an angle spectrum that is a distribution of the received signal intensity in each direction as shown in FIG. 6A is formed (S103).
[0041] さらに、信号処理回路 1は、全ての受信アンテナ 5A〜5Fの受信信号 (IFビート信 号)を取得して既知のビームフォーマ法等を用いて、検出可能な全方位に亘つてそ れぞれの受信信号の位相差に基づく演算を実施する(S104)。そして、図 6(B)に示 すような各方位の角度スペクトラムを形成する(S 105)。より具体的には、信号処理回 路 1は、各受信信号 (IFビート信号)にそれぞれ exp (— j · 2 π d · (sin θ ) Zえ)、 exp ( -ΐ·2Χ2πά· (sin0 θχρ(-ΐ·3Χ2πά· (sin θ ) / λ ) , exp (-j ·4 X 2 π d- (sin θ)/λ),Θχρ(-]·5Χ2πά· (sin θ )/λ)を掛け合わせる。ここで、 Θは 方位 (角)であり、 dは前述の受信アンテナ間隔であり、 λは送信信号の波長である。 なお、送信信号の波長は送信信号が周波数変調されるため時々刻々変化するが、 例えば、送信周波数の中心周波数が 76. 5GHzで有るのに対し、変調周波数幅は 3 OOMHz程度であるので、送信信号の波長としては、送信周波数の中心周波数に対 応する波長に設定すればよい。そして、信号処理回路 1は、 Θ値を順に設定していく ことで、図 6(B)に示すような角度スペクトラムを形成する。  [0041] Further, the signal processing circuit 1 acquires the reception signals (IF beat signals) of all the reception antennas 5A to 5F and uses a known beamformer method or the like to detect the signals in all detectable directions. Calculation based on the phase difference of each received signal is performed (S104). Then, an angle spectrum of each direction as shown in FIG. 6 (B) is formed (S105). More specifically, the signal processing circuit 1 uses exp (—j · 2πd · (sin θ) Z) and exp (−ΐ · 2Χ2πά · (sin0 θχρ) for each received signal (IF beat signal). (-ΐ · 3Χ2πά · (sin θ) / λ), exp (-j · 4 X 2 π d- (sin θ) / λ), Θχρ (-) 5Χ2πά · (sin θ) / λ) Where Θ is the azimuth (angle), d is the receiving antenna spacing, λ is the wavelength of the transmission signal, and the wavelength of the transmission signal changes from time to time because the frequency of the transmission signal is modulated. However, for example, while the center frequency of the transmission frequency is 76.5 GHz, the modulation frequency width is about 3 OO MHz, so the wavelength of the transmission signal is set to a wavelength corresponding to the center frequency of the transmission frequency. Then, the signal processing circuit 1 forms an angle spectrum as shown in FIG.
[0042] 信号処理回路 1は、このように形成した各角度スペクトラムでの信号強度のピークを 検出して、対応する方位を検出する(S106)。図 6 (A)の場合、信号処理回路 1は、 信号強度ピーク P11を検出して、対応する方位角 +45° を検出する。また、図 6(B) の場合、信号強度ピーク P21, 22を検出して、それぞれに対応する方位角 +45° 、 17° を検出する。  [0042] The signal processing circuit 1 detects the peak of the signal intensity in each angle spectrum formed in this way, and detects the corresponding azimuth (S106). In the case of FIG. 6 (A), the signal processing circuit 1 detects the signal intensity peak P11 and detects the corresponding azimuth angle + 45 °. In the case of FIG. 6 (B), the signal intensity peaks P21 and P22 are detected, and the corresponding azimuth angles + 45 ° and 17 ° are detected.
[0043] 信号処理回路 1は、これらの結果から、受信信号強度でも位相差に基づく信号強 度でも方位角 +45° 方向にピークが検出されたことに基づいて、当該方位を検出物 体の方位として出力する(S107→S108→S109)。一方、信号処理回路 1は、受信 信号強度による角度スペクトラムの方位角 17° にピークが無いことに基づいて、グ レーティングローブによる偽像と判断し、当該方位(一 17° )を検出物体の方位とし て出力しない(S107→S108→S110)。  [0043] From these results, the signal processing circuit 1 determines the direction of the detected object based on the fact that a peak is detected in the direction of the azimuth angle + 45 ° regardless of the received signal strength or the signal strength based on the phase difference. Output as a bearing (S107 → S108 → S109). On the other hand, the signal processing circuit 1 determines that it is a false image due to a grating lobe based on the fact that there is no peak at the azimuth angle 17 ° of the angle spectrum based on the received signal strength, and this azimuth (one 17 °) It is not output as (S107 → S108 → S110).
[0044] 図 7は、信号処理回路 1で得られる角度スペクトラムの他の一例を示す図であり、 ( A)は受信信号強度による角度スペクトラム、 (B)は位相差に基づく角度スペクトラム を示す。なお、図 7では、方位角の基準方向は前記受信アンテナ 5A 5Fの正面方 向であり、この方向を方位角 0° の方向とする。 FIG. 7 is a diagram showing another example of an angular spectrum obtained by the signal processing circuit 1, (A) is an angular spectrum based on received signal strength, and (B) is an angular spectrum based on a phase difference. Indicates. In FIG. 7, the reference direction of the azimuth is the front direction of the receiving antenna 5A 5F, and this direction is the direction with an azimuth of 0 °.
[0045] 信号処理回路 1は、図 7 (A)に示すように、受信信号強度に基づいて形成された角 度スペクトラム力もピーク Pl l, P12を検出すると、それぞれに対応する方位角 +45 ° 17° を検出する。また、信号処理回路 1は、図 7 (B)に示すように、受信信号 強度に基づいて形成された角度スペクトラム力もピーク P21, P22を検出すると、それ ぞれに対応する方位角 +45° 17° を検出する。  [0045] As shown in Fig. 7 (A), the signal processing circuit 1, when the angle spectrum force formed based on the received signal strength also detects peaks Pl1, P12, the corresponding azimuth + 45 ° Detects 17 °. In addition, as shown in FIG. 7 (B), the signal processing circuit 1 detects the peaks P21 and P22 as the angular spectrum force formed based on the received signal strength, and the corresponding azimuth angle + 45 ° 17 ° Detect.
[0046] このように、受信信号強度でも位相差に基づく信号強度でも方位角 +45° 17 ° にピークを検出すると、信号処理回路 1は、これら二つのピークに対応する方向に それぞれ物体が検出されたと判断して、これら二つの方位を物体検出方位として出 力する。  [0046] As described above, when a peak is detected at an azimuth angle of + 45 ° 17 ° in both the received signal strength and the signal strength based on the phase difference, the signal processing circuit 1 detects objects in directions corresponding to these two peaks, respectively. Therefore, these two directions are output as object detection directions.
[0047] 以上のように、本実施形態の構成を用いることにより、受信アンテナの間隔を広くし て広角検出を行うようにした場合であっても、グレーティングローブの影響を受けるこ となぐ高精度に物体方位を検出することができる。  [0047] As described above, by using the configuration of the present embodiment, even when wide-angle detection is performed by widening the interval between the receiving antennas, high accuracy that is not affected by the grating lobe is obtained. It is possible to detect the object orientation.
[0048] 次に、第 2の実施形態に係るレーダ装置について図 8を参照して説明する。 Next, a radar apparatus according to the second embodiment will be described with reference to FIG.
なお、本実施形態のレーダ装置は、第 1の実施形態に示したレーダ装置と同じ構 成で、方位検出方法のみが異なるものであるので、一致する部分については説明を 省略する。  Note that the radar apparatus of the present embodiment has the same configuration as the radar apparatus shown in the first embodiment and differs only in the azimuth detection method.
[0049] 図 8は、信号処理回路 1の方位検出の処理を示すフローチャートである。  FIG. 8 is a flowchart showing the direction detection processing of the signal processing circuit 1.
信号処理回路 1は、第 1の実施形態と同様に、各受信アンテナ 5A 5Fの受信信 号に基づく IFビート信号を取得し(S 101)、既知の FMCWの手法を用いて物体の検 出、距離、相対速度算出を行い (S102)、各方位の受信信号強度の分布である角度 スペクトラムを形成する(S103)。  Similarly to the first embodiment, the signal processing circuit 1 acquires an IF beat signal based on the reception signal of each reception antenna 5A 5F (S101), detects an object using a known FMCW method, The distance and relative speed are calculated (S102), and an angle spectrum, which is a distribution of received signal strength in each direction, is formed (S103).
[0050] 信号処理回路 1は、受信信号強度による角度スペクトラム力 ピークを検出して、受 信信号強度に基づく方位 (本発明の「振幅算出方位」に相当)を算出する (Sl l l)。 信号処理回路 1は、検出した受信信号強度に基づく方位を中心として所定の角度幅 の部分方位範囲を設定し (S 112)、当該部分方位範囲内で受信信号位相差による 演算を行う(S 113)。 [0051] 信号処理回路 1は、部分方位範囲内での位相差に基づく信号強度の分布である 角度スペクトラムを形成する(S 114)。信号処理回路 1は、このように形成した部分方 位範囲での受信ビーム信号強度による角度スペクトラムでの信号強度のピークを検 出して、対応する方位を検出する(S 115)。 [0050] The signal processing circuit 1 detects the angle spectrum force peak due to the received signal strength, and calculates a direction (corresponding to the "amplitude calculation direction" of the present invention) based on the received signal strength (Sll). The signal processing circuit 1 sets a partial azimuth range having a predetermined angular width centered on the azimuth based on the detected received signal strength (S 112), and performs calculation based on the received signal phase difference within the partial azimuth range (S 113). ). [0051] The signal processing circuit 1 forms an angle spectrum that is a signal intensity distribution based on the phase difference within the partial azimuth range (S114). The signal processing circuit 1 detects the peak of the signal intensity in the angle spectrum due to the received beam signal intensity in the partial direction range thus formed, and detects the corresponding azimuth (S115).
[0052] 信号処理回路 1は、この方位検出結果から、検出した当該方位を検出物体の方位 として出力する(S116)。  The signal processing circuit 1 outputs the detected azimuth as the azimuth of the detected object from the azimuth detection result (S116).
[0053] なお、ここで、第 1の実施形態のように検出したピークの方位を比較する処理を行つ てもよい。  [0053] Here, processing for comparing the orientations of the detected peaks as in the first embodiment may be performed.
[0054] このような方位検出方法を用いることで、方位角特定のための演算角度範囲を狭く することができるので、全方位角に対して方位角特定のための演算を行うよりも演算 処理を低減することができる。これにより、方位検出処理を高速化することができる。  [0054] By using such an azimuth detection method, the calculation angle range for specifying the azimuth can be narrowed, so that the calculation processing is performed rather than performing the calculation for specifying the azimuth for all azimuths. Can be reduced. Thereby, the direction detection processing can be speeded up.
[0055] なお、前述の各実施形態では、周波数が三角波状に変化する送信信号を用いて、 変調周期毎に受信アンテナを切り替える例を示したが、図 4 (B)に示すような鋸波状 の送信信号を用い、上り変調周期毎に受信アンテナを切り替えれば、速度検出はで きないが、より高速に方位検出を行うことができる。また、図 4 (C)に示すように、受信 アンテナの切替を上り変調期間内で行う方法を用いれば、より高速に方位を検出す ることがでさる。  In each of the above-described embodiments, an example in which the reception antenna is switched for each modulation period using a transmission signal whose frequency changes in a triangular wave shape has been shown, but a sawtooth wave shape as shown in FIG. If the transmission antenna is used and the receiving antenna is switched every uplink modulation period, the speed cannot be detected, but the direction can be detected at a higher speed. In addition, as shown in Fig. 4 (C), the direction can be detected at higher speed by using the method of switching the receiving antenna within the uplink modulation period.
[0056] また、前述の実施形態では、各受信アンテナ 5A〜5Fの指向性の広がりを、図 3に 示すように略同じに設定した例を示した力 図 9に示すように、それぞれの受信アンテ ナで異なる指向性の広がりを有するようにしてもよい。そして、図 9に示す指向性特性 は、一例であり、必要となる検出仕様に応じて適宜設定すればよい。  [0056] Further, in the above-described embodiment, the power of each of the receiving antennas 5A to 5F is shown as an example in which the spread of directivity is set to be approximately the same as shown in FIG. The antennas may have different directivity spreads. The directivity characteristics shown in FIG. 9 are merely examples, and may be set as appropriate according to the required detection specifications.
[0057] 図 9は受信アンテナの指向性特性を示す図であり、(A)は正面方向(方位 0° 方向 )に受信アンテナの指向性を集中させた例を示し、(B)は側面方向(方位 ±45° 方 向)に受信アンテナの指向性を集中させた例を示す。  [0057] Fig. 9 is a diagram showing the directivity characteristics of the receiving antenna. (A) shows an example in which the directivity of the receiving antenna is concentrated in the front direction (direction 0 ° direction). An example is shown in which the directivity of the receiving antenna is concentrated in the direction (within ± 45 °).
[0058] 図 9 (A)の場合、受信アンテナ 5A, 5F (指向性 500A, 500F)は、正面(中央)より 所定量(± 30° 程度)両側面方向へ指向性の中心が設定され、指向性幅が広く設 定されている。受信アンテナ 5B〜5Eは、略正面(中央)の ± 10° 程度の範囲内に 指向性の中心が設定され、指向性の幅が狭く設定されている。このような指向性の組 み合わせを用いることで、正面中心付近での方位検出精度を向上させることができる [0058] In the case of Fig. 9 (A), the receiving antennas 5A, 5F (directivity 500A, 500F) are set to have a center of directivity from the front (center) to a predetermined amount (about ± 30 °) toward both sides. Wide directivity range is set. The receiving antennas 5B to 5E are set so that the center of directivity is set within a range of approximately ± 10 ° in the front (center), and the directivity width is set narrow. Such a set of directivity By using matching, it is possible to improve the direction detection accuracy near the center of the front.
[0059] 図 9 (B)の場合、受信アンテナ 5C, 5D (指向性 500C, 500D)は、正面(中央)付 近(± 15° 程度)に指向性の中心が設定され、指向性幅が広く設定されている。受 信アンテナ 5A, 5B, 5E, 5Fは、正面(中央)より所定量(±45° 程度)両側面方向 へ指向性の中心が設定され、指向性の幅が狭く設定されている。このような指向性の 組み合わせを用いることで、正面中心よりも側面や正面斜め前方での方位検出精度 を向上させることができる。 [0059] In the case of Fig. 9 (B), the receiving antennas 5C and 5D (directivity 500C and 500D) have a directivity center set near the front (center) (approximately ± 15 °) and the directivity width is Widely set. Receiving antennas 5A, 5B, 5E, and 5F have a directivity center set in the direction of both sides from the front (center) by a predetermined amount (about ± 45 °), and the directivity width is set narrow. By using such a combination of directivities, it is possible to improve the accuracy of azimuth detection on the side surface and obliquely forward in front of the front center.
[0060] また、前述の説明では、送信アンテナが 1本である例を示したが、複数の送信アン テナを設置し、これらを切り替えながら送信信号を送信するようにしてもよい。しかしな がら、送信アンテナを 1本とすることで、送信アンテナの切り替え回路を必要とせず、 簡素で小型のレーダ装置を構成することができる。  In the above description, an example in which there is one transmission antenna is shown, but a plurality of transmission antennas may be installed and a transmission signal may be transmitted while switching between them. However, with a single transmission antenna, a simple and small radar device can be configured without the need for a transmission antenna switching circuit.

Claims

請求の範囲 The scope of the claims
[1] 所定の変調が行われた送信波を検出領域に送信する送信アンテナと、前記送信 波の反射波を受信してそれぞれに受信信号を出力する複数の受信アンテナと、受信 アンテナの各受信信号に基づき方位検出を行う検出手段とを備えたレーダ装置にお いて、  [1] A transmission antenna that transmits a transmission wave subjected to predetermined modulation to a detection region, a plurality of reception antennas that receive a reflected wave of the transmission wave and output a reception signal, and each reception of the reception antenna In a radar apparatus equipped with detection means for detecting a direction based on a signal,
前記複数の受信アンテナは、一直線状に配列され、且つ、互いに指向性の中心方 位が異なる受信アンテナを含み、  The plurality of reception antennas include reception antennas arranged in a straight line and having different directivity center directions,
前記検出手段は、前記各受信信号の信号強度に基づいて算出した振幅算出方位 と、前記各受信信号の位相差に基づいて算出した位相差算出方位とを比較し、一致 する方位を物体検出方位として出力することを特徴とするレーダ装置。  The detection means compares the amplitude calculation azimuth calculated based on the signal strength of each received signal with the phase difference calculated azimuth calculated based on the phase difference of each received signal, and determines the matching direction as the object detection azimuth. Output as a radar device.
[2] 前記検出手段は、前記振幅算出方位を含む所定方位角範囲内で、前記位相差算 出方位を算出する請求項 1に記載のレーダ装置。  2. The radar apparatus according to claim 1, wherein the detection means calculates the phase difference calculation azimuth within a predetermined azimuth angle range including the amplitude calculation azimuth.
[3] 前記複数の受信アンテナの配置間隔は、前記送信波の 1波長以上である請求項 1 または請求項 2に記載のレーダ装置。 [3] The radar device according to claim 1 or 2, wherein an interval between the plurality of reception antennas is one or more wavelengths of the transmission wave.
[4] 前記複数の受信アンテナの出力信号を送信波の変調周期に同期して切り替え、前 記検出手段に与える選択手段を備えた請求項 1〜3のいずれかに記載のレーダ装 置。 [4] The radar device according to any one of claims 1 to 3, further comprising a selection unit that switches output signals of the plurality of reception antennas in synchronization with a modulation period of a transmission wave and supplies the switching unit to the detection unit.
[5] 前記送信アンテナが 1つであり、当該 1つの送信アンテナで前記検出領域全体に 送信波を送信する請求項 1〜4のいずれかに記載のレーダ装置。  [5] The radar device according to any one of [1] to [4], wherein the number of the transmission antenna is one, and the transmission wave is transmitted to the entire detection area by the one transmission antenna.
PCT/JP2007/053071 2006-03-06 2007-02-20 Radar apparatus WO2007102308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-059958 2006-03-06
JP2006059958 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007102308A1 true WO2007102308A1 (en) 2007-09-13

Family

ID=38474750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053071 WO2007102308A1 (en) 2006-03-06 2007-02-20 Radar apparatus

Country Status (1)

Country Link
WO (1) WO2007102308A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241350A (en) * 2007-03-26 2008-10-09 Fujitsu Ten Ltd Radar system, and device, program, and method for controlling radar system
CN112368591A (en) * 2018-08-02 2021-02-12 日立汽车系统株式会社 Radar apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140221A (en) * 1993-11-18 1995-06-02 Mitsubishi Electric Corp Angle measuring system
JPH0850172A (en) * 1994-08-05 1996-02-20 Nippon Avionics Co Ltd Sound wave direction finding device
JPH11231033A (en) * 1998-02-09 1999-08-27 Yrp Idou Tsushin Kiban Gijutsu Kenkyusho:Kk Incoming wave estimation method
JP2000028704A (en) * 1998-07-07 2000-01-28 Nec Corp Radar device
JP2000162310A (en) * 1998-11-25 2000-06-16 Nec Corp Radar apparatus
JP2001091617A (en) * 1999-09-24 2001-04-06 Toyota Central Res & Dev Lab Inc Target azimuth detecting device
JP3622565B2 (en) * 1999-03-31 2005-02-23 株式会社デンソー Radar equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140221A (en) * 1993-11-18 1995-06-02 Mitsubishi Electric Corp Angle measuring system
JPH0850172A (en) * 1994-08-05 1996-02-20 Nippon Avionics Co Ltd Sound wave direction finding device
JPH11231033A (en) * 1998-02-09 1999-08-27 Yrp Idou Tsushin Kiban Gijutsu Kenkyusho:Kk Incoming wave estimation method
JP2000028704A (en) * 1998-07-07 2000-01-28 Nec Corp Radar device
JP2000162310A (en) * 1998-11-25 2000-06-16 Nec Corp Radar apparatus
JP3622565B2 (en) * 1999-03-31 2005-02-23 株式会社デンソー Radar equipment
JP2001091617A (en) * 1999-09-24 2001-04-06 Toyota Central Res & Dev Lab Inc Target azimuth detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241350A (en) * 2007-03-26 2008-10-09 Fujitsu Ten Ltd Radar system, and device, program, and method for controlling radar system
CN112368591A (en) * 2018-08-02 2021-02-12 日立汽车系统株式会社 Radar apparatus

Similar Documents

Publication Publication Date Title
US8405541B2 (en) Multi-range radar system
US8624775B2 (en) Radar apparatus and antenna device
JP7150068B2 (en) Antenna device and radar device
US11959996B2 (en) Radar device
JP5464152B2 (en) In-vehicle radar system
US11275145B2 (en) Antenna device and target detecting device
US20110109495A1 (en) Radar apparatus
JP2003248054A5 (en)
WO2007083479A1 (en) Radar apparatus
US11774570B2 (en) Radar device
US10897081B2 (en) Radio communication apparatus and phase adjustment method
US20210104818A1 (en) Radiation pattern reconfigurable antenna
US20220107408A1 (en) Radar device
JP4967384B2 (en) Radar equipment
KR20190113159A (en) Radar apparatus
WO2007102308A1 (en) Radar apparatus
JP2016086432A (en) Array antenna and radar device
JP4736172B2 (en) Radar signal processing circuit
JP2005526984A (en) Device for transmitting and receiving radar radiation
JP2001099918A (en) Polographic radar device
US12000953B2 (en) Radar device
US20210239791A1 (en) Radar Device
WO2009084159A1 (en) Radar apparatus
JP2012202830A (en) Azimuth measuring apparatus
US20200411980A1 (en) Patch antenna and radar apparatus having different beam tilts with respect to frequencies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP