JP2008199739A - Method, device and program for analyzing voltage - Google Patents

Method, device and program for analyzing voltage Download PDF

Info

Publication number
JP2008199739A
JP2008199739A JP2007030667A JP2007030667A JP2008199739A JP 2008199739 A JP2008199739 A JP 2008199739A JP 2007030667 A JP2007030667 A JP 2007030667A JP 2007030667 A JP2007030667 A JP 2007030667A JP 2008199739 A JP2008199739 A JP 2008199739A
Authority
JP
Japan
Prior art keywords
power
fluctuation
reactive power
load
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007030667A
Other languages
Japanese (ja)
Other versions
JP4843519B2 (en
Inventor
Naoki Giho
直樹 宜保
Kiyoshi Takenaka
清 竹中
Kenji Yukihira
謙二 雪平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007030667A priority Critical patent/JP4843519B2/en
Publication of JP2008199739A publication Critical patent/JP2008199739A/en
Application granted granted Critical
Publication of JP4843519B2 publication Critical patent/JP4843519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To analyze voltage fluctuations of a power system, to which a load fluctuation source is linked, in a short time. <P>SOLUTION: System sensitivity of busbar voltage with respect to changes in a reactive power load of the load fluctuation source is calculated, by using system impedance of the power system. A power fluctuation coefficient is calculated, based on a reactive power fluctuation amount calculated by using instantaneous reactive power of the load fluctuation source. The flicker value of a busbar is calculated by using system sensitivity and the power fluctuation coefficient. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電圧解析方法、装置並びにプログラムに関する。さらに詳述すると、本発明は、例えばアーク炉などの負荷変動が電力系統に与える影響の検討や負荷変動対策装置の仕様の検討に用いて好適な電圧解析方法、装置並びにプログラムに関する。   The present invention relates to a voltage analysis method, apparatus, and program. More specifically, the present invention relates to a voltage analysis method, apparatus, and program suitable for use in examining the influence of load fluctuations on an electric power system, such as an arc furnace, and in the specifications of a load fluctuation countermeasure apparatus.

アーク炉などの負荷変動が大きい電力消費設備(負荷変動源)が電力系統に連系されている場合、負荷変動によって電力系統の種々の地点の電圧が変動するだけでなく、この変動に起因して照明がちらつくという問題が生じる(このような電圧変動は電圧フリッカとも呼ばれる)。このため、これらの負荷変動源に近接させて無効電力の補償装置である他励式SVC(SVC:Static Var Compensator)や自励式SVCなどの対策装置を設置することにより電力品質対策が講じられる。   When power consumption equipment (load fluctuation source) with large load fluctuation such as an arc furnace is connected to the power grid, not only the voltage at various points of the power grid fluctuates due to load fluctuation, but also due to this fluctuation. This causes the problem of flickering lighting (such voltage fluctuation is also called voltage flicker). For this reason, power quality measures are taken by installing a countermeasure device such as a separately-excited SVC (Static Var Compensator) or a self-excited SVC which is a reactive power compensation device in the vicinity of these load fluctuation sources.

上記の対策を講じる際の負荷変動源が電力系統に与える影響の検討は、従来、コンピュータを用いた例えば電力系統過渡現象(Electro-Magnetic Ttransients Program;以下、EMTPと表記する)解析などの時間シミュレーションにより行われている(特許文献1)。   Examination of the influence of the load fluctuation source on the power system when taking the above measures has been conventionally performed by time simulation such as analysis of power system transients (hereinafter referred to as EMTP) using a computer. (Patent Document 1).

特開2002−238157号JP 2002-238157 A

しかしながら、負荷変動のパターンは膨大であるため、EMTP解析のような時間シミュレーションによる従来の方法では、電力系統の電圧変動の計算に膨大な時間が必要とされる。また、電圧フリッカ対策として他励式SVCや自励式SVCの適用を検討する際には、これらSVCは高速に動作するために時間シミュレーションの時間幅を10μs前後に設定する必要があり、且つ、電圧フリッカ評価の指標であるΔV10値を求めるのに一時点あたり例えば60秒以上の解析時間が必要とされるため、EMTP解析のような時間シミュレーションによる従来の方法では、対策装置として用いられる無効電力補償装置の変換器の容量を求める計算に膨大な時間が必要とされる。このため、EMTP解析のような時間シミュレーションによる従来の方法は、迅速な検討を行うのに適した方法とは言えず、電力系統における電圧フリッカ対策について多数の代替案を検討するのに適した方法とは言い難い。   However, since the pattern of load fluctuation is enormous, the conventional method based on time simulation such as EMTP analysis requires enormous time to calculate the voltage fluctuation of the power system. Further, when considering the application of separately-excited SVC or self-excited SVC as a countermeasure against voltage flicker, the time width of time simulation needs to be set to around 10 μs in order to operate these SVCs at high speed, and voltage flicker An analysis time of, for example, 60 seconds or more per temporary point is required to obtain the ΔV10 value that is an index of evaluation. Therefore, in a conventional method using time simulation such as EMTP analysis, a reactive power compensator used as a countermeasure device An enormous amount of time is required to calculate the capacity of the converter. For this reason, the conventional method based on time simulation such as EMTP analysis cannot be said to be a method suitable for quick examination, and is a method suitable for examining many alternatives for voltage flicker countermeasures in the power system. It's hard to say.

そこで、本発明は、負荷変動源が連系している電力系統の電圧変動を短時間に解析することができる電圧解析方法、装置並びにプログラムを提供することを目的とする。   Therefore, an object of the present invention is to provide a voltage analysis method, apparatus, and program capable of analyzing in a short time voltage fluctuations in a power system connected to a load fluctuation source.

なお、ΔV10値とは、鉄鋼用アーク炉などの負荷変動によって生じる電圧フリッカの評価に用いられる指標であって、電灯照明のちらつき具合を表す指標である(例えば、電力系統利用協議会:電力系統利用協議会ルール,平成18年6月13日第8回改正,p.44を参照)。以下では、ΔV10値をフリッカ値と呼ぶ。   Note that the ΔV10 value is an index used for evaluating voltage flicker caused by load fluctuations in a steel arc furnace or the like, and is an index indicating the flickering condition of electric lighting (for example, Power System Utilization Council: Power System (See Use Council Rules, 8th June 13, 2006, p. 44). Hereinafter, the ΔV10 value is referred to as a flicker value.

かかる目的を達成するため、請求項1記載の電圧解析方法は、電力系統の系統インピーダンスを用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度を算出すると共に、負荷変動源の瞬時無効電力を用いて算出した無効電力変動量に基づいて電力変動係数を算出し、系統感度と電力変動係数とを用いて母線のフリッカ値を算出するようにしている。   In order to achieve this object, the voltage analysis method according to claim 1 calculates the system sensitivity, which is the sensitivity of the bus voltage to the change of the reactive power load of the load fluctuation source, using the system impedance of the power system, and The power fluctuation coefficient is calculated based on the reactive power fluctuation amount calculated using the instantaneous reactive power of the source, and the bus flicker value is calculated using the system sensitivity and the power fluctuation coefficient.

また、請求項2記載の電圧解析装置は、電力系統の系統インピーダンスを用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度を算出する手段と、負荷変動源の瞬時無効電力を用いて無効電力変動量を算出する手段と、無効電力変動量に基づいて電力変動係数を算出する手段と、系統感度と電力変動係数とを用いて母線のフリッカ値を算出する手段とを有するようにしている。   According to a second aspect of the present invention, there is provided a voltage analyzing apparatus comprising: means for calculating a system sensitivity that is a sensitivity of a bus voltage to a change in a reactive power load of a load fluctuation source using a system impedance of the power system; Means for calculating reactive power fluctuation using power, means for calculating power fluctuation coefficient based on reactive power fluctuation, and means for calculating flicker value of bus using system sensitivity and power fluctuation coefficient To have.

さらに、請求項3記載の電圧解析プログラムは、電力系統の系統インピーダンスデータが記録されたデータベースにアクセス可能なコンピュータに、系統インピーダンスデータを用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度を算出する処理と、負荷変動源の瞬時無効電力を用いて無効電力変動量を算出する処理と、無効電力変動量に基づいて電力変動係数を算出する処理と、系統感度と電力変動係数とを用いて母線のフリッカ値を算出する処理とを行わせるようにしている。   Further, the voltage analysis program according to claim 3 is a computer that can access a database in which system impedance data of an electric power system is recorded. The sensitivity of the bus voltage to the change of the reactive power load of the load fluctuation source using the system impedance data. Processing for calculating system sensitivity, processing for calculating reactive power fluctuation amount using instantaneous reactive power of load fluctuation source, processing for calculating power fluctuation coefficient based on reactive power fluctuation amount, system sensitivity and power The processing for calculating the flicker value of the bus using the variation coefficient is performed.

したがって、この電圧解析方法、装置並びにプログラムによると、電力系統の系統インピーダンスを用いて算出される指標であって負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度と、負荷変動源の瞬時無効電力を用いて算出される無効電力変動量に基づく電力変動係数とを用いて母線のフリッカ値を算出するようにしているので、感度解析を適用した電力系統の電圧解析が行われる。   Therefore, according to the voltage analysis method, apparatus, and program, the system sensitivity, which is an index calculated using the system impedance of the power system and is the sensitivity of the bus voltage to the change of the reactive power load of the load source, and the load fluctuation Since the bus flicker value is calculated using the power fluctuation coefficient based on the reactive power fluctuation amount calculated using the instantaneous reactive power of the source, the voltage analysis of the power system using the sensitivity analysis is performed. .

本発明の電圧解析方法、装置並びにプログラムによれば、電力系統の特性が反映された負荷変動の系統感度と電力変動係数とを用いて感度解析による電力系統の電圧解析を行うことが可能であり、時間シミュレーションによる従来の方法と比べて電力系統の電圧変動の解析を短時間で行うことができる。そのため、電圧変動からみた電力系統の問題点の早期発見が可能であり、また、問題改善策の検討の際に多数の代替案の評価が可能であり、電力系統の電圧変動補償作業の迅速性向上と精度向上とを図ることができる。   According to the voltage analysis method, apparatus, and program of the present invention, it is possible to perform voltage analysis of the power system by sensitivity analysis using the system sensitivity of load fluctuation and the power fluctuation coefficient reflecting the characteristics of the power system. Compared with the conventional method based on time simulation, the voltage fluctuation of the power system can be analyzed in a short time. As a result, it is possible to detect problems in the power system from the viewpoint of voltage fluctuations, and it is possible to evaluate many alternatives when considering countermeasures to improve the speed of voltage fluctuation compensation work in the power system. Improvement and accuracy improvement can be aimed at.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。なお、本実施形態では、図3に示す電力系統1に対して本発明を適用した場合について説明する。図3において、符号2は、本実施例で解析対象とする電力系統1の上位系統を指す。そして、電力系統1は、送電線3及び変圧器4を介して母線B0に母線Bnが連系していると共に、母線Bnに負荷変動源Fnが連系している。なお、本明細書においてn=1,2,3,…である。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings. In the present embodiment, the case where the present invention is applied to the power system 1 shown in FIG. 3 will be described. In FIG. 3, the code | symbol 2 points out the high-order system of the electric power grid | system 1 made into an analysis object by a present Example. In the power system 1, the bus Bn is connected to the bus B0 via the power transmission line 3 and the transformer 4, and the load fluctuation source Fn is connected to the bus Bn. In this specification, n = 1, 2, 3,.

図1から図4に、本発明の電圧解析方法、装置並びにプログラムの実施形態の一例を示す。この電圧解析方法は、電力系統の系統インピーダンスを用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度を算出すると共に、負荷変動源の瞬時無効電力を用いて算出した無効電力変動量に基づいて電力変動係数を算出し、系統感度と電力変動係数とを用いて母線のフリッカ値を算出するようにしている。   1 to 4 show an example of embodiments of the voltage analysis method, apparatus, and program of the present invention. This voltage analysis method calculates the system sensitivity, which is the sensitivity of the bus voltage to changes in the reactive power load of the load fluctuation source, using the system impedance of the power system, and the reactive power calculated using the instantaneous reactive power of the load fluctuation source. The power fluctuation coefficient is calculated based on the power fluctuation amount, and the bus flicker value is calculated using the system sensitivity and the power fluctuation coefficient.

そして、上記電圧解析方法は、図1に示すように、解析対象の電力系統の系統インピーダンスデータ及び送電線に流れている有効電力・無効電力の値や変電所の電圧値など電力系統の潮流条件(以下、系統インピーダンス等と呼ぶ)の読み込みを行うステップ(S1)と、S1の処理で読み込んだ系統インピーダンス等を用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度の算出を行うステップ(S2)と、負荷変動源の瞬時無効電力を用いて無効電力変動量の算出を行うステップ(S3)と、S3の処理で算出した無効電力変動量に基づいて電力変動係数の算出を行うステップ(S4)と、S2の処理で算出した系統感度とS4の処理で算出した電力変動係数とを用いて母線のフリッカ値の算出を行うステップ(S5)とからなる処理構成により実現される。   As shown in FIG. 1, the voltage analysis method includes power system tidal conditions such as system impedance data of an analysis target power system, values of active power / reactive power flowing through a transmission line, and voltage values of a substation. (S1) for reading (hereinafter referred to as system impedance, etc.), and the system sensitivity, which is the sensitivity of the bus voltage to the change in the reactive power load of the load fluctuation source using the system impedance read in the processing of S1 A step of calculating (S2), a step of calculating a reactive power fluctuation amount using the instantaneous reactive power of the load fluctuation source (S3), and a power fluctuation coefficient based on the reactive power fluctuation amount calculated in the process of S3 A step of calculating (S4), and a step of calculating the flicker value of the bus using the system sensitivity calculated in the process of S2 and the power fluctuation coefficient calculated in the process of S4 It is realized by the processing arrangement consisting of a S5).

また、上記電圧解析方法は、本発明の電圧解析装置として実現され得る。本発明の電圧解析装置は、電力系統の電圧変動の解析に係るデータを読み込む手段と、電力系統の系統インピーダンス等を用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度を算出する手段と、負荷変動源の瞬時無効電力を用いて無効電力変動量を算出する手段と、無効電力変動量に基づいて電力変動係数を算出する手段と、系統感度と電力変動係数とを用いて母線のフリッカ値を算出する手段とを有する。   The voltage analysis method can be realized as the voltage analysis apparatus of the present invention. The voltage analysis apparatus of the present invention is a system sensitivity that is a sensitivity of a bus voltage to a change in a reactive power load of a load fluctuation source using means for reading data relating to an analysis of voltage fluctuation of the power system and a system impedance of the power system. Means for calculating the reactive power fluctuation amount using the instantaneous reactive power of the load fluctuation source, means for calculating the power fluctuation coefficient based on the reactive power fluctuation amount, and the system sensitivity and the power fluctuation coefficient. And a means for calculating the flicker value of the bus.

上述の電圧解析方法並びに電圧解析装置は、本発明の電圧解析プログラムをコンピュータ上で実行することによっても実現される。本実施形態では、電圧解析プログラムをコンピュータ上で実行する場合を例に挙げて説明する。   The voltage analysis method and voltage analysis apparatus described above can also be realized by executing the voltage analysis program of the present invention on a computer. In the present embodiment, a case where the voltage analysis program is executed on a computer will be described as an example.

電圧解析プログラム17を実行するための本実施形態の電圧解析装置10の全体構成を図2に示す。この電圧解析装置10は、制御部11、記憶部12、入力部13、表示部14及びメモリ15を備え相互にバス等の信号回線により接続されている。また、電圧解析装置10にはデータサーバ16が通信回線等により接続されており、その通信回線等を介して相互にデータや制御指令等の信号の送受信(出入力)が行われる。   FIG. 2 shows an overall configuration of the voltage analysis apparatus 10 of the present embodiment for executing the voltage analysis program 17. The voltage analysis apparatus 10 includes a control unit 11, a storage unit 12, an input unit 13, a display unit 14, and a memory 15, and is connected to each other by a signal line such as a bus. A data server 16 is connected to the voltage analysis apparatus 10 via a communication line or the like, and signals such as data and control commands are transmitted / received (input / output) to / from each other via the communication line.

制御部11は記憶部12に記憶されている電圧解析プログラム17により電圧解析装置10全体の制御並びに電力系統の電圧変動の解析に係る演算を行うものであり、例えばCPUである。記憶部12は少なくともデータやプログラムを記憶可能な装置であり、例えばハードディスクである。入力部13は少なくとも作業者の命令を制御部11に与えるためのインターフェイスであり、例えばキーボードである。表示部14は制御部11の制御により文字や図形等の表示を行うものであり、例えばディスプレイである。メモリ15は制御部11が各種制御や演算を実行する際の作業領域であるメモリ空間となる。また、データサーバ16は少なくともデータを記憶可能なサーバである。   The control unit 11 performs calculations related to control of the entire voltage analysis apparatus 10 and analysis of voltage fluctuations of the power system by the voltage analysis program 17 stored in the storage unit 12, and is, for example, a CPU. The storage unit 12 is a device that can store at least data and programs, and is, for example, a hard disk. The input unit 13 is an interface for giving at least an operator's command to the control unit 11, and is, for example, a keyboard. The display unit 14 displays characters, graphics, and the like under the control of the control unit 11 and is, for example, a display. The memory 15 becomes a memory space that is a work area when the control unit 11 executes various controls and calculations. The data server 16 is a server capable of storing at least data.

電圧解析装置10の制御部11には、電圧解析プログラム17を実行することにより、電力系統の電圧変動の解析に係るデータの読み込みを行うデータ読込部11aと、
系統インピーダンス等を用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度の算出を行う系統感度算出部11bと、負荷変動源の瞬時無効電力を用いて無効電力変動量の算出を行う無効電力変動量算出部11cと、無効電力変動量に基づいて電力変動係数の算出を行う電力変動係数算出部11dと、系統感度と電力変動係数とを用いて母線のフリッカ値の算出を行うフリッカ値算出部11eとが構成される。
The control unit 11 of the voltage analysis device 10 executes a voltage analysis program 17 to read data related to the analysis of voltage fluctuations in the power system,
A system sensitivity calculation unit 11b that calculates the system sensitivity, which is the sensitivity of the bus voltage to changes in the reactive power load of the load fluctuation source using the system impedance and the like, and the reactive power fluctuation amount using the instantaneous reactive power of the load fluctuation source Reactive power fluctuation calculation unit 11c that performs calculation, power fluctuation coefficient calculation unit 11d that calculates a power fluctuation coefficient based on the reactive power fluctuation amount, and flicker value calculation of the bus using the system sensitivity and the power fluctuation coefficient Flicker value calculation unit 11e is configured.

本発明の電圧解析方法の実行にあたっては、まず、制御部11のデータ読込部11aは、S2の処理である系統感度の算出に用いる解析対象の電力系統1の系統インピーダンス等の読み込みを行う(S1)。   In executing the voltage analysis method of the present invention, first, the data reading unit 11a of the control unit 11 reads the system impedance and the like of the power system 1 to be analyzed used for calculating the system sensitivity, which is the process of S2 (S1). ).

系統インピーダンスデータは、電力系統内の発電機や送電線、負荷変動源でない需要家負荷のデータから算出される系統のインピーダンスの値であり、それらを整理したものは系統インピーダンスマップとも呼ばれる。系統インピーダンスマップの作成自体は周知の技術であるのでここでは詳細については省略する(例えば、大川良泰:わかる短絡保護協調 高圧需要設備の実践的短絡計算,オーム社,ISBN4−274−50017−9、又は、(社)電気学会 電力系統モデル標準化調査専門委員会編:電力系統の標準モデル,電気学会技術報告 第754号を参照)。   The system impedance data is the impedance value of the system calculated from the data of the generator load and the transmission line in the power system, and the customer load that is not the load fluctuation source, and the arrangement of them is also called the system impedance map. Since the creation of the system impedance map itself is a well-known technique, details are omitted here (for example, Yoshiyasu Okawa: Understanding short-circuit protection coordination Practical short-circuit calculation of high-voltage demand equipment, Ohm, ISBN 4-274-50017-9, Or, see the Institute of Electrical Engineers, Power System Model Standardization Investigation Special Committee: Standard Model of Power System, IEEJ Technical Report No. 754).

系統インピーダンス等は、系統インピーダンスデータベース18としてデータサーバ16に予め保存される。そして、データ読込部11aは、系統インピーダンスデータベース18から解析対象の電力系統1の系統インピーダンス等の値を読み込み、メモリ15に記憶させる。なお、解析の対象とする電力系統1に限定されない範囲のデータが系統インピーダンスデータベース18に蓄積されている場合には、データ読込部11aは、解析の対象とする電力系統1に係るデータのみを読み込み、メモリ15に記憶させる。   The system impedance and the like are stored in advance in the data server 16 as the system impedance database 18. Then, the data reading unit 11 a reads values such as the system impedance of the power system 1 to be analyzed from the system impedance database 18 and stores them in the memory 15. When data in a range not limited to the power system 1 to be analyzed is accumulated in the system impedance database 18, the data reading unit 11a reads only data related to the power system 1 to be analyzed. And stored in the memory 15.

次に、制御部11の系統感度算出部11bは、S1の処理で読み込んだ系統インピーダンス等を用いて系統感度Zを算出する(S2)。   Next, the system sensitivity calculation unit 11b of the control unit 11 calculates the system sensitivity Z using the system impedance read in the process of S1 (S2).

系統感度Zは各負荷変動源Fnの負荷変動に対する各母線Bnの電圧の感度を表す。すなわち、系統感度Zの大きさは各負荷変動源Fnの各母線Bnへの影響度合いを表す。系統感度Zは、具体的には、負荷変動源Fnの無効電力負荷が0.1[pu]変化した場合の負荷電流の変化量ΔI_fnと各母線Bnの電圧変動量ΔVbn_fnとから数式1により算出される。そして、系統感度Zは系統構成によって一意に決まる。   The system sensitivity Z represents the sensitivity of the voltage of each bus Bn to the load fluctuation of each load fluctuation source Fn. That is, the magnitude of the system sensitivity Z represents the degree of influence of each load fluctuation source Fn on each bus Bn. Specifically, the system sensitivity Z is calculated by Equation 1 from the change amount ΔI_fn of the load current and the voltage change amount ΔVbn_fn of each bus Bn when the reactive power load of the load change source Fn changes 0.1 [pu]. Is done. The system sensitivity Z is uniquely determined by the system configuration.

(数1)Zbn_fn=ΔVbn_fn/ΔI_fn
ここに、Zbn_fn:負荷変動源Fnの負荷変動に対する母線Bnの電圧の感度,ΔVbn_fn:負荷変動源Fnの負荷変動に対する母線Bnの電圧の変動量,ΔI_fn:負荷変動源Fnの無効電力負荷が0.1[pu]変化した場合の負荷電流の変化量。ただし、n=1,2,3,…。
(Expression 1) Zbn_fn = ΔVbn_fn / ΔI_fn
Here, Zbn_fn: sensitivity of voltage of bus Bn to load fluctuation of load fluctuation source Fn, ΔVbn_fn: fluctuation amount of voltage of bus Bn to load fluctuation of load fluctuation source Fn, ΔI_fn: reactive power load of load fluctuation source Fn is 0 .1 [pu] Change in load current when changed. However, n = 1, 2, 3,.

なお、一つの母線Bnに複数の負荷変動源が連系している場合には、それら負荷変動源の負荷変動を足し合わせたものを当該母線Bnの負荷変動源Fnの値として用いれば良い。具体的には例えば、母線Bnに二つの負荷変動源Fn-1とFn-2とが連系し、それぞれの負荷電流の変化量がΔI_fn1,ΔI_fn2である場合には、負荷電流の変化量ΔI_fnとしてΔI_fn=ΔI_fn1+ΔI_fn2で算出される値を用いれば良い。   When a plurality of load fluctuation sources are linked to one bus Bn, the sum of the load fluctuations of the load fluctuation sources may be used as the value of the load fluctuation source Fn of the bus Bn. Specifically, for example, when two load fluctuation sources Fn-1 and Fn-2 are connected to the bus Bn and the change amounts of the load currents are ΔI_fn1 and ΔI_fn2, the change amount of the load current ΔI_fn. As a value, ΔI_fn = ΔI_fn1 + ΔI_fn2 may be used.

系統感度算出部11bは、メモリ15から電力系統1の系統インピーダンス等を読み込み、数式1を用いて母線Bn毎に各負荷変動源Fnの負荷変動に対する系統感度Zbn_fnを算出する。そして、系統感度算出部11bは、算出した系統感度Zbn_fnの値をメモリ15に記憶させる。   The system sensitivity calculation unit 11b reads the system impedance and the like of the power system 1 from the memory 15 and calculates the system sensitivity Zbn_fn with respect to the load fluctuation of each load fluctuation source Fn for each bus Bn using Equation 1. Then, the system sensitivity calculation unit 11b stores the calculated system sensitivity Zbn_fn in the memory 15.

次に、制御部11の無効電力変動量算出部11cは、無効電力変動量ΔQを算出する(S3)。   Next, the reactive power fluctuation amount calculating unit 11c of the control unit 11 calculates the reactive power fluctuation amount ΔQ (S3).

無効電力変動量ΔQはFFT解析により算出する。FFT解析自体は周知の技術であるのでここでは詳細については省略する(例えば、町田東一・小島紀男:FORTRAN応用数値計算,pp.94−119,東海大学出版会,ISBN4−486−01050−7、又は、小池慎一:Cによる科学技術計算,pp.257−263,CQ出版社,ISBN4−7898−3029−2)。   The reactive power fluctuation amount ΔQ is calculated by FFT analysis. Since FFT analysis itself is a well-known technique, details are omitted here (for example, Toichi Machida and Norio Kojima: FORTRAN Applied Numerical Calculations, pp. 94-119, Tokai University Press, ISBN 4-486-01050-7). Or, Shinichi Koike: Science and Technology Calculation by C, pp. 257-263, CQ Publisher, ISBN 4-7898-3029-2).

本発明では、負荷変動源Fnの三相の瞬時無効電力Q_fnを用いて、母線B0と母線Bnとの間における無効電力変動量ΔQ_bnをFFT解析により算出する。この際、母線Bnに無効電力補償装置5が連系されている場合には、無効電力補償装置5による補償後の瞬時無効電力をFFT解析により算出し、補償後の瞬時無効電力に基づいて無効電力変動量ΔQ_bnを求める。以下では、母線B0と母線Bnとの間における無効電力変動量ΔQ_bnを母線Bnに係る無効電力変動量と呼ぶ。なお、本発明は、無効電力補償装置5が他励式SVCである場合と自励式SVCである場合とのどちらに対しても適用可能である。   In the present invention, the reactive power fluctuation amount ΔQ_bn between the bus B0 and the bus Bn is calculated by FFT analysis using the three-phase instantaneous reactive power Q_fn of the load fluctuation source Fn. At this time, when the reactive power compensator 5 is connected to the bus Bn, the instantaneous reactive power after compensation by the reactive power compensator 5 is calculated by FFT analysis, and the reactive power compensation device 5 is invalid based on the instantaneous reactive power after compensation. A power fluctuation amount ΔQ_bn is obtained. Hereinafter, the reactive power fluctuation amount ΔQ_bn between the bus B0 and the bus Bn is referred to as a reactive power fluctuation amount related to the bus Bn. The present invention can be applied to both cases where the reactive power compensator 5 is a separately excited SVC and a self-excited SVC.

負荷変動源Fnの瞬時無効電力等のFFT解析に用いるデータは、FFT解析データベース19としてデータサーバ16に予め保存される。また、母線Bnに無効電力補償装置5が連系されている場合には、変換器の容量など無効電力補償装置5の仕様に係るデータもFFT解析データベース19に蓄積される。   Data used for FFT analysis such as instantaneous reactive power of the load fluctuation source Fn is stored in advance in the data server 16 as the FFT analysis database 19. When the reactive power compensator 5 is linked to the bus Bn, data related to the specifications of the reactive power compensator 5 such as the capacity of the converter is also stored in the FFT analysis database 19.

データ読込部11aは、FFT解析データベース19から負荷変動源Fnの瞬時無効電力や無効電力補償装置5の仕様に係るデータ等の値を読み込み、メモリ15に記憶させる。そして、無効電力変動量算出部11cは、算出した母線Bnに係る無効電力変動量ΔQ_bnの値をメモリ15に記憶させる。   The data reading unit 11 a reads values such as instantaneous reactive power of the load fluctuation source Fn and data related to the specification of the reactive power compensator 5 from the FFT analysis database 19 and stores them in the memory 15. Then, the reactive power fluctuation amount calculation unit 11 c stores the calculated value of the reactive power fluctuation amount ΔQ_bn related to the bus Bn in the memory 15.

次に、制御部11の電力変動係数算出部11dは、S3の処理で算出した無効電力変動量ΔQの値を用いて電力変動係数ΔQ10を算出する(S4)。   Next, the power fluctuation coefficient calculation unit 11d of the control unit 11 calculates the power fluctuation coefficient ΔQ10 using the value of the reactive power fluctuation amount ΔQ calculated in the process of S3 (S4).

電力変動係数ΔQ10は、系統感度Zと組み合わせて用いることによって電力系統の電圧解析に感度解析を適用できるようにするための変数であり、系統感度Zが反映されたフリッカ値ΔV10を算出することができるようにするための変数である。以下では、母線B0と母線Bnとの間における電力変動係数ΔQ10を母線Bnに係る電力変動係数と呼び、ΔQ10_bnと表記する。   The power fluctuation coefficient ΔQ10 is a variable that allows the sensitivity analysis to be applied to the voltage analysis of the power system by using it in combination with the system sensitivity Z, and the flicker value ΔV10 reflecting the system sensitivity Z can be calculated. It is a variable to make it possible. Hereinafter, the power variation coefficient ΔQ10 between the bus B0 and the bus Bn is referred to as a power variation coefficient related to the bus Bn and is expressed as ΔQ10_bn.

母線Bnに係る電力変動係数ΔQ10_bnは、フリッカ値ΔV10と同様にして数式2を用いて母線Bnに係る無効電力変動量ΔQ_bnから求める。なお、フリッカ値ΔV10の計算と電力変動係数ΔQ10の計算とは、フリッカ値ΔV10計算の入力は線間電圧であるのに対して電力変動係数ΔQ10計算の入力は瞬時無効電力である点で異なり、さらに、フリッカ値ΔV10の計算は各線間電圧に対して行われるのに対して電力変動係数ΔQ10は三相の瞬時無効電力で計算される点で異なる。   The power fluctuation coefficient ΔQ10_bn related to the bus Bn is obtained from the reactive power fluctuation amount ΔQ_bn related to the bus Bn using Equation 2 in the same manner as the flicker value ΔV10. The calculation of the flicker value ΔV10 and the calculation of the power fluctuation coefficient ΔQ10 are different in that the input of the flicker value ΔV10 calculation is a line voltage, whereas the input of the power fluctuation coefficient ΔQ10 calculation is an instantaneous reactive power. Further, the flicker value ΔV10 is calculated for each line voltage, whereas the power variation coefficient ΔQ10 is calculated using three-phase instantaneous reactive power.

Figure 2008199739
ここに、ΔQ10:電力変動係数,ΔQ:無効電力変動量[pu],α:ちらつき視感度係数。また、bn:母線Bnに係る変数であることを表す,k:変動周波数fの識別子(k=1,2,3,…)。
Figure 2008199739
Here, ΔQ10: power fluctuation coefficient, ΔQ: reactive power fluctuation amount [pu], α: flicker visibility coefficient. Further, bn: a variable relating to the bus Bn, k: an identifier of the fluctuation frequency f (k = 1, 2, 3,...).

数式2で用いる変動周波数別のちらつき視感度係数を図4に示す。具体的には、図中黒丸が付与された変動周波数fkとそれに対応する視感度係数αkとの組み合わせを用いる。なお、変動周波数fk及びそれに対応する視感度係数αkの値は電圧解析プログラム17に予め規定しておく。   FIG. 4 shows the flicker sensitivity coefficient for each variation frequency used in Equation 2. Specifically, a combination of a fluctuation frequency fk to which a black circle is given in the drawing and a corresponding visibility coefficient αk is used. Note that the value of the fluctuation frequency fk and the corresponding visibility coefficient αk are defined in advance in the voltage analysis program 17.

電力変動係数算出部11dは、メモリ15から無効電力変動量ΔQ_bnの値を読み込み、数式2を用いて母線Bn毎に電力変動係数ΔQ10_bnを算出する。そして、電力変動係数算出部11dは、算出した母線Bn毎の電力変動係数ΔQ10_bnの値をメモリ15に記憶させる。   The power fluctuation coefficient calculation unit 11d reads the value of the reactive power fluctuation amount ΔQ_bn from the memory 15, and calculates the power fluctuation coefficient ΔQ10_bn for each bus Bn using Expression 2. Then, the power fluctuation coefficient calculation unit 11d stores the calculated value of the power fluctuation coefficient ΔQ10_bn for each bus Bn in the memory 15.

次に、制御部11のフリッカ値算出部11eは、S2の処理で算出した系統感度ZとS4の処理で算出した電力変動係数ΔQ10とを用いてフリッカ値ΔV10を算出する(S5)。   Next, the flicker value calculation unit 11e of the control unit 11 calculates the flicker value ΔV10 using the system sensitivity Z calculated in the process of S2 and the power fluctuation coefficient ΔQ10 calculated in the process of S4 (S5).

ここで電圧変動量ΔVと無効電力変動量ΔQとの間の関係は、リアクタンスをXとすると、数式3で表される。   Here, the relationship between the voltage fluctuation amount ΔV and the reactive power fluctuation amount ΔQ is expressed by Equation 3 where the reactance is X.

(数3)ΔV=X・ΔQ     (Equation 3) ΔV = X · ΔQ

また、母線の抵抗分が無視できると仮定すると,系統感度Zについて数式4が成り立つ。   Assuming that the resistance of the bus can be ignored, Equation 4 is established for the system sensitivity Z.

(数4)Z=X=ΔV/ΔQ     (Expression 4) Z = X = ΔV / ΔQ

そして、数式4の関係を用いると、電力変動係数ΔQ10とフリッカ値ΔV10との間には、数式5の関係が近似的に導出される。なお、数式5は、大きさのみの情報を持っている変数であるスカラーとして近似的に導出されるものであり、大きさ及び位相の二つの情報を持っている変数であるベクトルとして成り立つものではない。   When the relationship of Equation 4 is used, the relationship of Equation 5 is approximately derived between the power variation coefficient ΔQ10 and the flicker value ΔV10. Note that Formula 5 is approximately derived as a scalar that is a variable having only magnitude information, and is not a vector that is a variable having two information of magnitude and phase. Absent.

(数5)ΔV10=(ΔV/ΔQ)・ΔQ10=Z・ΔQ10     (Equation 5) ΔV10 = (ΔV / ΔQ) · ΔQ10 = Z · ΔQ10

ここで、本実施形態の電力系統1のように、解析対象の系統内にN個の負荷変動源Fnが存在する場合には、フリッカ値ΔV10について厳しい条件即ち複数のアーク炉電流がほぼ同位相となる場合を前提にし、母線BnのΔV10_bnは重ねの理を用いて数式6により算出される。重ねの理は周知の技術であるのでここでは詳細については省略する(例えば、有馬泉・岩崎晴光:基礎電気回路1,森北出版株式会社,pp.73−75,ISBN4−627−73180−9を参照)。   Here, when there are N load fluctuation sources Fn in the system to be analyzed as in the power system 1 of the present embodiment, severe conditions regarding the flicker value ΔV10, that is, a plurality of arc furnace currents are substantially in phase. And ΔV10_bn of the bus Bn is calculated by Equation 6 using the superposition theory. Since the reason for overlapping is a well-known technique, details are omitted here (for example, Izumi Arima and Harumitsu Iwasaki: Basic Electric Circuit 1, Morikita Publishing Co., Ltd., pp. 73-75, ISBN 4-627-73180-9) reference).

(数6)ΔV10_bn=(Zbn_f1・ΔQ10_b1+Zbn_f2・ΔQ10_b2+…
+Zbn_fi・ΔQ10_bi)
なお、変数iは負荷変動源Fの識別子nに対応するものであり、変数iの最大値はnである。
(Expression 6) ΔV10_bn = (Zbn_f1 · ΔQ10_b1 + Zbn_f2 · ΔQ10_b2 ++...
+ Zbn_fi ・ ΔQ10_bi)
The variable i corresponds to the identifier n of the load fluctuation source F, and the maximum value of the variable i is n.

フリッカ値算出部11eは、メモリ15から系統感度Zbn_fn及び電力変動係数ΔQ10_bnの値を読み込み、数式6を用いて母線Bn毎にフリッカ値ΔV10_bnを算出する。そして、フリッカ値算出部11eは、算出した母線Bn毎のフリッカ値ΔV10_bnの値をメモリ15に記憶させる。   The flicker value calculation unit 11e reads the values of the system sensitivity Zbn_fn and the power fluctuation coefficient ΔQ10_bn from the memory 15, and calculates the flicker value ΔV10_bn for each bus Bn using Equation 6. The flicker value calculation unit 11e stores the calculated flicker value ΔV10_bn for each bus Bn in the memory 15.

以上により算出された母線Bn別のフリッカ値ΔV10_bnの値の大きさに基づいて、作業者は、電圧変動からみた電力系統1の問題の有無を判断することができる。   Based on the magnitude of the flicker value ΔV10_bn for each bus Bn calculated as described above, the operator can determine whether there is a problem in the power system 1 from the viewpoint of voltage fluctuation.

また、フリッカ値ΔV10_bnの値が大きいために改善の必要があると考えられた場合に、例えば無効電力補償装置5の変換器の容量を変更した場合や無効電力補償装置5を新たに連系させた場合等の電圧変動抑制効果の評価を行うことも可能である。その場合更に、無効電力補償装置として他励式SVCを用いた場合と自励式SVCを用いた場合との比較や、新たに設置するSVCの設置地点を変えた場合の比較等を行うことが可能である。そして、本発明は電力系統の電圧変動を短時間に解析することが可能であるので、従来の時間シミュレーションを用いて解析する場合と比べて多数の改善代替案について比較評価することができる。したがって、問題改善策の検討の際に多数の改善代替案の評価が可能であり、電力系統の電圧変動補償作業の迅速性向上と精度向上とを図ることができる   Further, when it is considered that the flicker value ΔV10_bn is large and needs to be improved, for example, when the capacity of the converter of the reactive power compensator 5 is changed or the reactive power compensator 5 is newly connected. It is also possible to evaluate the effect of suppressing the voltage fluctuation in the case of the case. In that case, it is possible to compare the case where the separately excited SVC is used as the reactive power compensator and the case where the self-excited SVC is used, or the case where the installation point of the newly installed SVC is changed. is there. Since the present invention can analyze the voltage fluctuation of the power system in a short time, it can compare and evaluate a large number of improvement alternatives compared with the case of analyzing using the conventional time simulation. Therefore, it is possible to evaluate a large number of improvement alternatives when considering problem improvement measures, and to improve the speed and accuracy of voltage fluctuation compensation work for the power system.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention.

本発明の電圧解析方法の実施形態の一例を説明するフローチャートである。It is a flowchart explaining an example of embodiment of the voltage analysis method of this invention. 本実施形態の電圧解析方法をプログラムを用いて実施する場合の電圧解析装置の機能ブロック図である。It is a functional block diagram of the voltage analysis apparatus in the case of implementing the voltage analysis method of this embodiment using a program. 本実施形態の解析対象の電力系統の構成を示す図である。It is a figure which shows the structure of the electric power system of the analysis object of this embodiment. 変動周波数別の視感度曲線を示す図である。It is a figure which shows the visibility curve according to fluctuation frequency.

符号の説明Explanation of symbols

1 電力系統
5 無効電力補償装置
B0,B1,B2,B3,…,Bn 母線
F1,F2,F3,…,Fn 負荷変動源
DESCRIPTION OF SYMBOLS 1 Electric power system 5 Reactive power compensator B0, B1, B2, B3, ..., Bn Bus line F1, F2, F3, ..., Fn Load fluctuation source

Claims (3)

電力系統の系統インピーダンスを用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度を算出すると共に、前記負荷変動源の瞬時無効電力を用いて算出した無効電力変動量に基づいて電力変動係数を算出し、前記系統感度と前記電力変動係数とを用いて母線のフリッカ値を算出することを特徴とする電圧解析方法。   Based on the reactive power fluctuation amount calculated using the instantaneous reactive power of the load fluctuation source and calculating the system sensitivity that is the sensitivity of the bus voltage to the reactive power load change of the load fluctuation source using the grid impedance of the power grid A voltage analysis method characterized by calculating a power fluctuation coefficient and calculating a flicker value of a bus using the system sensitivity and the power fluctuation coefficient. 電力系統の系統インピーダンスを用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度を算出する手段と、前記負荷変動源の瞬時無効電力を用いて無効電力変動量を算出する手段と、前記無効電力変動量に基づいて電力変動係数を算出する手段と、前記系統感度と前記電力変動係数とを用いて母線のフリッカ値を算出する手段とを有することを特徴とする電圧解析装置。   Reactive power fluctuation amount is calculated using means for calculating the system sensitivity, which is the sensitivity of the bus voltage to the change of the reactive power load of the load fluctuation source using the system impedance of the power grid, and the instantaneous reactive power of the load fluctuation source. Voltage analysis means comprising: means; a means for calculating a power fluctuation coefficient based on the reactive power fluctuation amount; and a means for calculating a bus flicker value using the system sensitivity and the power fluctuation coefficient. apparatus. 電力系統の系統インピーダンスデータが記録されたデータベースにアクセス可能なコンピュータに、前記系統インピーダンスデータを用いて負荷変動源の無効電力負荷の変化に対する母線電圧の感度である系統感度を算出する処理と、前記負荷変動源の瞬時無効電力を用いて無効電力変動量を算出する処理と、前記無効電力変動量に基づいて電力変動係数を算出する処理と、前記系統感度と前記電力変動係数とを用いて母線のフリッカ値を算出する処理とを行わせることを特徴とする電圧解析プログラム。   A computer that can access a database in which system impedance data of a power system is recorded, a process of calculating a system sensitivity that is a sensitivity of a bus voltage to a change in a reactive power load of a load fluctuation source using the system impedance data, and A process of calculating a reactive power fluctuation amount using instantaneous reactive power of a load fluctuation source, a process of calculating a power fluctuation coefficient based on the reactive power fluctuation quantity, and a bus using the system sensitivity and the power fluctuation coefficient A voltage analysis program for performing a process of calculating a flicker value of.
JP2007030667A 2007-02-09 2007-02-09 Voltage analysis method, apparatus and program Expired - Fee Related JP4843519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030667A JP4843519B2 (en) 2007-02-09 2007-02-09 Voltage analysis method, apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030667A JP4843519B2 (en) 2007-02-09 2007-02-09 Voltage analysis method, apparatus and program

Publications (2)

Publication Number Publication Date
JP2008199739A true JP2008199739A (en) 2008-08-28
JP4843519B2 JP4843519B2 (en) 2011-12-21

Family

ID=39758195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030667A Expired - Fee Related JP4843519B2 (en) 2007-02-09 2007-02-09 Voltage analysis method, apparatus and program

Country Status (1)

Country Link
JP (1) JP4843519B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160092244A (en) * 2015-01-27 2016-08-04 전남대학교산학협력단 Simplified bus voltage estimation method by using voltage sensitive bus impedance matrix
KR20160092242A (en) * 2015-01-27 2016-08-04 전남대학교산학협력단 Simplified bus voltage estimation method for changes in sending end voltage at radial network and estimation program
JP2017215937A (en) * 2016-05-31 2017-12-07 エルエス産電株式会社Lsis Co., Ltd. Reactive power compensation system and method thereof
JP2019054619A (en) * 2017-09-14 2019-04-04 富士電機株式会社 Controller, power converter, control method, power conversion method, and program
JP2020018081A (en) * 2018-07-25 2020-01-30 住友電気工業株式会社 Power conversion device and flicker control method
CN112615372A (en) * 2020-12-24 2021-04-06 国网江西省电力有限公司电力科学研究院 Voltage interference device-containing zone detection method based on coefficient of variation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749555A (en) * 2012-06-20 2012-10-24 广东电网公司电力科学研究院 Flicker source positioning method in power supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283431A (en) * 1987-05-15 1988-11-21 Fuji Electric Co Ltd Reactive power compensation system by stochastic optimal control
JPH07104739B2 (en) * 1985-05-20 1995-11-13 三菱電機株式会社 Controller for reactive power compensator
JPH07325117A (en) * 1994-06-02 1995-12-12 Tokyo Electric Power Co Inc:The Digital flicker meter
JPH1164411A (en) * 1997-08-18 1999-03-05 Toshiba Eng Co Ltd Apparatus for measuring flicker of system voltage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104739B2 (en) * 1985-05-20 1995-11-13 三菱電機株式会社 Controller for reactive power compensator
JPS63283431A (en) * 1987-05-15 1988-11-21 Fuji Electric Co Ltd Reactive power compensation system by stochastic optimal control
JPH07325117A (en) * 1994-06-02 1995-12-12 Tokyo Electric Power Co Inc:The Digital flicker meter
JPH1164411A (en) * 1997-08-18 1999-03-05 Toshiba Eng Co Ltd Apparatus for measuring flicker of system voltage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160092244A (en) * 2015-01-27 2016-08-04 전남대학교산학협력단 Simplified bus voltage estimation method by using voltage sensitive bus impedance matrix
KR20160092242A (en) * 2015-01-27 2016-08-04 전남대학교산학협력단 Simplified bus voltage estimation method for changes in sending end voltage at radial network and estimation program
KR101659312B1 (en) * 2015-01-27 2016-09-23 전남대학교산학협력단 Simplified bus voltage estimation method for changes in sending end voltage at radial network and estimation program
KR101701139B1 (en) * 2015-01-27 2017-02-01 전남대학교산학협력단 Simplified bus voltage estimation method by using voltage sensitive bus impedance matrix
JP2017215937A (en) * 2016-05-31 2017-12-07 エルエス産電株式会社Lsis Co., Ltd. Reactive power compensation system and method thereof
JP2019054619A (en) * 2017-09-14 2019-04-04 富士電機株式会社 Controller, power converter, control method, power conversion method, and program
JP2020018081A (en) * 2018-07-25 2020-01-30 住友電気工業株式会社 Power conversion device and flicker control method
JP7040337B2 (en) 2018-07-25 2022-03-23 住友電気工業株式会社 Power converter and flicker control method
CN112615372A (en) * 2020-12-24 2021-04-06 国网江西省电力有限公司电力科学研究院 Voltage interference device-containing zone detection method based on coefficient of variation
CN112615372B (en) * 2020-12-24 2022-10-11 国网江西省电力有限公司电力科学研究院 Voltage interference device-containing zone detection method based on coefficient of variation

Also Published As

Publication number Publication date
JP4843519B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4843519B2 (en) Voltage analysis method, apparatus and program
Ma et al. Reducing identified parameters of measurement-based composite load model
Matavalam et al. Sensitivity based Thevenin index with systematic inclusion of reactive power limits
Chen et al. Wide-area measurement-based voltage stability sensitivity and its application in voltage control
Chandra et al. Online voltage stability and load margin assessment using wide area measurements
KR20090010536A (en) System and method for determining areas of vulnerability for voltage sags assessment, and a medium having computer readable program for executing the method
Wang et al. A novel fault let-through energy based fault location for LVDC distribution networks
Sharma et al. Thevenin’s equivalent based P–Q–V voltage stability region visualization and enhancement with FACTS and HVDC
Mokred et al. Modern voltage stability index for prediction of voltage collapse and estimation of maximum load-ability for weak buses and critical lines identification
Liu et al. Toward a CPFLOW-based algorithm to compute all the type-1 load-flow solutions in electric power systems
JP2006340552A (en) Electric power quality evaluation system and method, and program therefor
Rahman et al. Temperature-dependent system level analysis of electric power transmission systems: A review
Sun et al. Application of power system energy structures to track dominated oscillation paths and generator damping contribution during low-frequency oscillations
Meliopoulos et al. PMU data characterization and application to stability monitoring
Teixeira et al. An optimisation model based approach for power systems voltage stability and harmonic analysis
Isbeih et al. Generator‐based threshold for transient stability assessment
JP5659841B2 (en) Parameter analyzer for harmonic calculation of power system and parameter estimation method for harmonic calculation
Wiest et al. Rapid identification of worst‐case conditions: improved planning of active distribution grids
Acharya et al. A new voltage stability index based on the tangent vector of the power flow jacobian
Sun et al. PMU placement for dynamic state tracking of power systems
Melo et al. Voltage stability assessment using modal analysis based on power systems state estimation
Polymeneas et al. Margin-based framework for online contingency selection in unbalanced networks
KR20070080913A (en) System and method for determining areas of vulnerability for voltage sags assessment, and a medium having computer readable program for executing the method
Kopsidas et al. Cyber‐physical reliability of dynamic line rating ICT failures in OHL networks
Dester et al. Multi-criteria contingency ranking method for voltage stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees