JPH07325117A - Digital flicker meter - Google Patents

Digital flicker meter

Info

Publication number
JPH07325117A
JPH07325117A JP12105894A JP12105894A JPH07325117A JP H07325117 A JPH07325117 A JP H07325117A JP 12105894 A JP12105894 A JP 12105894A JP 12105894 A JP12105894 A JP 12105894A JP H07325117 A JPH07325117 A JP H07325117A
Authority
JP
Japan
Prior art keywords
flicker
voltage
frequency
digital
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12105894A
Other languages
Japanese (ja)
Inventor
Masabumi Ichihara
正文 市原
Naoki Kunihiro
直樹 国広
Osamu Naito
督 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP12105894A priority Critical patent/JPH07325117A/en
Publication of JPH07325117A publication Critical patent/JPH07325117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To enhance accuracy in the measurement without prolonging the data processing time by differentiating the sampling time for effective voltage value from that for subjecting the flicker fluctuation voltage to frequency analysis. CONSTITUTION:The digital flicker meter comprising an A/D converter 1 and a personal computor 2 samples voltage effective values from a power system and analyzes the frequency thereof to determine a flicker fluctuation voltage DELTAVn which is then employed, along with a flicker sensitivity coefficient an, in the measurement of a flicker management index DELTAV10 as shown by a formula. In this regard, the sampling time for effective voltage value is differentiated from that for frequency analyzing the flicker fluctuation voltage DELTAVn. Consequently, the sampling point for frequency analyzing the flicker fluctuation voltage DELTAVn can be superposed on the sampling point of effective voltage value and when the effective voltage value lowers in a high flicker frequency region, it can be corrected using a predetermined correction coefficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、A/D変換器とデー
タ処理装置とからなるディジタル式フリッカメータに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital flicker meter including an A / D converter and a data processing device.

【0002】[0002]

【従来の技術】従来、電圧系統における電圧実効値Ve
の変動による照明のちらつき、いわゆるフリッカは電力
品質上の重要な問題であるが、その管理指標の1つとし
て下記(2)式で示されるようなΔV10がある。
2. Description of the Related Art Conventionally, a voltage effective value Ve in a voltage system is used.
The flicker of the illumination due to the fluctuation of the so-called flicker is an important problem in the power quality, and ΔV10 as shown in the following equation (2) is one of the management indexes thereof.

【数2】 [Equation 2]

【0003】(2)式において、ΔVnは例えば図3に
示すように、電圧動揺を周波数分析した結果得られる変
動周波数fnの電圧変動成分の振れ(実効値)を示し、
anは図4に示す如く、変動周波数fnに対応する視感
度係数を示す。ΔV10は電気エネルギーの時間変動を
示すものと言えるが、この管理指標ΔV10を測定する
メータとして、従来はアナログまたはアナログ・ディジ
タル式が多く採用されている。また、測定したΔV10
は所定の設定値と比較され、所定値以下ならば良好と判
断し、所定値以上ならば不良と判断する。
In the equation (2), ΔVn represents the fluctuation (effective value) of the voltage fluctuation component of the fluctuation frequency fn obtained as a result of frequency analysis of the voltage fluctuation, as shown in FIG. 3, for example.
As shown in FIG. 4, an represents a luminosity factor corresponding to the fluctuating frequency fn. It can be said that ΔV10 indicates the time variation of electric energy, but as a meter for measuring the control index ΔV10, an analog or analog / digital type has been widely used conventionally. Also, the measured ΔV10
Is compared with a predetermined set value, and if it is less than a predetermined value, it is judged to be good, and if it is more than the predetermined value, it is judged to be bad.

【0004】[0004]

【発明が解決しようとする課題】従来のアナログ式はフ
リッカ専用メータであるため、汎用性に乏しく多目的な
使用ができないという問題がある。また、ディジタル式
では1つの装置で多目的なメータとして使用できる利点
がある反面、測定精度を上げようとするとデータ処理時
間が長くなり、実用性に乏しくなるという問題がある。
したがって、この発明の課題はディジタル式でありなが
ら、データ処理時間を長くすることなく測定精度を上げ
ることにある。
Since the conventional analog type is a meter for exclusive use of flicker, it has a problem that it is not versatile and cannot be used for various purposes. Further, the digital type has an advantage that it can be used as a multipurpose meter by one device, but on the other hand, if it is attempted to improve the measurement accuracy, the data processing time becomes long and the practicality becomes poor.
Therefore, an object of the present invention is to improve the measurement accuracy without prolonging the data processing time while being digital.

【0005】[0005]

【課題を解決するための手段】このような課題を解決す
るため、この発明では、A/D変換器とディジタル処理
装置とを備え、電力系統から電圧実効値をサンプリング
し、これを周波数分析処理をしてフリッカ変動電圧ΔV
nを求め、これとフリッカのちらつき視感度係数anと
により下記(3)式で示されるフリッカ管理指標ΔV1
0を計測するディジタル式フリッカメータにおいて、前
記電圧実効値のサンプリングタイムと、フリッカ変動電
圧ΔVnを周波数分析処理する場合のサンプリングタイ
ムとを互いに異ならせることを特徴としている。
In order to solve such a problem, according to the present invention, an A / D converter and a digital processing device are provided, a voltage effective value is sampled from an electric power system, and this is subjected to a frequency analysis process. The flicker fluctuation voltage ΔV
The flicker management index ΔV1 represented by the following equation (3) is obtained from n and the flicker flicker visibility coefficient an.
In a digital flicker meter for measuring 0, the sampling time of the voltage effective value and the sampling time when the flicker fluctuation voltage ΔVn are subjected to frequency analysis processing are different from each other.

【数3】 [Equation 3]

【0006】この発明においては、前記電圧実効値のサ
ンプリング点上に、フリッカ変動電圧ΔVnを周波数分
析処理する場合のサンプリング点が重なるようにするこ
とができ、または、前記電圧実効値がフリッカ周波数の
高い領域で低下するときは、所定の補正係数を用いて補
正することができる。
In the present invention, the sampling point when the flicker fluctuation voltage ΔVn is subjected to the frequency analysis processing can be made to overlap the sampling point of the voltage effective value, or the voltage effective value can be the flicker frequency. When it decreases in a high region, it can be corrected using a predetermined correction coefficient.

【0007】[0007]

【作用】図4にも示すように、フリッカのちらつき視感
度係数anは、フリッカ周波数fnの0.01〜30H
z間で定義されているが、0.01〜0.1Hz間は領
域が狭く、係数anも2.6%程度と小さいためこのf
n領域はここでは無視し、fn=0.1〜30Hzと仮
定する。さて、フリッカ変動電圧ΔVnを求めるには、
まず電圧実効値Veを計算し、しかる後に良く知られて
いる高速フーリエ変換処理などの周波数分析処理(以
下、単にFFT処理ともいう)を、Veのデータ列に対
して適用することが必要になる。
As shown in FIG. 4, the flicker flicker luminosity factor an is 0.01 to 30H of the flicker frequency fn.
Although defined as z, the region is narrow between 0.01 and 0.1 Hz, and the coefficient an is as small as about 2.6%.
The n region is ignored here and fn = 0.1 to 30 Hz is assumed. Now, to obtain the flicker fluctuation voltage ΔVn,
First, it is necessary to calculate the voltage effective value Ve, and then apply well-known frequency analysis processing such as fast Fourier transform processing (hereinafter, also simply referred to as FFT processing) to the Ve data string. .

【0008】ところで、fnを0.1〜30Hzの範囲
としたので、0.1Hzを基本波とすれば300次まで
求めれば良く、折り返し誤差を考慮に入れてもFFT処
理のポイント数Nは211程度あれば良い。このとき、サ
ンプリング間隔ΔTは0.1Hzの基本周期が10
(s)なので、次の(4)式で与えられる。 ΔT=10/N …(4)
By the way, since fn is set to a range of 0.1 to 30 Hz, if the fundamental wave is 0.1 Hz, it is sufficient to obtain up to the 300th order, and the number N of points of the FFT processing is 2 even if the folding error is taken into consideration. About 11 is enough. At this time, the sampling interval ΔT has a basic period of 0.1 Hz of 10
Since it is (s), it is given by the following equation (4). ΔT = 10 / N (4)

【0009】ここで、Veを計算する時間間隔をΔTと
一致させるものと仮定すると、Veの計算に必要な1サ
イクル当たりのサンプリングポイント数Mは、商用周波
数をf0として、次の(5)式で与えられる。 M=1/(f0・ΔT) …(5) 仮に、N=1024とすれば、Mはf0=50Hzでは
2.048ポイントとなり、Veの精度が得られない。
Veの精度を得るには、高調波等による波形歪みも考慮
すれば、経験的にM≧30が必要となる。したがって、
50Hz系ではN≧214となる。
Assuming that the time interval for calculating Ve coincides with ΔT, the number M of sampling points per cycle required for calculating Ve is the commercial frequency f0, and the following formula (5) is used. Given in. M = 1 / (f0 · ΔT) (5) If N = 1024, M becomes 2.048 points at f0 = 50 Hz, and Ve accuracy cannot be obtained.
In order to obtain the accuracy of Ve, M ≧ 30 is empirically required in consideration of the waveform distortion due to harmonics and the like. Therefore,
In the 50 Hz system, N ≧ 2 14 .

【0010】一方、FFT処理に要する掛算回数Lは、
次式で表わされる。 L=(1/2)Nlog2 N …(6) (log2 Nは2を底とするNの対数を示す) N=211の場合とN=214の場合とでは後者は約10倍
となり、演算量が飛躍的に増大することになる。
On the other hand, the number of multiplications L required for the FFT processing is
It is expressed by the following equation. L = (1/2) Nlog 2 N ... (6) the latter approximately 10 fold in the cases of the (log 2 N is N of showing the logarithm base 2) N = 2 11 and N = 2 14 Therefore, the calculation amount will increase dramatically.

【0011】これに対し、Veの計算は、次の(7)式
で示されるように、
On the other hand, the calculation of Ve is as shown by the following equation (7):

【数4】 となって掛算回数はMとなり、FFT処理の場合に比し
て大幅に小さい。このことから、FFT処理のポイント
数NとVeの計算に必要な1サイクル当たりのサンプリ
ングポイント数Mを、(5)式の関係に依らず大きくと
れば、Veの計算精度は低下せず、しかも演算量も増大
しない。
[Equation 4] Therefore, the number of multiplications becomes M, which is significantly smaller than that in the case of FFT processing. From this, if the number of points N of the FFT processing and the number of sampling points M per cycle required for calculating Ve are made large irrespective of the relationship of the equation (5), the calculation accuracy of Ve does not deteriorate, and The amount of calculation does not increase.

【0012】[0012]

【実施例】図1はこの発明が適用される装置を示す概要
図で、1はアナログ/ディジタル(A/D)変換器、2
はCRT表示器などを持つパーソナルコンピュータ(パ
ソコンともいう)である。ところで、上述のようにVe
の計算精度を低下させず、しかも演算量を増大させない
ようにするため、FFT処理のポイント数Nに対してV
e計算のためのMを任意にとるとすると、FFT処理に
必要なVe列の時刻とVeを計算した時刻とが一致せ
ず、Ve計算値間で線形補間をしてFFT処理用Veの
データ列を作る必要が生じ、演算量が増大することにな
る。
1 is a schematic view showing an apparatus to which the present invention is applied, 1 is an analog / digital (A / D) converter, and 2 is
Is a personal computer (also called a personal computer) having a CRT display or the like. By the way, as mentioned above, Ve
In order not to decrease the calculation accuracy of the FFT processing and to increase the calculation amount,
If M for e calculation is arbitrarily set, the time of the Ve column necessary for the FFT processing does not match the time when Ve is calculated, and the data of Ve for FFT processing is linearly interpolated between Ve calculated values. It becomes necessary to create columns, which increases the amount of calculation.

【0013】そこで、この発明ではVeを計算する時刻
とFFT処理用Veの時刻が一致するように、上記Mの
値を定めるようにする。すなわち、Ve計算用サンプリ
ングタイムΔtは、先の(5)式から、 Δt=1/(M・f0) …(8) となるので、このΔtでFFT用のΔTを除した値X
が、 X=M・f0(10/N) …(9) 最も整数値に近いMを30〜45間で探して採用する。
Therefore, in the present invention, the value of M is set so that the time for calculating Ve coincides with the time for Ve for FFT processing. That is, since the Ve calculation sampling time Δt is Δt = 1 / (M · f0) (8) from the above equation (5), a value X obtained by dividing ΔT for FFT by this Δt.
, X = M · f0 (10 / N) (9) Find M that is closest to the integer value between 30 and 45 and adopt it.

【0014】この場合、ΔtとΔTとの関係について
は、近似的に次式(10)で表わされるものとする。 ΔT=KΔt (ただし、K=[X]とする。[X]:Xの四捨五入値) …(10) ちなみに、N=2048,f0=50Hzの場合は、M
=41,K=10となる。
In this case, the relationship between Δt and ΔT is approximately represented by the following equation (10). ΔT = KΔt (where K = [X]. [X]: Rounded value of X) (10) By the way, in the case of N = 2048 and f0 = 50 Hz, M
= 41, K = 10.

【0015】ところで、Nが充分に多くない場合、ΔV
nはfnが高くなるにつれて、真値よりも小さくなる。
図2にN=2048の場合のフリッカ変動電圧特性を示
す。なお、同図に示すgnは(ΔVn測定値/ΔVn真
値)を示す。ここでは、演算時間の関係から、同図のg
nを用いて下記のようにΔVnを補正し、精度を確保す
るようにしている。 新らしいΔVn=ΔVn測定値/gn …(11)
By the way, when N is not sufficiently large, ΔV
n becomes smaller than the true value as fn becomes higher.
FIG. 2 shows flicker fluctuation voltage characteristics when N = 2048. In addition, gn shown in the figure indicates (ΔVn measured value / ΔVn true value). Here, from the relation of the calculation time,
By using n, ΔVn is corrected as described below to ensure accuracy. New ΔVn = ΔVn measured value / gn (11)

【0016】[0016]

【発明の効果】この発明によれば、電圧実効値Veにつ
いてFFT処理をしてフリッカ変動電圧ΔVnを求める
に当たり、FFT処理のポイント数Nに対してVe計算
のためのMを任意にとるようにしたので、特に演算量を
増大させることなく、Veの計算精度を低下させないよ
うにすることが可能となる利点が得られる。
According to the present invention, when the FFT process is performed on the voltage effective value Ve to obtain the flicker fluctuation voltage ΔVn, M for Ve calculation is arbitrarily set with respect to the point number N of the FFT process. Therefore, there is an advantage that it is possible to prevent the calculation accuracy of Ve from being lowered without increasing the calculation amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明が適用される装置を示す概要図であ
る。
FIG. 1 is a schematic diagram showing an apparatus to which the present invention is applied.

【図2】フリッカ変動電圧の周波数特性を示すグラフで
ある。
FIG. 2 is a graph showing frequency characteristics of flicker fluctuating voltage.

【図3】フリッカ変動電圧を説明するための説明図であ
る。
FIG. 3 is an explanatory diagram for explaining a flicker fluctuation voltage.

【図4】ちらつき視感度係数を説明するための説明図で
ある。
FIG. 4 is an explanatory diagram for explaining a flicker visibility coefficient.

【符号の説明】[Explanation of symbols]

1…アナログ/ディジタル(A/D)変換器、2…パソ
コン(パーソナルコンピュータ)。
1 ... Analog / digital (A / D) converter, 2 ... Personal computer (personal computer).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 督 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Mr. Naito, No. 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 A/D変換器とディジタル処理装置とを
備え、電力系統から電圧実効値をサンプリングし、これ
を周波数分析処理をしてフリッカ変動電圧ΔVnを求
め、これとフリッカのちらつき視感度係数anとにより
下記(1)式で示されるフリッカ管理指標ΔV10を計
測するディジタル式フリッカメータにおいて、 前記電圧実効値のサンプリングタイムと、フリッカ変動
電圧ΔVnを周波数分析処理する場合のサンプリングタ
イムとを互いに異ならせることを特徴とするディジタル
式フリッカメータ。 【数1】
1. An A / D converter and a digital processing device are provided, a voltage effective value is sampled from a power system, frequency analysis processing is performed on this, and a flicker fluctuating voltage ΔVn is obtained. In a digital flicker meter that measures a flicker management index ΔV10 represented by the following equation (1) using a coefficient an, the sampling time of the voltage effective value and the sampling time when performing frequency analysis processing on the flicker fluctuation voltage ΔVn are mutually A digital flicker meter characterized by being different. [Equation 1]
【請求項2】 前記電圧実効値のサンプリング点上に、
フリッカ変動電圧ΔVnを周波数分析処理する場合のサ
ンプリング点が重なるようにすることを特徴とする請求
項1に記載のディジタル式フリッカメータ。
2. On the sampling point of the voltage effective value,
2. The digital flicker meter according to claim 1, wherein sampling points when frequency-analyzing the flicker fluctuating voltage ΔVn are overlapped with each other.
【請求項3】 前記電圧実効値がフリッカ周波数の高い
領域で低下するときは、所定の補正係数を用いて補正す
ることを特徴とする請求項1に記載のディジタル式フリ
ッカメータ。
3. The digital flicker meter according to claim 1, wherein when the effective voltage value decreases in a region where the flicker frequency is high, it is corrected using a predetermined correction coefficient.
JP12105894A 1994-06-02 1994-06-02 Digital flicker meter Pending JPH07325117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12105894A JPH07325117A (en) 1994-06-02 1994-06-02 Digital flicker meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12105894A JPH07325117A (en) 1994-06-02 1994-06-02 Digital flicker meter

Publications (1)

Publication Number Publication Date
JPH07325117A true JPH07325117A (en) 1995-12-12

Family

ID=14801802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12105894A Pending JPH07325117A (en) 1994-06-02 1994-06-02 Digital flicker meter

Country Status (1)

Country Link
JP (1) JPH07325117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199739A (en) * 2007-02-09 2008-08-28 Central Res Inst Of Electric Power Ind Method, device and program for analyzing voltage
CN112834807A (en) * 2021-01-08 2021-05-25 国网安徽省电力有限公司电力科学研究院 Flicker emission level measurement method and device based on instantaneous power

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199739A (en) * 2007-02-09 2008-08-28 Central Res Inst Of Electric Power Ind Method, device and program for analyzing voltage
CN112834807A (en) * 2021-01-08 2021-05-25 国网安徽省电力有限公司电力科学研究院 Flicker emission level measurement method and device based on instantaneous power
CN112834807B (en) * 2021-01-08 2022-05-03 国网安徽省电力有限公司电力科学研究院 Flicker emission level measurement method and device based on instantaneous power

Similar Documents

Publication Publication Date Title
Zhu Exact harmonics/interharmonics calculation using adaptive window width
George et al. Harmonic power flow determination using the fast Fourier transform
Meignen et al. A new algorithm for multicomponent signals analysis based on synchrosqueezing: With an application to signal sampling and denoising
Offelli et al. A frequency-domain procedure for accurate real-time signal parameter measurement
CN107543962B (en) Calculation method of dominant inter-harmonic frequency spectrum distribution
JPH11506858A (en) Deconvolution method for analysis of data resulting from analytical separation process
US5528134A (en) AC power analyzer
CN110907827A (en) Motor transient distortion measuring method and system
JPS6235270A (en) Postprocessing method for digital fourier transformation
CN108267657A (en) A kind of duration power quality disturbances method and system based on S-transformation
US7930119B2 (en) Method for analyzing AC voltage signals
JP2001197525A (en) Gaussian noise detection method in video signal
Chang et al. A synchrosqueezing transform-based hybrid method for voltage fluctuations assessment
JPH07325117A (en) Digital flicker meter
JP3236710B2 (en) Measurement device for RMS values
CN114184838A (en) Power system harmonic detection method, system and medium based on SN mutual convolution window
JPH03179281A (en) Analyzing method for spectrum of signal and displaying method for result of analysis
US7253631B2 (en) Method of determining the impedance of an electrochemical system
US3717812A (en) Real time analysis of waves
JPH0464059A (en) Processing device of analysis data
JPH0395469A (en) Effective value measuring apparatus
JP3302487B2 (en) Frequency analyzer
Kropveld et al. A computerised EEG-analyzing system for small laboratory animals
Saitou et al. Data processing in X-ray fluorescence spectroscopy—I. A smoothing method using B-splines
JP3313824B2 (en) Deconvolution method of spectral data