JPH07331394A - Production of rare earth alloy ingot and alloy powder for permanent magnet, and bond magnet - Google Patents

Production of rare earth alloy ingot and alloy powder for permanent magnet, and bond magnet

Info

Publication number
JPH07331394A
JPH07331394A JP6301532A JP30153294A JPH07331394A JP H07331394 A JPH07331394 A JP H07331394A JP 6301532 A JP6301532 A JP 6301532A JP 30153294 A JP30153294 A JP 30153294A JP H07331394 A JPH07331394 A JP H07331394A
Authority
JP
Japan
Prior art keywords
ingot
rare earth
powder
phase
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6301532A
Other languages
Japanese (ja)
Other versions
JP3710837B2 (en
Inventor
Takashi Ikegami
尚 池上
Hiroyuki Tomizawa
浩之 冨澤
Seiichi Hosokawa
誠一 細川
Minoru Uehara
稔 上原
Satoru Hirozawa
哲 広沢
Toshiro Tomita
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30153294A priority Critical patent/JP3710837B2/en
Publication of JPH07331394A publication Critical patent/JPH07331394A/en
Application granted granted Critical
Publication of JP3710837B2 publication Critical patent/JP3710837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a rare earth alloy ingot for producing a bond magnet excellent in magnetic properties by specifying the cross-sectional dimensional ratio of a rare earth allay ingot for an R-T-(M)-B permanent magnet and obtaining an ingot in which the concn. of tetragonal Nd2 Fe14B type compounds is regulated to a high one and the concns. of R and B areas are regulated to low ones. CONSTITUTION:As for an ingot constituted of 11.5 to 12.5 at% R (R denotes at least one kind among rare earth elements including Y, and one or more kinds of Pr and Nd are contained by>=50 at% in R), 79 to 83at% T (Fe or a part of Fe is substituted by <=50at.% Co therein), 0.01 to 2at% M (M denotes one or more kinds among Ga, Zr, Nb, Hf and Ta) and 5.5 to 6.5at% B, its cross-sectional dimension is specified so as to regulate the width L to >=30mm, the thickness (d) to 10 to 35mm and the ratio of L/d to >=3.0, and tetragonal Nd2Fe14B type compounds are allowed to present by >=85% in the allay and the areas of 11.0% R and <5.0% B are not allowed to present by >=20% by volume ratio. Thus, the ingot for producing a bond magnet excellent in magnetic properties can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等に用いることが可能な高い磁化と優れた
磁気的異方性そして高保磁力を有するR(希土類元素)
−T(鉄属元素)−(M)−B系永久磁石用希土類合金
鋳塊および合金粉末、並びにボンド磁石の製造方法に係
り、鋳塊の断面寸法比を特定して正方晶Nd2Fe14
型化合物が85%以上で、低濃度のR、B領域がない鋳
塊を得て、これを特定雰囲気で焼鈍し、特定の昇温条
件、雰囲気条件でH2ガス中で水素化処理し、さらに特
定条件の脱H2処理後に冷却することにより、結晶粒径
が微細かつ磁気異方性を有する希土類合金粉末を得て、
磁気特性の優れたボンド磁石を製造する永久磁石用希土
類合金鋳塊および合金粉末並びにボンド磁石の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to R (rare earth element) having high magnetization, excellent magnetic anisotropy and high coercive force, which can be used in various motors and actuators.
A tetragonal Nd 2 Fe 14 -T (iron group element)-(M) -B-based rare earth alloy ingot for permanent magnets and an alloy powder, and a method for manufacturing a bonded magnet, in which a cross-sectional dimension ratio of the ingot is specified. B
An ingot having a R- and B-region with a low concentration of 85% or more of the type compound is obtained, annealed in a specific atmosphere, and hydrogenated in H 2 gas under specific temperature-raising conditions and atmospheric conditions, Furthermore, by cooling after H 2 treatment under specific conditions, a rare earth alloy powder having a fine crystal grain size and magnetic anisotropy is obtained,
The present invention relates to a rare earth alloy ingot for permanent magnets and alloy powder for producing a bonded magnet having excellent magnetic properties, and a method for producing a bonded magnet.

【0002】[0002]

【従来の技術】R−T−(M)−B系永久磁石用合金の
鋳造方法として、例えば特開平2−251359号公報
に、溶湯を鋳型に鋳込む際に、内面に離型剤を塗布した
鋳型に1200〜1700℃の溶湯を鋳込み、冷却時に
は包晶温度前後で冷却速度を変化させ、鋳造組成をほと
んど柱状晶とする方法が提案されている。上記鋳造方法
で溶製された鋳塊は、鋳造組織がほとんど一方向に配向
しているため、磁気的異方性の優れた鋳造磁石ができる
とされている。
2. Description of the Related Art As a casting method for an RT- (M) -B type permanent magnet alloy, for example, in Japanese Patent Laid-Open No. 2-251359, a mold release agent is applied to the inner surface when a molten metal is cast into a mold. A method has been proposed in which a molten metal of 1200 to 1700 ° C. is cast into the cast mold and the cooling rate is changed around the peritectic temperature during cooling so that the casting composition becomes almost columnar crystals. It is said that the ingot melted by the above-mentioned casting method has a cast structure oriented in almost one direction, so that a cast magnet having excellent magnetic anisotropy can be obtained.

【0003】また、永久磁石用希土類合金粉末の水素化
処理法による製造方法として、R−T−(M)−B系原
料合金インゴットまたは粉末を、H2ガス雰囲気または
2ガスと不活性ガスの混合雰囲気中で温度500℃〜
1000℃に保持して上記合金のインゴットまたは粉末
にH2を吸蔵させた後、H2ガス圧力13Pa(1×10
-1Torr)以下の真空雰囲気またはH2ガス分圧13
Pa(1×10-1Torr)以下の不活性ガス雰囲気に
なるまで温度500℃〜1000℃で脱H2処理し、次
いで冷却する水素化処理方法が提案(特開平1−132
106号公報)されている。
Further, as a method for producing a rare earth alloy powder for permanent magnets by a hydrotreating method, an RT- (M) -B-based raw material alloy ingot or powder is mixed with H 2 gas atmosphere or H 2 gas and an inert gas. In a mixed atmosphere of 500 ℃ ~
After holding at 1000 ° C. to occlude H 2 in the alloy ingot or powder, the H 2 gas pressure was 13 Pa (1 × 10
-1 Torr) or less vacuum atmosphere or H 2 gas partial pressure 13
A hydrotreating method is proposed in which H 2 treatment is performed at a temperature of 500 ° C. to 1000 ° C. until an inert gas atmosphere of Pa (1 × 10 −1 Torr) or less is obtained, and then cooling is performed (JP-A-1-132).
No. 106).

【0004】前記水素化処理法により製造されたR−T
−(M)−B系合金磁石粉末は大きな保磁力と磁気異方
性を有する。これは上記処理によって非常に微細な再結
晶粒径、実質的には0.1μm〜1μmの平均再結晶粒
径を持つ組織となり、磁気的には正方晶Nd2Fe14
系化合物の単磁区臨界粒径に近い結晶粒径となってお
り、かつこれらの極微細結晶がある程度結晶方位を揃え
て再結晶しているためである。
RT produced by the hydrotreating method
The-(M) -B alloy magnetic powder has a large coercive force and magnetic anisotropy. This treatment results in a structure having a very fine recrystallized grain size, that is, an average recrystallized grain size of substantially 0.1 μm to 1 μm, which is magnetically tetragonal Nd 2 Fe 14 B.
This is because the crystal grain size is close to the single domain critical grain size of the system compound, and these ultrafine crystals are recrystallized to some extent with their crystal orientations aligned.

【0005】[0005]

【発明が解決しようとする課題】このような結晶組織が
ボンド磁石用原料に要求される400μm以下程度の粉
末粒子内で単一の配向方向を有するためには、原料の鋳
塊組織の異方性が高いことおよび成分の偏析が少ないこ
とが要求され、そのためには柱状晶が発達したマクロ組
織を得、かつ結晶組織が十分大きいという、鋳造では相
反する条件を同時に満たすようにする必要がある。
In order for such a crystal structure to have a single orientation direction within the powder particles of about 400 μm or less required for the raw material for bonded magnets, the anisotropic ingot structure of the raw material is required. In order to achieve this, it is necessary to have high properties and a small segregation of the components. For that purpose, it is necessary to simultaneously satisfy the contradictory conditions in casting that a macrostructure with developed columnar crystals is obtained and the crystal structure is sufficiently large. .

【0006】ところが、上記R−T−(M)−B系永久
磁石用希土類合金鋳塊の鋳造において、組成によって鋳
造組織が大きく変化するため、鋳造条件を変化させて
も、あらゆる組成で異方性向上のためにすべての組織を
柱状晶とすることは、一般に困難である。特に本系合金
鋳塊においては、目的の正方晶Nd2Fe14B型化合物
相の組成に過剰なRとBを加えることで柱状晶が成長し
やすくなるが、合金の磁化を向上させるためには、目的
の正方晶Nd2Fe14B型化合物相以外の相が存在する
ことは好ましくなく、矛盾するこの2つの条件を満たす
ことは非常に困難であった。
However, in the casting of the R-T- (M) -B type rare earth alloy ingot for permanent magnets, the casting structure greatly changes depending on the composition, so that even if the casting conditions are changed, all compositions are anisotropic. It is generally difficult to make all the structures columnar to improve the properties. In particular, in the ingot of the present alloy, columnar crystals are likely to grow by adding excessive R and B to the composition of the intended tetragonal Nd 2 Fe 14 B type compound phase, but in order to improve the magnetization of the alloy It is not preferable that a phase other than the intended tetragonal Nd 2 Fe 14 B type compound phase be present, and it was very difficult to satisfy these two contradictory conditions.

【0007】この発明は、R−T−(M)−B系永久磁
石用希土類合金鋳塊の鋳造において、鋳塊のすべての組
織部位を柱状晶と同等な異方化度をもたせることができ
る鋳塊の製造方法の提供、また、上記鋳塊より結晶粒径
が微細で磁気異方性を有する希土類合金粉末を取扱い容
易にかつ効率よく製造できる希土類合金粉末の製造方法
の提供、さらに、かかる希土類合金粉末より磁気特性の
優れたボンド磁石を製造するボンド磁石の製造方法の提
供を目的としている。
According to the present invention, in the casting of a rare earth alloy ingot for an RT- (M) -B type permanent magnet, all the textured parts of the ingot can have an anisotropic degree equivalent to that of columnar crystals. Providing a method for producing an ingot, and further providing a method for producing a rare earth alloy powder having a crystal grain size smaller than that of the ingot and having magnetic anisotropy that is easy to handle and can be produced efficiently, and further It is an object of the present invention to provide a bonded magnet manufacturing method for manufacturing a bonded magnet having excellent magnetic properties from a rare earth alloy powder.

【0008】[0008]

【課題を解決するための手段】発明者らは、この発明を
完成するに当たって、原料鋳塊の鋳造組織および組成と
鋳造条件の関係を詳細に検討した結果、以下のことを明
らかにした。原料鋳塊の磁化向上、つまり鋳塊中の正方
晶Nd2Fe14B型化合物相の含有率を向上させるため
に過剰なRとBを減少させると、得られる鋳造組織にお
いて柱状晶の割合が減少し、主にチル晶、柱状晶、等軸
晶から構成されるようになる。しかし、鋳塊サイズを限
定して冷却条件を管理すると、等軸晶部分が、各々一定
の成長方向に成長したデンドライト晶の集合組織とな
り、これによって等軸晶部でも結晶方位が同一な領域が
広くなり、等軸晶部でも柱状晶部と変わりない異方性を
持つ合金粉末が得られる。さらに、このような過剰なN
dとBが少ない組成ではインゴットの厚み方向に沿って
鋳造組織を4種類以上に分類でき、それらはチル晶、柱
状晶、等軸晶および中央部付近の鉄過剰組織である。特
に、中央部付近では合金中のNdとBの組成が大きく減
少していて、正方晶Nd2Fe14B型化合物相の存在比
が大きく低下し、長時間の焼鈍によっても均質化されな
いため、高特性の磁性粉末を得ることができない。そこ
で、発明者らは、この中央部付近のNdとBが少ない鉄
過剰組織が生成しない方法を種々に検討し、鋳塊の鋳造
条件のうち、鋳塊断面の厚み方向と幅方向の寸法とその
比率によって鋳造組織の制御が可能なことを知見し、こ
の発明を完成した。
In order to complete the present invention, the inventors have made detailed studies on the relationship between the casting structure and composition of the raw material ingot and the casting conditions, and have made the following findings. When the excess R and B are reduced in order to improve the magnetization of the raw ingot, that is, the content of the tetragonal Nd 2 Fe 14 B-type compound phase in the ingot, the proportion of columnar crystals in the obtained cast structure is reduced. It is reduced and mainly composed of chill crystals, columnar crystals and equiaxed crystals. However, if the ingot size is limited and the cooling conditions are controlled, the equiaxed crystal parts become a texture of dendrite crystals that grow in a constant growth direction, respectively, and as a result, even in the equiaxed crystal parts, regions with the same crystal orientation are formed. As a result, an alloy powder having an anisotropy which is the same as that of the columnar crystal portion even in the equiaxed crystal portion can be obtained. In addition, such excess N
With a composition containing a small amount of d and B, the cast structure can be classified into four or more types along the thickness direction of the ingot, which are a chill crystal, a columnar crystal, an equiaxed crystal, and an iron-rich structure near the central portion. In particular, in the vicinity of the central portion, the composition of Nd and B in the alloy is greatly reduced, the abundance ratio of the tetragonal Nd 2 Fe 14 B-type compound phase is significantly reduced, and the alloy is not homogenized even by annealing for a long time. It is not possible to obtain high-quality magnetic powder. Therefore, the inventors have variously studied a method in which an iron-rich structure having a small amount of Nd and B in the vicinity of the central portion is not formed, and in the casting conditions of the ingot, the dimensions in the thickness direction and width direction of the ingot cross section are The inventors have found that the cast structure can be controlled by the ratio, and completed the present invention.

【0009】すなわち、この発明は、R:11.5〜1
2.5at%(R:Yを含む希土類元素の少なくとも1
種で、かつPrまたはNdの1種または2種をRのうち
50at%以上含有)、T:79〜83at%(T:F
eまたはFeの一部を50at%以下のCoで置換)、
M:0.01〜2at%(M:Ga、Zr、Nb、H
f、Taのうち1種または2種以上)、B:5.5〜
6.5at%からなり、鋳塊の断面寸法が、幅L:30
mm以上、厚みd:10mm〜35mmで、寸法比L/
dが3.0以上の関係を有し、正方晶Nd2Fe14B型
化合物が該合金中に85%以上存在し、鋳塊中にRが1
1.0%及びBが5.0%を下回る領域が体積比で20
%以上存在しないことを特徴とする永久磁石用希土類合
金鋳塊である。
That is, according to the present invention, R: 11.5-1.
2.5 at% (at least 1 of rare earth elements including R: Y)
And one or two types of Pr or Nd in R of 50 at% or more), T: 79 to 83 at% (T: F
e or a part of Fe is replaced with 50 at% or less of Co),
M: 0.01 to 2 at% (M: Ga, Zr, Nb, H
f, one or more of Ta), B: 5.5
The cross-sectional dimension of the ingot is 6.5 at% and the width L is 30.
mm or more, thickness d: 10 mm to 35 mm, dimensional ratio L /
d has a relationship of 3.0 or more, tetragonal Nd 2 Fe 14 B type compound is present in the alloy in an amount of 85% or more, and R is 1 in the ingot.
20% by volume in the region where 1.0% and B are less than 5.0%
% Rare earth alloy ingot for permanent magnets, characterized by not existing.

【0010】また、この発明は、上記構成の永久磁石用
希土類合金鋳塊を、1120℃〜1160℃で0.5時
間〜100時間、不活性雰囲気もしくは真空中で焼鈍
後、平均粒度30μm〜5000μmに粉砕し、H2
囲気中の昇温過程において、600℃〜750℃の温度
域を昇温速度5℃/min〜200℃/minで昇温
し、10kPa〜1000kPaのH2ガス中で750
℃〜900℃に15分〜8時間加熱保持し、組織をR水
素化物、T−B化合物、T相、R214B化合物の少な
くとも4相の混合組織とする水素化不均化工程の後、さ
らにArガスまたはHeガスによる絶対圧100Pa〜
50kPaの減圧気流中もしくは真空排気によって炉内
の水素分圧を10kPa以下に保持しながら、700℃
〜900℃、5分〜8時間加熱保持する脱H2処理し、
その後冷却して平均結晶粒径が0.05μm〜1μm
で、磁気的かつ結晶配向的に異方性を有することを特徴
とする永久磁石用希土類合金粉末の製造方法である。
Further, according to the present invention, the rare earth alloy ingot for a permanent magnet having the above-mentioned structure is annealed at 1120 ° C. to 1160 ° C. for 0.5 hours to 100 hours in an inert atmosphere or vacuum, and then the average grain size is 30 μm to 5000 μm. Crushed into a mixture, and in a temperature increasing process in an H 2 atmosphere, the temperature range of 600 ° C. to 750 ° C. is increased at a temperature increasing rate of 5 ° C./min to 200 ° C./min, and 750 in H 2 gas of 10 kPa to 1000 kPa.
° C. to 900 ° C. in heated for 15 minutes to 8 hours, tissues R hydride, T-B compound, T-phase, the hydrogenation disproportionation step of the mixed structure of at least four phases of R 2 T 14 B compound After that, the absolute pressure of Ar gas or He gas is 100 Pa or more.
700 ° C. while maintaining the hydrogen partial pressure in the furnace at 10 kPa or less in a reduced pressure air flow of 50 kPa or by evacuation.
~ 900 ° C, H 2 treatment for 5 minutes to 8 hours,
After cooling, the average crystal grain size is 0.05 μm to 1 μm.
And is a method for producing a rare earth alloy powder for a permanent magnet, which is magnetically and anisotropic in crystal orientation.

【0011】また、この発明は、上記構成の製造方法で
得た永久磁石用希土類合金粉末を、平均粒度20μm〜
400μmに粉砕し、この粉砕粉末に樹脂または低融点
金属を混合し成形固化することを特徴とするボンド磁石
の製造方法である。
Further, according to the present invention, the rare earth alloy powder for permanent magnets obtained by the manufacturing method having the above-mentioned constitution is used, and an average particle size of 20 μm to
It is a method for producing a bonded magnet, which comprises pulverizing to 400 μm, mixing the pulverized powder with a resin or a low melting point metal, and molding and solidifying.

【0012】組成の限定理由 この発明に使用する原料合金に用いるRすなわち希土類
元素は、Y、La、Ce、Pr、Nd、Sm、Gd、T
b、Dy、Ho、Er、Tm、Luが包括され、このう
ち少なくとも1種以上で、Pr、Ndのうち少なくとも
1種または2種をRのうち50at%以上含有し、さら
にRの全てがPr、Ndのうち1種または2種の場合が
ある。Rの50at%以上をPr、Ndのうち少なくと
も1種以上とするのは、50at%未満では充分な磁化
が得られないためである。Rは、11.5at%未満で
はT相が鋳塊の中央部に大量に析出するために保磁力お
よび角形性が低下し、また12.5at%を越えると、
目的とする正方晶Nd2Fe14B型化合物以外に、Rリ
ッチの第2相が多く析出し、この第2相が多すぎると合
金の磁化を低下させる。従ってRの範囲は11.5〜1
2.5at%とする。好ましい範囲は11.8〜12.
3at%である。
Reason for limiting the composition R used in the raw material alloy used in the present invention, that is, the rare earth element, is Y, La, Ce, Pr, Nd, Sm, Gd, T.
b, Dy, Ho, Er, Tm, and Lu are included, at least one of which contains at least one or two of Pr and Nd in an amount of 50 at% or more of R, and all of R is Pr. , Nd may be one or two. The reason why 50 at% or more of R is at least one of Pr and Nd is that sufficient magnetization cannot be obtained at less than 50 at%. If R is less than 11.5 at%, the coercive force and squareness are deteriorated because a large amount of T phase is precipitated in the central portion of the ingot, and if it exceeds 12.5 at%,
In addition to the intended tetragonal Nd 2 Fe 14 B-type compound, a large amount of R-rich second phase precipitates, and when the amount of this second phase is too large, the magnetization of the alloy is reduced. Therefore, the range of R is 11.5-1
2.5 at%. The preferred range is 11.8-12.
It is 3 at%.

【0013】Tは鉄属元素であって、Fe、Coを包含
する。Tが79at%未満では低保磁力、低磁化の第2
相が晶出して磁気的特性が低下し、また、83at%を
超えるとT相の晶出により保磁力、角型性が低下するた
め、Tの範囲は79〜83at%とする。また、Feの
みでも必要な磁気的性質は得られるが、Coの適量の添
加は、キュリー温度の向上に有用であり、Coは必要に
応じて添加できる。FeとCoの原子比においてFeが
50%以下となるとNd2Fe14B型化合物の飽和磁化
そのものの減少量が大きくなってしまうため、Tのうち
原子比でFeを50%以上とした。Tの好ましい範囲は
80〜82at%である。
T is an iron group element and includes Fe and Co. When T is less than 79 at%, the second layer has low coercive force and low magnetization.
The phase is crystallized to deteriorate the magnetic properties, and when it exceeds 83 at%, the coercive force and the squareness are deteriorated due to the crystallization of the T phase, so the range of T is set to 79 to 83 at%. Further, even if only Fe is used, the necessary magnetic properties can be obtained, but addition of an appropriate amount of Co is useful for improving the Curie temperature, and Co can be added if necessary. When the atomic ratio of Fe to Co is 50% or less, the amount of decrease in the saturation magnetization of the Nd 2 Fe 14 B type compound itself becomes large. Therefore, Fe in the atomic ratio of T is set to 50% or more. The preferable range of T is 80 to 82 at%.

【0014】添加元素Mの効果は、水素化時に母相の分
解反応を完全に終了させずに、母相すなわちR214
相を安定化して故意に残存させるのに有効な元素が望ま
れる。特に顕著な効果を持つものとして、Ga、Zr、
Hf、Ta、Nbがある。添加量は、0.01at%未
満では異方性が低下し、また2.0at%を越えると強
磁性でない第2相が析出して磁化を低下させることか
ら、Mは0.01〜2.0at%とした。Mの好ましい
範囲は0.5〜1.5at%である。
The effect of the additional element M is that the decomposition reaction of the mother phase is not completely completed during hydrogenation, and the mother phase, that is, R 2 T 14 B
An element effective in stabilizing the phase and intentionally remaining is desired. Ga, Zr,
There are Hf, Ta, and Nb. If the addition amount is less than 0.01 at%, the anisotropy will decrease, and if it exceeds 2.0 at%, the second phase that is not ferromagnetic will be precipitated and the magnetization will decrease, so that M is 0.01 to 2. It was 0 at%. The preferable range of M is 0.5 to 1.5 at%.

【0015】Bは、正方晶Nd2Fe14B型結晶構造を
安定して析出させるためには必須の元素である。添加量
は5.5at%以下ではR217相が析出して保磁力を
低下させ、減磁曲線の角型性が著しく損なわれる。ま
た、6.5at%を超えて添加した場合は、磁化の小さ
い第2相が析出して粉末の磁化を低下させる。従って、
Bは、5.5〜6.5at%とした。好ましい範囲は
5.8〜6.3at%である。
B is an essential element for stably precipitating a tetragonal Nd 2 Fe 14 B type crystal structure. When the addition amount is 5.5 at% or less, the R 2 T 17 phase precipitates to lower the coercive force, and the squareness of the demagnetization curve is significantly impaired. Further, when added in excess of 6.5 at%, the second phase having a small magnetization precipitates to reduce the magnetization of the powder. Therefore,
B was 5.5 to 6.5 at%. A preferred range is 5.8 to 6.3 at%.

【0016】製造条件の限定理由 鋳造方法の限定理由 一般に鋳造組織は鋳塊の組成および鋳造条件によって決
まり、この発明においては鋳塊形状によってさらにこれ
を制御することを特徴としている。この発明において、
鋳塊断面の寸法、厚み:dを10〜35mmとしたの
は、溶湯の入った坩堝から鋳型に鋳込む際に、鋳型厚み
が10mm未満では実際の工程においてハンドリングの
面で困難がともなったり、また生産性が悪いためコスト
高になるので好ましくなく、また、35mmを越える
と、鋳塊幅:Lが実質的に無限大であっても鋳塊の厚み
方向における中央部にTの初晶が多く晶出するNdとB
の成分が少ない組織となり、この領域では正方晶Nd2
Fe14B型化合物相の存在比が低下するために好ましく
ない。よって鋳塊厚み:dを10〜35mmとする。ま
た、鋳塊断面幅:Lと寸法比L/dは、dが例えば10
mmあってもLが30mm未満、つまりL/d<3.0
では鋳塊を鋳造する際、厚み方向以外からの熱流方向に
影響される領域が多くなり、鋳塊の異方性の発現要因で
あるR2Fe14B相の結晶方位が同方向を向いた領域が
小さくなり、異方性が低下する。よって、Lを30mm
以上で、かつL/dが3.0以上であることが必要であ
る。
Reasons for Limitation of Manufacturing Conditions Reasons for Limitation of Casting Method Generally, the casting structure is determined by the composition of the ingot and the casting conditions, and the present invention is characterized in that it is further controlled by the shape of the ingot. In this invention,
The dimension of the ingot cross section, the thickness: d is 10 to 35 mm, when casting from a crucible containing molten metal into a mold, if the mold thickness is less than 10 mm, it may be difficult in terms of handling in an actual process, Further, it is not preferable because the cost is high due to poor productivity, and when it exceeds 35 mm, even if the ingot width L is substantially infinite, the primary crystal of T is formed in the central portion in the thickness direction of the ingot. Nd and B that crystallize a lot
The structure has a small amount of the component, and in this region, tetragonal Nd 2
It is not preferable because the abundance ratio of the Fe 14 B type compound phase decreases. Therefore, the ingot thickness: d is set to 10 to 35 mm. Further, the ingot cross-section width: L and the dimensional ratio L / d are such that d is 10
Even if it is mm, L is less than 30 mm, that is, L / d <3.0
Then, when casting the ingot, the region affected by the heat flow direction other than the thickness direction increased, and the crystal orientation of the R 2 Fe 14 B phase, which is the cause of the anisotropy of the ingot, was oriented in the same direction. The area becomes smaller and the anisotropy decreases. Therefore, L is 30 mm
Above, it is necessary that L / d is 3.0 or more.

【0017】この発明において、鋳型の材質構造は、こ
の発明の対象組成の合金が鋳造できる金属、耐火物など
であれば特に限定しない。鋳造条件、特に必要とされる
冷却速度に応じて選択すればよく、鋳塊厚みがそれほど
厚くなく、寸法比L/dが充分に大きい場合には空冷鉄
製鋳型で充分であり、必要によっては、銅製の水冷鋳型
を用いてもよい。この発明で使用する鋳型の厚みは、鋳
塊厚みに対して必要とされる厚さにすればよい。具体的
には鋳塊厚みのおよそ1/2〜2倍の範囲が好ましい。
実用上は5〜40mmの範囲で選択すれば充分である。
In the present invention, the material structure of the mold is not particularly limited as long as it is a metal, a refractory or the like which can be cast with the alloy of the composition of the present invention. It may be selected according to casting conditions, particularly the required cooling rate, and if the ingot thickness is not so thick and the dimension ratio L / d is sufficiently large, an air-cooled iron mold is sufficient, and if necessary, A water-cooled mold made of copper may be used. The thickness of the mold used in the present invention may be a thickness required for the thickness of the ingot. Specifically, it is preferably in the range of about 1/2 to 2 times the thickness of the ingot.
For practical use, it is sufficient to select within the range of 5 to 40 mm.

【0018】この発明において、原料合金中の正方晶N
2Fe14B型化合物の含有量は、該化合物が85vo
l%未満であると、磁気特性が低下する。より具体的に
は、混在する第2相がTの初晶の場合は保磁力を低下さ
せ、Rリッチ相やBリッチ相の場合には磁化が低下する
ため、正方晶Nd2Fe14B型化合物の存在比を85v
ol%以上とした。
In the present invention, tetragonal N in the raw material alloy
The content of the d 2 Fe 14 B-type compound is 85 vo
If it is less than 1%, the magnetic properties deteriorate. More specifically, when the mixed second phase is a primary crystal of T, the coercive force is reduced, and when it is the R-rich phase or the B-rich phase, the magnetization is reduced, so that the tetragonal Nd 2 Fe 14 B type is used. Abundance ratio of compound is 85v
ol% or more.

【0019】また、原料鋳塊中でRとBの成分が、正方
晶Nd2Fe14B型化合物の化学量論比を大きく下回
る、つまり、R<11.0at%およびB<5.0at
%となる組織が存在すると、焼鈍後もTの初晶などの保
磁力や角型性を低下させる相が多く残存する。従ってR
とBの成分がそれぞれ11.0at%および5.0at
%を下回る組織が20%以上存在しないことが必要であ
る。
Further, the R and B components in the raw material ingot are much lower than the stoichiometric ratio of the tetragonal Nd 2 Fe 14 B type compound, that is, R <11.0 at% and B <5.0 at.
If the structure of% is present, many phases such as primary crystals of T that reduce the coercive force and squareness remain even after annealing. Therefore R
And B components are 11.0 at% and 5.0 at respectively
It is necessary that no more than 20% of tissues have a ratio of less than 20%.

【0020】粉末の製造方法の限定理由 この発明の鋳塊の焼鈍条件において、焼鈍温度を112
0℃〜1160℃としたのは、1120℃未満では固相
反応が主体となり、拡散速度が十分速くないためにマク
ロな偏析は解消されず、粒成長や元素の拡散による均質
化が充分でなく、粉砕した時の粉末全体での異方性が低
くなり、また、1160℃を越えると焼鈍中に液相が大
量に発生して焼鈍に用いた容器と反応したり、設備が大
がかりになるため好ましくない。よって焼鈍温度は11
20℃〜1160℃とする。好ましくは1130℃〜1
155℃である。焼鈍時間を0.5時間〜100時間と
したのは、0.5時間未満では焼鈍時の粒成長や元素の
拡散による均質化が充分でなく、また、100時間を越
えて行っても、100時間焼鈍した場合に比べて効果面
で顕著に変化しない上に、長時間の焼鈍は実質的なコス
ト高になる。よって焼鈍時間を0.5時間〜100時間
とする。好ましくは4時間〜24時間である。
Reasons for Limiting the Method of Producing Powder Under the annealing conditions of the ingot of the present invention, the annealing temperature is set to 112.
The temperature of 0 ° C. to 1160 ° C. is below 1120 ° C., the solid-phase reaction is the main component, and the diffusion rate is not sufficiently fast, so macrosegregation cannot be eliminated, and grain growth and homogenization due to element diffusion are not sufficient. , The anisotropy of the whole powder when crushed becomes low, and when it exceeds 1160 ° C, a large amount of liquid phase is generated during annealing and it reacts with the container used for annealing, and the equipment becomes large. Not preferable. Therefore, the annealing temperature is 11
It is set to 20 ° C to 1160 ° C. Preferably from 1130 ° C to 1
155 ° C. The reason why the annealing time is set to 0.5 hours to 100 hours is that if it is less than 0.5 hours, the grain growth during the annealing and the homogenization due to the diffusion of the elements are not sufficient, and if it is performed for more than 100 hours, Compared to the case of annealing for a long time, the effect is not significantly changed, and annealing for a long time causes a substantial increase in cost. Therefore, the annealing time is set to 0.5 hours to 100 hours. It is preferably 4 hours to 24 hours.

【0021】この発明の出発原料の粗粉砕方法は、従来
の機械的粉砕法の他、H2吸蔵による自然崩壊、いわゆ
る水素粉砕などいずれの方法でもよい。粗粉砕粉の平均
粒度を30μm〜5000μmに限定したのは、平均粒
度が30μm未満では粉末の酸化による磁性劣化の恐れ
があり、また、5000μmを越えるとR水素化物相、
T相、T−B相などに相分離する水素化、不均化反応の
進行時間で局所的な差異が生じ、大きな異方性を持たせ
るのが困難となるからである。
The coarse pulverization method of the starting material of the present invention may be any one of conventional mechanical pulverization method, natural disintegration by H 2 occlusion, so-called hydrogen pulverization and the like. The average particle size of the coarsely pulverized powder is limited to 30 μm to 5000 μm because when the average particle size is less than 30 μm, there is a risk of magnetic deterioration due to oxidation of the powder, and when it exceeds 5000 μm, the R hydride phase,
This is because there is a local difference in the progress time of the hydrogenation and disproportionation reactions that phase-separate into the T phase, TB phase, etc., and it becomes difficult to give a large anisotropy.

【0022】水素化処理法とは、所要粒度の粗粉砕粉が
外観上その大きさを変化させることなく、極微細結晶組
織の集合体が得られることを特徴とする。すなわち、正
方晶Nd2Fe14B型化合物に対し、高温、実際上は6
00℃〜900℃の温度範囲でH2ガスと反応させる
と、R水素化物相、T相、T−B相などに相分離し、さ
らに同温度域でH2ガスを脱H2処理により除去すると、
再度正方晶Nd2Fe14B型化合物の再結晶組織が得ら
れる。しかしながら、現実には、水素化不均化処理条件
によって分解生成物の結晶粒径、反応の度合いが異な
り、水素化不均化状態の金属組織は、水素化温度750
℃未満と750℃以上で明らかに異なる。この金属組織
上の違いが、脱水素処理を行った後の粉末の磁気的性
質、特に磁気異方性に大きく影響する。また、水素化処
理する前の鋳塊の状態、特に粒度が脱水素処理を行った
後の磁粉の磁気的性質特に磁気異方性に大きく影響す
る。さらに、脱水素処理条件によって、正方晶Nd2
14B型化合物の再結晶状態が大きく影響を受け、水素
処理法によって作製した磁紛の磁気的性質、特に保磁力
に大きく影響する。
The hydrotreating method is characterized in that a coarsely pulverized powder having a required particle size does not change its size in appearance and an aggregate having an extremely fine crystal structure can be obtained. That is, for a tetragonal Nd 2 Fe 14 B type compound, at a high temperature, practically 6
When it is reacted with H 2 gas in the temperature range of 00 ° C to 900 ° C, it is phase-separated into R hydride phase, T phase, TB phase, etc., and H 2 gas is removed by H 2 treatment in the same temperature range. Then,
A recrystallized structure of a tetragonal Nd 2 Fe 14 B type compound is obtained again. However, in reality, the crystal grain size of the decomposition product and the degree of reaction differ depending on the hydrogenation disproportionation processing conditions, and the metal structure in the hydrogenation disproportionation state has a hydrogenation temperature of 750.
Clearly different below ℃ and above 750 ℃. This difference in the metal structure has a great influence on the magnetic properties of the powder after the dehydrogenation treatment, particularly the magnetic anisotropy. In addition, the state of the ingot before the hydrogenation treatment, especially the grain size, greatly affects the magnetic properties of the magnetic powder after the dehydrogenation treatment, particularly the magnetic anisotropy. Furthermore, depending on the dehydrogenation treatment conditions, tetragonal Nd 2 F
The recrystallized state of the e 14 B type compound is greatly affected, and the magnetic properties of the magnetic powder produced by the hydrogen treatment method, particularly the coercive force, are greatly affected.

【0023】この発明において、H2ガス中での昇温速
度は、5℃/min未満であると、昇温過程で600℃
〜750℃の温度域を、分解反応が進行しながら通過す
るために、完全に分解して母相すなわちR214B相が
残存せず、脱水素処理後の磁気的及び結晶方位的異方性
がほとんど失われてしまう。また、処理条件によって
は、大きな反応熱のために局部的に最適処理温度範囲を
越える場合があり、そのために実用的な保磁力が得られ
ない場合がある。昇温速度を5℃/min以上にすれ
ば、600℃〜750℃の領域で反応が充分に進行せ
ず、母相を残存したまま750℃〜900℃の水素化温
度域に達するため、脱水素処理後に磁気的および結晶方
位的に大きな異方性を持った粉末を得ることができる。
従って、昇温速度は、750℃以下の温度域において、
5℃/min以上とする必要がある。また、200℃/
minを越える昇温速度は赤外線加熱炉等を用いても実
質的に実現困難であり、また可能であっても設備費が過
大となり好ましくない。よって、昇温速度を5℃〜20
0℃/minとする。
In the present invention, if the rate of temperature rise in H 2 gas is less than 5 ° C./min, 600 ° C. during the temperature rise process.
Since the decomposition reaction passes through the temperature range of up to 750 ° C., the mother phase, that is, the R 2 T 14 B phase is not completely decomposed and remains, and the magnetic and crystallographic anisotropy after the dehydrogenation treatment is different. Almost all directions are lost. Further, depending on the treatment conditions, the reaction heat may locally exceed the optimum treatment temperature range due to the large heat of reaction, and thus a practical coercive force may not be obtained. If the heating rate is set to 5 ° C./min or more, the reaction does not proceed sufficiently in the range of 600 ° C. to 750 ° C., and the hydrogenation temperature range of 750 ° C. to 900 ° C. is reached while the mother phase remains. It is possible to obtain a powder having a large magnetic and crystal orientation anisotropy after the elementary treatment.
Therefore, the rate of temperature rise is in the temperature range of 750 ° C or lower.
It is necessary to set it to 5 ° C./min or more. Also, 200 ° C /
A heating rate exceeding min is practically difficult to achieve even if an infrared heating furnace or the like is used, and even if it is possible, the equipment cost becomes excessive, which is not preferable. Therefore, the rate of temperature rise is 5 ° C to 20 ° C.
0 ° C./min.

【0024】この発明において、水素化工程におけるH
2ガス中での保持に際し、H2ガス圧力が10kPa未満
では、前述の分解反応が充分に進行せず、また1000
kPaを越えると処理設備が大きくなりすぎ、工業的に
コスト面、また安全面で好ましくないため、圧力範囲を
10kPa〜1000kPaとした。さらに好ましくは
50kPa〜150kPaである。
In the present invention, H in the hydrogenation step
When the H 2 gas pressure is less than 10 kPa during holding in 2 gas, the above-mentioned decomposition reaction does not proceed sufficiently,
If it exceeds kPa, the processing equipment becomes too large, which is industrially unfavorable in terms of cost and safety. Therefore, the pressure range was set to 10 kPa to 1000 kPa. More preferably, it is 50 kPa to 150 kPa.

【0025】水素化工程におけるH2ガス中での加熱処
理温度は、600℃未満ではR水素化物相、T相、T−
B相などへの分解反応が起こらず、また、600〜75
0℃の温度範囲ではR水素化物の生成反応速度が速いた
めに水素化、分解反応がほぼ完全に進行してしまい、分
解生成物中に適量のR214B相が残存せず、脱水素処
理後に磁気的、また結晶方位的に充分な異方性が得られ
ない。また、900℃を超えるとR水素化物相が不安定
となり、かつ生成物が粒成長して正方晶Nd2Fe14
型化合物極微細結晶組織を得ることが困難になる。水素
化の温度範囲が750℃〜900℃の領域であれば、脱
水素時の再結晶反応の核となるR214B相が分散して
適量残存するため、脱水素後のR214B相の結晶方位
が残存R214B相によって決定され、結果的に再結晶
組織の結晶方位が原料インゴットの結晶方位と一致し、
少なくとも原料インゴットの結晶粒径の範囲内では大き
な異方性を示すことになる。そのため水素化処理の温度
範囲を750℃〜900℃とする。また、加熱処理保持
時間については、上記の分解反応を充分に行わせるため
には15分以上必要であり、また、8時間を超えると残
存R214B相が減少して脱水素処理後の磁気異方性が
低下するため好ましくない。従って、15分〜8時間の
加熱保持とする。
When the heat treatment temperature in H 2 gas in the hydrogenation step is less than 600 ° C., R hydride phase, T phase, T-
No decomposition reaction to phase B occurs, and 600-75
In the temperature range of 0 ° C., the hydrogenation and decomposition reactions proceed almost completely because the reaction rate of R hydride formation is fast, and an appropriate amount of R 2 T 14 B phase does not remain in the decomposition product, resulting in dehydration. Sufficient magnetic or crystallographic anisotropy cannot be obtained after elementary treatment. Further, when the temperature exceeds 900 ° C., the R hydride phase becomes unstable, and the product grains grow to cause tetragonal Nd 2 Fe 14 B
It becomes difficult to obtain a type compound ultrafine crystal structure. If a region the temperature range 750 ° C. to 900 ° C. the hydrogenation, since the core of the recrystallization reaction upon dehydrogenation R 2 T 14 B phase is appropriate amount remaining dispersed, after dehydrogenation R 2 T 14 crystal orientation of the B phase is determined by the residual R 2 T 14 B phase, the crystal orientation of the resulting recrystallization tissue match the crystal orientation of the material ingot,
At least within the range of the crystal grain size of the raw material ingot, large anisotropy is exhibited. Therefore, the temperature range of the hydrotreatment is set to 750 ° C to 900 ° C. Regarding the heat treatment holding time, 15 minutes or more is required to sufficiently carry out the above decomposition reaction, and if it exceeds 8 hours, the residual R 2 T 14 B phase decreases and after dehydrogenation treatment. Is not preferable because the magnetic anisotropy of is decreased. Therefore, the heating is maintained for 15 minutes to 8 hours.

【0026】この発明の脱H2処理は、不活性ガス、具
体的にはArガスまたはHeガス雰囲気の減圧下もしく
は真空排気で行うが、これによって粉末の周囲の実質的
なH2分圧はほぼ平衡水素圧、例えば850℃にて1k
Pa程度となり、脱水素反応は徐々に進行する。不活性
ガスとしてArまたはHeに限定したのは、コスト面で
はArが使い良く、また、H2ガスの置換性や温度制御
性の点からはHeガスが優れているためである。その他
の希ガスは、性能面でのメリットがない上、コスト的に
問題がある。また、一般に不活性ガスとして取り扱われ
るN2ガスは、希土類系化合物と反応して窒化物を形成
するため不適当である。減圧気流時の雰囲気の絶対圧力
が100Pa未満では、脱水素反応が急激に起こり、化
学反応による温度低下が大きく、さらに、脱水素反応が
急激すぎるために、冷却後の磁粉の組織に粗大な結晶粒
が混在してしまい、そのために保磁力が大きく低下す
る。一方、雰囲気の絶対圧力が50kPaを越えると、
脱水素反応に時間がかかりすぎて実用的には問題とな
る。そこで、雰囲気の絶対圧力は100Pa〜50kP
aとした。
The H 2 removal treatment of the present invention is carried out under reduced pressure or vacuum exhaust in an inert gas, specifically, Ar gas or He gas atmosphere, whereby the substantial H 2 partial pressure around the powder is reduced. Nearly equilibrium hydrogen pressure, eg 1k at 850 ° C
It becomes about Pa, and the dehydrogenation reaction gradually progresses. The reason for limiting the inert gas to Ar or He is that Ar is easy to use in terms of cost, and He gas is superior in terms of the replaceability of H 2 gas and the temperature controllability. Other rare gases have no merit in terms of performance and have a problem in cost. Further, N 2 gas which is generally treated as an inert gas is not suitable because it reacts with a rare earth compound to form a nitride. When the absolute pressure of the atmosphere during depressurization air flow is less than 100 Pa, dehydrogenation reaction occurs rapidly and the temperature drop due to the chemical reaction is large, and furthermore, the dehydrogenation reaction is too rapid, and therefore the crystal structure of the magnetic powder after cooling has coarse crystals. Grains are mixed, and the coercive force is greatly reduced. On the other hand, if the absolute pressure of the atmosphere exceeds 50 kPa,
The dehydrogenation reaction takes too much time, which is a practical problem. Therefore, the absolute pressure of the atmosphere is 100 Pa to 50 kP.
a.

【0027】また、脱水素処理時に減圧気流中で行うの
は、脱水素反応によって原料から放出されるH2ガスに
よって、炉内圧力が上昇するのを防止するためである。
実用上は一方から不活性ガスを導入しつつ、他方から真
空ポンプで排気し、圧力の制御は供給口、排気口それぞ
れに取り付けられた流量調整弁を用いて行う。また、真
空排気で脱水素を行う場合、脱水素反応速度、すなわ
ち、原料から放出される水素と真空排気速度で圧力を制
御する。このときの圧力(水素分圧)が平衡水素圧から
大きく外れると反応速度が変化し、磁粉中の組織に粗大
な粒が混在したり、急激な脱水素による吸熱で原料温度
が低下し、R2Fe14B相への再結晶反応が不完全とな
り、保磁力が大きく低下する。そこで、水素分圧は、1
0kPa以下とした。
Further, the reason why the dehydrogenation process is carried out in a reduced pressure air flow is to prevent the furnace pressure from rising due to the H 2 gas released from the raw material by the dehydrogenation reaction.
Practically, an inert gas is introduced from one side, the other side is evacuated by a vacuum pump, and the pressure is controlled by using flow rate adjusting valves attached to each of the supply port and the exhaust port. When dehydrogenation is performed by vacuum exhaust, the pressure is controlled by the dehydrogenation reaction rate, that is, the hydrogen released from the raw material and the vacuum exhaust rate. When the pressure (hydrogen partial pressure) at this time largely deviates from the equilibrium hydrogen pressure, the reaction rate changes, and coarse grains are mixed in the structure of the magnetic powder, or the raw material temperature is lowered due to heat absorption due to rapid dehydrogenation. The recrystallization reaction into the 2 Fe 14 B phase becomes incomplete, and the coercive force is greatly reduced. Therefore, the hydrogen partial pressure is 1
It was set to 0 kPa or less.

【0028】この発明において、脱H2処理の温度が7
00℃未満では、R水素化物相からのH2の離脱が起こ
らないか、正方晶Nd2Fe14B相化合物の再結晶が充
分進行しない。また、900℃を越えると正方晶Nd2
Fe14B相化合物は生成するが、再結晶粒が粗大に成長
し、高い保磁力が得られない。そのため、脱H2処理の
温度範囲は700℃〜900℃とする。また、加熱処理
保持時間は、処理設備の排気能力にもよるが、上記の再
結晶反応を充分に行わせるためには少なくとも5分以上
保持する必要がある。しかし、一方では、二次的な再結
晶反応によって結晶が粗大化すれば保磁力の低下を招く
ので、できる限り短時間のほうが好ましい。そのため、
5分〜8時間の加熱保持で充分である。脱H2処理は、
原料の酸化防止の観点から、また処理設備の熱効率の観
点からも、水素化処理時に引き続いて行うのがよいが、
水素化処理後、一旦原料を冷却して、再び改めて脱H2
のための熱処理を行っても良い。
In the present invention, the temperature for the H 2 removal treatment is 7
If the temperature is lower than 00 ° C., H 2 is not released from the R hydride phase, or recrystallization of the tetragonal Nd 2 Fe 14 B phase compound does not proceed sufficiently. If the temperature exceeds 900 ° C., tetragonal Nd 2
Although an Fe 14 B phase compound is produced, recrystallized grains grow coarsely and a high coercive force cannot be obtained. Therefore, the temperature range of the H 2 removal treatment is 700 ° C. to 900 ° C. Further, the heat treatment holding time depends on the exhaust capacity of the treatment equipment, but it is necessary to hold it for at least 5 minutes or more in order to sufficiently perform the recrystallization reaction. On the other hand, on the other hand, if the crystal becomes coarse due to the secondary recrystallization reaction, the coercive force is lowered, so that the time is preferably as short as possible. for that reason,
Heating and holding for 5 minutes to 8 hours is sufficient. The H 2 removal treatment is
From the viewpoint of preventing the oxidation of the raw materials and also from the viewpoint of the thermal efficiency of the processing equipment, it is preferable to carry out the hydrogenation process continuously.
After hydrotreating, and once cooled the material, again again de H 2
May be heat treated.

【0029】脱H2処理後の正方晶Nd2Fe14B型化合
物の再結晶粒径は、実質的に0.05μm以下の平均再
結晶粒径を得ることは困難であり、またたとえ得られた
としても磁気特性上の利点がない。一方、平均再結晶粒
径が1μmを越えると、粉末の保磁力が低下するため好
ましくない。そのため、平均再結晶粒径を0.05μm
〜1μmとした。
Regarding the recrystallized grain size of the tetragonal Nd 2 Fe 14 B type compound after the de-H 2 treatment, it is difficult to obtain an average recrystallized grain size of substantially 0.05 μm or less, and even if it is obtained. Even if there is no advantage in terms of magnetic properties. On the other hand, if the average recrystallized grain size exceeds 1 μm, the coercive force of the powder decreases, which is not preferable. Therefore, the average recrystallized grain size is 0.05 μm
˜1 μm.

【0030】ボンド磁石の製造方法の限定理由 この発明において、上述の製造方法による希土類合金粉
末をボンド磁石用原料として粉砕する方法は従来からの
機械的粉砕方法でよい。この発明において、ボンド磁石
を製造するのに用いる粉末の平均粒度を20μm〜40
0μmに限定したのは、20μm未満では粉末の酸化に
よる磁気特性の劣化の恐れがあり、また、400μmを
越えると小型磁気部品として精密成形する際に粗大すぎ
て好ましくないからである。
Reasons for Limiting the Method of Producing a Bond Magnet In the present invention, the method of pulverizing the rare earth alloy powder by the above-mentioned production method as a raw material for a bond magnet may be a conventional mechanical pulverization method. In the present invention, the average particle size of the powder used to manufacture the bonded magnet is 20 μm to 40 μm.
The reason for limiting the thickness to 0 μm is that if it is less than 20 μm, the magnetic properties may be deteriorated due to the oxidation of the powder, and if it exceeds 400 μm, it is not preferable because it is too coarse for precision molding as a small magnetic component.

【0031】この発明による永久磁石合金粉末を用いて
磁石化するには、以下に示す圧縮成形、射出成形、押し
出し成形、圧延成形、樹脂含浸法など公知のいずれの製
造方法であってもよい。圧縮成形の場合は、磁性粉末に
熱硬化性樹脂、カップリング剤、滑剤などを添加混連し
た後、圧縮成形して加熱樹脂を硬化して得られる。ま
た、樹脂の代わりにZn,Al等の低融点金属を用いて
もよい。射出成形、押し出し成形、圧延成形の場合は、
磁性粉末に熱可塑性樹脂、カップリング剤、滑剤などを
添加混連した後、射出成形、押し出し成形、圧延成形の
いずれかの方法にて成形して得られる。樹脂含浸法にお
いては、磁性粉末を圧縮成型後、必要に応じて熱処理し
た後、熱硬化性樹脂を含浸させ、加熱して樹脂を硬化さ
せて得る。また、磁性粉末を圧縮成型後、必要に応じて
熱処理した後、熱可塑性樹脂を含浸させて得る。この発
明において、ボンド磁石中の磁性粉末の重量比は、前記
製法により異なるが、70〜99.5wt%であり、残
部の0.5〜30wt%が樹脂その他である。圧縮成型
の場合、磁性粉末の重量比は95〜99.5wt%、射
出成型の場合、磁性粉末の充填率は90〜95wt%、
樹脂含浸法の場合、磁性粉末の重量比は、96〜99.
5wt%が好ましい。この発明における樹脂は、熱硬化
性、熱可塑性のいずれの性質を有するものも利用できる
が、熱的に安定な樹脂が好ましく、例えば、ポリアミ
ド、ポリイミド、フェノール樹脂、弗素樹脂、けい素樹
脂、エポキシ樹脂などを適宜選定できる。
Magnetization using the permanent magnet alloy powder according to the present invention may be carried out by any known manufacturing method such as compression molding, injection molding, extrusion molding, roll molding and resin impregnation method shown below. In the case of compression molding, it is obtained by adding and mixing a thermosetting resin, a coupling agent, a lubricant and the like to the magnetic powder, followed by compression molding and curing the heating resin. Further, a low melting point metal such as Zn or Al may be used instead of the resin. For injection molding, extrusion molding, and roll molding,
It can be obtained by adding and mixing a thermoplastic resin, a coupling agent, a lubricant, etc. to the magnetic powder and then molding by any one of injection molding, extrusion molding, and roll molding. In the resin impregnation method, magnetic powder is compression-molded, heat-treated as necessary, impregnated with a thermosetting resin, and heated to cure the resin. Alternatively, the magnetic powder may be obtained by compression molding, heat treatment if necessary, and impregnation with a thermoplastic resin. In the present invention, the weight ratio of the magnetic powder in the bonded magnet varies depending on the manufacturing method, but is 70 to 99.5 wt%, and the remaining 0.5 to 30 wt% is resin or the like. In the case of compression molding, the weight ratio of magnetic powder is 95 to 99.5 wt%, in the case of injection molding, the filling rate of magnetic powder is 90 to 95 wt%,
In the resin impregnation method, the weight ratio of the magnetic powder is 96 to 99.
5 wt% is preferable. As the resin in the present invention, those having any of thermosetting and thermoplastic properties can be used, but a thermally stable resin is preferable, and examples thereof include polyamide, polyimide, phenol resin, fluororesin, silicon resin and epoxy. A resin or the like can be appropriately selected.

【0032】[0032]

【作用】この発明は、R−T−(M)−B系永久磁石用
希土類合金鋳塊の製造に際し、鋳塊の断面寸法比を特定
することにより、正方晶Nd2Fe14B型化合物が85
%以上で低濃度のR、B領域が20%以上存在しない鋳
塊を得て、組織を実質的に柱状晶化するもので、例え
ば、等軸晶部でも柱状晶部と変わりない異方性を有し、
所定の焼鈍によって均質化されて高磁気特性の磁石合金
粉末を得ることができる。また、この発明は、上記の鋳
塊を特定雰囲気で焼鈍し、特定の昇温条件、雰囲気条件
でH2ガス中で水素化処理し、さらに特定条件の脱H2
理後に冷却することにより、結晶粒径が微細かつ磁気異
方性を有する希土類合金粉末を得て、優れた異方性と高
い磁化、保磁力を有するボンド磁石を製造することが可
能である。
According to the present invention, a tetragonal Nd 2 Fe 14 B-type compound is obtained by specifying the cross-sectional dimension ratio of the ingot during the production of the RT- (M) -B system rare earth alloy ingot for permanent magnet. 85
% Or more to obtain an ingot having a low concentration of 20% or more of R and B regions, and to substantially columnarize the structure. For example, anisotropy is the same as that of columnar crystal. Have
A magnet alloy powder having high magnetic properties can be obtained by homogenization by predetermined annealing. Further, the present invention, by annealing the above ingot in a specific atmosphere, hydrogenation treatment in H 2 gas under specific temperature rising conditions and atmospheric conditions, and further cooling after deH 2 treatment under specific conditions, It is possible to obtain a rare earth alloy powder having a fine crystal grain size and magnetic anisotropy to manufacture a bond magnet having excellent anisotropy, high magnetization and coercive force.

【0033】[0033]

【実施例】【Example】

実施例1 高周波誘導溶解法によって得られた表1に示すNo.1
〜8の組成の溶湯を表4に示す寸法の鉄製鋳型に鋳込む
ことで溶製した。このときのNo.4鋳塊の厚み方向に
おけるRとBの成分変化を図1に示す。この鋳塊を表4
に示す熱処理条件にてAr雰囲気中で焼鈍して、鋳塊中
の正方晶Nd2Fe14B型化合物の体積比を90%以上
とした。さらに、この鋳塊を、Arガス雰囲気中(O2
量0.5%以下)でスタンプミルにて表4に示す平均粒
度に粗粉砕した後、この粗粉砕粉を管状炉に入れ、1P
a以下にまで真空排気した。その後、純度99.999
9%以上のH2ガスを導入しつつ、表4に示す水素化処
理条件で処理を行った。こうして得た水素化原料を、引
き続き表4に示す脱水素処理条件に従って脱水素処理を
行った。排気にはロータリーポンプを用いた。冷却後、
原料温度が50℃以下となったところで原料を取り出し
た。このときの磁石合金粉末の磁気特性を表4に示す。
Example 1 No. 1 shown in Table 1 obtained by the high frequency induction melting method. 1
It melted by casting the molten metal of the composition of-8 into the iron mold of the size shown in Table 4. No. at this time Fig. 1 shows changes in the R and B components in the thickness direction of the four ingots. This ingot is shown in Table 4
Annealing was performed in an Ar atmosphere under the heat treatment conditions shown in (1) to make the volume ratio of the tetragonal Nd 2 Fe 14 B type compound in the ingot 90% or more. Furthermore, this ingot was placed in an Ar gas atmosphere (O 2
(Amount of 0.5% or less) was roughly crushed with a stamp mill to the average particle size shown in Table 4, and the coarsely crushed powder was put into a tubular furnace to obtain 1P.
It was evacuated to below a. Then, the purity is 99.999
While introducing 9% or more of H 2 gas, the treatment was performed under the hydrotreatment conditions shown in Table 4. The hydrogenated raw material thus obtained was subsequently subjected to dehydrogenation treatment under the dehydrogenation treatment conditions shown in Table 4. A rotary pump was used for evacuation. After cooling
The raw material was taken out when the raw material temperature became 50 ° C. or lower. Table 4 shows the magnetic characteristics of the magnet alloy powder at this time.

【0034】実施例2 実施例1で得られた表4のNo.10の磁石合金粉末
を、Arガス雰囲気中(O2量0.5%以下)でスタン
プミルにて150μmの平均粒度の粉末に粉砕した後、
2.5wt%のクレゾールノボラソク樹脂を混合し、
1.2MA/mの磁界中で0.6GPaの圧力を印加し
て成型した。得られた圧粉体は160℃のAr雰囲気中
で1時間硬化させ、10mm角の立方体ボンド磁石とし
た。BHトレーサにより測定した磁気特性を表2に示
す。
Example 2 No. 1 in Table 4 obtained in Example 1 After crushing the magnet alloy powder of No. 10 into a powder having an average particle size of 150 μm in a stamp mill in an Ar gas atmosphere (O 2 amount of 0.5% or less),
Mix 2.5 wt% of cresol novolak resin,
Molding was performed by applying a pressure of 0.6 GPa in a magnetic field of 1.2 MA / m. The green compact thus obtained was cured in an Ar atmosphere at 160 ° C. for 1 hour to obtain a 10 mm square cubic bonded magnet. Table 2 shows the magnetic characteristics measured by the BH tracer.

【0035】比較例1 表1に示す実施例1と同様の組成を有する8種類の組成
の溶湯を、表5に示す寸法の鉄製鋳型に鋳込んで鋳造し
た。このときのNo.4鋳塊の厚み方向におけるNdと
Bの成分変化を図2に示す。こうして得られた鋳塊を表
5に示す熱処理条件にてAr雰囲気中で焼鈍して、Ar
ガス雰囲気中(O2量0.5%以下)でスタンプミルに
て表5に示す平均粒度に粗粉砕した後、管状炉に入れ、
1Pa以下にまで真空排気した。その後、純度99.9
999%以上のH2ガスを導入しつつ、表5に示す処理
条件で水素化処理および脱水素処理を行った。この時の
磁石合金粉末の磁気特性を表5に示す。
Comparative Example 1 Molten metal having eight kinds of compositions having the same composition as in Example 1 shown in Table 1 was cast into an iron mold having dimensions shown in Table 5. No. at this time FIG. 2 shows changes in the components of Nd and B in the thickness direction of the four ingots. The ingot thus obtained was annealed in an Ar atmosphere under the heat treatment conditions shown in Table 5,
After roughly pulverizing with a stamp mill in a gas atmosphere (O 2 amount of 0.5% or less) to the average particle size shown in Table 5, the mixture was placed in a tubular furnace.
It was evacuated to 1 Pa or less. Then, the purity is 99.9.
While introducing 999% or more of H 2 gas, hydrogenation treatment and dehydrogenation treatment were performed under the treatment conditions shown in Table 5. Table 5 shows the magnetic characteristics of the magnet alloy powder at this time.

【0036】比較例2 比較例1で得られたNo.10の粉末を、Arガス雰囲
気中(O2量0.5%以下)でスタンプミルにて150
μmの平均粒度の粉末に粉砕した後、2.5wt%のク
レゾールノボラック樹脂を混合し、1.2MA/mの磁
界中で0.6GPaの圧力を印加して成形した。得られ
た圧粉体は160℃のAr雰囲気中で1時間硬化させ、
10mm角の立方体ボンド磁石とした。BHトレーサに
より測定した磁気特性を表3に示す。
Comparative Example 2 No. 1 obtained in Comparative Example 1 150 powders of 10 powders in an Ar gas atmosphere (O 2 amount of 0.5% or less) by a stamp mill
After pulverizing to a powder having an average particle size of μm, 2.5 wt% of cresol novolac resin was mixed and molded by applying a pressure of 0.6 GPa in a magnetic field of 1.2 MA / m. The obtained green compact was cured in an Ar atmosphere at 160 ° C. for 1 hour,
A 10 mm square cubic bonded magnet was used. Table 3 shows the magnetic properties measured by the BH tracer.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【発明の効果】この発明は、この発明は、R−T−
(M)−B系永久磁石用希土類合金鋳塊の製造に際し、
鋳塊の断面寸法比を特定することにより、正方晶Nd2
Fe14B型化合物が85%以上で低濃度のR、B領域が
ない鋳塊を得て、組織を実質的に柱状晶化するもので、
例えば、等軸晶部でも柱状晶部と変わりない異方性を有
し、所定の焼鈍によって均質化されて高磁気特性の磁性
粉末を得ることができる。また、この発明は、上記の鋳
塊を特定雰囲気で焼鈍し、特定の昇温条件、雰囲気条件
でH2ガス中で水素化処理し、さらに特定条件の脱H2
理後に冷却することにより、結晶粒径が微細かつ磁気異
方性を有する希土類合金粉末を得て、優れた異方性と高
い磁化、保磁力を有するボンド磁石を製造することが可
能である。
The present invention is the same as RT-T-
In manufacturing a rare earth alloy ingot for (M) -B system permanent magnet,
By specifying the cross-sectional dimension ratio of the ingot, tetragonal Nd 2
Fe 14 B type compound is 85% or more to obtain a low concentration ingot without R and B regions, and to substantially columnarize the structure,
For example, an equiaxed crystal portion has anisotropy similar to that of a columnar crystal portion and can be homogenized by a predetermined annealing to obtain a magnetic powder having high magnetic properties. Further, the present invention, by annealing the above ingot in a specific atmosphere, hydrogenation treatment in H 2 gas under specific temperature rising conditions and atmospheric conditions, and further cooling after deH 2 treatment under specific conditions, It is possible to obtain a rare earth alloy powder having a fine crystal grain size and magnetic anisotropy to manufacture a bond magnet having excellent anisotropy, high magnetization and coercive force.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例No.4鋳塊の厚み方向におけるNdと
Bの成分(at%)変化を示すグラフである。
1 is an example No. 1; It is a graph which shows the ingredient (at%) change of Nd and B in the thickness direction of 4 ingots.

【図2】比較例No.4鋳塊の厚み方向におけるNdと
Bの成分(at%)変化を示すグラフである。
2 is a comparative example No. It is a graph which shows the ingredient (at%) change of Nd and B in the thickness direction of 4 ingots.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 1/08 7/02 C (72)発明者 細川 誠一 大阪府三島郡島本町江川2丁目15ー17 住 友特殊金属株式会社山崎製作所内 (72)発明者 上原 稔 大阪府三島郡島本町江川2丁目15ー17 住 友特殊金属株式会社山崎製作所内 (72)発明者 広沢 哲 大阪府三島郡島本町江川2丁目15ー17 住 友特殊金属株式会社山崎製作所内 (72)発明者 富田 俊郎 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01F 1/06 1/08 7/02 C (72) Inventor Seiichi Hosokawa Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture 2-15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Minoru Uehara 2-15-17 Egawa Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Satoshi Hirosawa Osaka 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Toshiro Tomita 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R:11.5〜12.5at%(R:Y
を含む希土類元素の少なくとも1種で、かつPrまたは
Ndの1種または2種をRのうち50at%以上含
有)、T:79〜83at%(T:FeまたはFeの一
部を50at%以下のCoで置換)、M:0.01〜2
at%(M:Ga、Zr、Nb、Hf、Taのうち1種
または2種以上)、B:5.5〜6.5at%からな
り、鋳塊の断面寸法が、幅L:30mm以上、厚みd:
10mm〜35mmで、寸法比L/dが3.0以上の関
係を有し、正方晶Nd2Fe14B型化合物が該合金中に
85%以上存在し、鋳塊中にRが11.0%及びBが
5.0%を下回る領域が体積比として20%以上存在し
ないことを特徴とする永久磁石用希土類合金鋳塊。
1. R: 11.5-12.5 at% (R: Y
At least one of rare earth elements including, and containing one or two of Pr or Nd in R of 50 at% or more), T: 79 to 83 at% (T: Fe or a part of Fe of 50 at% or less) Replaced with Co), M: 0.01-2
at% (one or more of M: Ga, Zr, Nb, Hf, and Ta), B: 5.5 to 6.5 at%, and the sectional dimension of the ingot has a width L of 30 mm or more, Thickness d:
10 to 35 mm, the dimensional ratio L / d has a relationship of 3.0 or more, the tetragonal Nd 2 Fe 14 B type compound is present in the alloy in an amount of 85% or more, and R in the ingot is 11.0. % And B are less than 5.0% in a volume ratio of 20% or more does not exist, a rare earth alloy ingot for a permanent magnet.
【請求項2】 請求項1の永久磁石用希土類合金鋳塊
を、1120℃〜1160℃で0.5時間〜100時
間、不活性雰囲気もしくは真空中で焼鈍後、平均粒度3
0μm〜5000μmに粉砕し、H2雰囲気中の昇温過
程において、600℃〜750℃の温度域を昇温速度5
℃/min〜200℃/minで昇温し、10kPa〜
1000kPaのH2ガス中で750℃〜900℃に1
5分〜8時間加熱保持し、組織をR水素化物、T−B化
合物、T相、R214B化合物の少なくとも4相の混合
組織とする水素化不均化工程の後、さらにArガスまた
はHeガスによる絶対圧100Pa〜50kPaの減圧
気流中もしくは真空排気によって炉内の水素分圧を10
kPa以下に保持しながら、700℃〜900℃、5分
〜8時間加熱保持する脱H2処理し、その後冷却して平
均結晶粒径が0.05μm〜1μmで、磁気的かつ結晶
配向的に異方性を有することを特徴とする永久磁石用希
土類合金粉末の製造方法。
2. The rare earth alloy ingot for a permanent magnet according to claim 1, after being annealed at 1120 ° C. to 1160 ° C. for 0.5 hours to 100 hours in an inert atmosphere or vacuum, an average grain size of 3
It is crushed to 0 μm to 5000 μm and heated in a H 2 atmosphere in a temperature range of 600 ° C. to 750 ° C. at a heating rate of 5
℃ / min ~ 200 ℃ / min to raise the temperature, 10kPa ~
1 at 750 ° C to 900 ° C in H 2 gas of 1000 kPa
After heating and holding for 5 minutes to 8 hours, the structure is made into a mixed structure of at least four phases of R hydride, T-B compound, T phase, and R 2 T 14 B compound. After the hydrogenation disproportionation step, Ar gas is further added. Alternatively, the hydrogen partial pressure in the furnace is reduced to 10 in a depressurized air flow of 100 Pa to 50 kPa absolute pressure by He gas or by evacuation.
While maintaining at kPa or lower, 700 ° C. to 900 ° C. is heated and held for 5 minutes to 8 hours for de-H 2 treatment, and then cooled to have an average crystal grain size of 0.05 μm to 1 μm. A method for producing a rare earth alloy powder for a permanent magnet, which has anisotropy.
【請求項3】 請求項2の製造方法で得た永久磁石用希
土類合金粉末を、平均粒度20μm〜400μmに粉砕
し、この粉砕粉末に樹脂または低融点金属を混合し成形
固化することを特徴とするボンド磁石の製造方法。
3. The rare earth alloy powder for permanent magnets obtained by the manufacturing method according to claim 2, is pulverized to an average particle size of 20 μm to 400 μm, and the pulverized powder is mixed with a resin or a low melting point metal to be molded and solidified. A method for manufacturing a bonded magnet.
JP30153294A 1994-04-07 1994-11-09 Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet Expired - Lifetime JP3710837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30153294A JP3710837B2 (en) 1994-04-07 1994-11-09 Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9579294 1994-04-07
JP6-95792 1994-04-07
JP30153294A JP3710837B2 (en) 1994-04-07 1994-11-09 Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet

Publications (2)

Publication Number Publication Date
JPH07331394A true JPH07331394A (en) 1995-12-19
JP3710837B2 JP3710837B2 (en) 2005-10-26

Family

ID=26436973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30153294A Expired - Lifetime JP3710837B2 (en) 1994-04-07 1994-11-09 Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet

Country Status (1)

Country Link
JP (1) JP3710837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder
WO2004003245A1 (en) * 2002-06-28 2004-01-08 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
JP2020045544A (en) * 2018-09-21 2020-03-26 住友金属鉱山株式会社 Polycrystal rare earth transition metal alloy powder and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder
WO2004003245A1 (en) * 2002-06-28 2004-01-08 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
JP2020045544A (en) * 2018-09-21 2020-03-26 住友金属鉱山株式会社 Polycrystal rare earth transition metal alloy powder and method for producing the same

Also Published As

Publication number Publication date
JP3710837B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US5338371A (en) Rare earth permanent magnet powder, method for producing same and bonded magnet
US5565043A (en) Rare earth cast alloy permanent magnets and methods of preparation
EP1780736A1 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JPH09165601A (en) Anisotropic rare earth alloy powder for permanent magnet and production of anisotropic bonded magnet
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JP3634565B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2000219942A (en) Alloy thin strip for rare earth magnet, alloy fine powder and their production
JPH07272914A (en) Sintered magnet, and its manufacture
US5186761A (en) Magnetic alloy and method of production
JP3667783B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP3710837B2 (en) Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet
EP0288637B1 (en) Permanent magnet and method of making the same
JP7179799B2 (en) R-Fe-B system sintered magnet
JPH09148163A (en) Manufacture of r-t-b antisotropic bonded magnet
JP2003154441A (en) Method for producing rare earth alloy strip, rare earth alloy strip and rare earth metal magnet
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH10172850A (en) Production of anisotropic permanent magnet
US5460662A (en) Permanent magnet and method of production
JPH10189319A (en) Manufacture of material powder for anisotropic permanent magnet
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3935512B2 (en) Method for manufacturing anisotropic bonded magnet
JPH07278615A (en) Production of anisotropic rare-earth alloy powder for permanent magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

EXPY Cancellation because of completion of term