JPH07325105A - Semiconductor sensor - Google Patents

Semiconductor sensor

Info

Publication number
JPH07325105A
JPH07325105A JP14249994A JP14249994A JPH07325105A JP H07325105 A JPH07325105 A JP H07325105A JP 14249994 A JP14249994 A JP 14249994A JP 14249994 A JP14249994 A JP 14249994A JP H07325105 A JPH07325105 A JP H07325105A
Authority
JP
Japan
Prior art keywords
silicon substrate
beam portion
conductor path
conductor
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14249994A
Other languages
Japanese (ja)
Inventor
Nobuyuki Komagata
信幸 駒形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP14249994A priority Critical patent/JPH07325105A/en
Publication of JPH07325105A publication Critical patent/JPH07325105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To contrive improvement of detection accuracy of beam breakage. CONSTITUTION:A silicon substrate is processed by etching or the like, and a weight part 13 supported in the form of a cantilever through a beam part 11 is provided on a frame-shaped support part 12. A piezoresistance 15 for detecting acceleration is formed by displacement of the weight part 13 on the beam part 11. A first and a second conductor routes for damage detection 18, 21 extending up to the support part 13 are provided on the silicon substrate via the beam part 11 and part of the weight part 13 on the lower face side thereof. The second conductor route 21 leads to the upper face of the silicon substrate through a conductor part 23 and a contact hole 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の車両の加速
度や圧力を検出する半導体センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor sensor for detecting acceleration and pressure of a vehicle such as an automobile.

【0002】[0002]

【従来の技術】かかる半導体センサを加速度センサとし
て利用した従来の技術として、例えばTRANS. Vol. ED-2
6 DEC. 1979. "A Batch-Fabricated Silicon Accelerom
eter"に開示され、図5に示すように、シリコン基板1
をエッチング等により加工して支持部2及び、この支持
部2から薄肉の梁部3を介して連続する厚肉の重り部4
を設けるとともに、梁部3上面に複数のピエゾ抵抗5を
ブリッジ回路を構成するように形成し、重り部4が加速
度により変位して梁部3が撓んだ時、その応力でピエゾ
抵抗5の抵抗値が変化し、この抵抗値変化によって加速
度を検出するものや、例えば実開平5−52763号公
報に開示され、図6に示すように、シリコン基板1をエ
ッチング等により加工して支持部2及び、この支持部2
から薄肉の梁部3を介して連続する厚肉の重り部4を設
け、この重り部4の下面に可動電極6を形成するととも
に、この可動電極6と対向する静止電極7を有するガラ
ス等からなる基板8をシリコン基板1に接合して両電極
6,7間にギャップを設け、重り部4が加速度により変
位した時、重り部4の変位量に応じて両電極6,7間の
ギャップ量が変化し、静電容量が変化することにより加
速度を検出するものが知られている。
2. Description of the Related Art As a conventional technique using such a semiconductor sensor as an acceleration sensor, for example, TRANS. Vol. ED-2
6 DEC. 1979. "A Batch-Fabricated Silicon Accelerom
as disclosed in FIG. 5 and shown in FIG.
Is processed by etching or the like to form a support portion 2 and a thick weight portion 4 continuous from the support portion 2 via a thin beam portion 3.
And a plurality of piezoresistors 5 are formed on the upper surface of the beam portion 3 so as to form a bridge circuit, and when the weight portion 4 is displaced by acceleration and the beam portion 3 is bent, the stress of the piezoresistor 5 is generated. The resistance value changes, and the acceleration value is detected by the change in the resistance value. For example, as disclosed in Japanese Utility Model Laid-Open No. 5-52763, as shown in FIG. 6, the silicon substrate 1 is processed by etching or the like so that the supporting portion 2 is formed. And this support 2
Is provided with a thick weight portion 4 which is continuous through a thin beam portion 3, a movable electrode 6 is formed on the lower surface of the weight portion 4, and a stationary electrode 7 facing the movable electrode 6 is made of glass or the like. When the weight portion 4 is displaced by acceleration by joining the substrate 8 to the silicon substrate 1 with a gap between the electrodes 6 and 7, the gap amount between the electrodes 6 and 7 is changed according to the displacement amount of the weight portion 4. It is known that the acceleration is detected by the change of the electrostatic capacitance.

【0003】そして上述した図5,図6の加速度センサ
にあっては、シリコン基板1の薄肉である梁部3に大き
な応力が集中するため、梁部3やその周辺部分にひび割
れが生じたり、梁部3が折れてしまいやすく、このよう
に梁部3が機械的に損傷してしまうと加速度の正確な検
出ができなくなってしまうため、図7に示すように、シ
リコン基板1表面に梁部3を経て支持部2まで連続する
アルミニウム等の導電性金属層からなる導電路9を引き
回し形成し、この導電路9が梁部3の損傷に伴い破断す
るよう構成し、導電路9が破断して不導通状態となるこ
とにより、梁部3の損傷を検知できるよう構成した半導
体センサが知られている(例えば特公平5−58140
号公報,特公平1−163637号公報参照)。
In the acceleration sensor shown in FIGS. 5 and 6, since a large stress is concentrated on the thin beam portion 3 of the silicon substrate 1, cracks may occur in the beam portion 3 or its peripheral portion. Since the beam portion 3 is easily broken, and the mechanical damage to the beam portion 3 makes it impossible to accurately detect the acceleration, the beam portion 3 is formed on the surface of the silicon substrate 1 as shown in FIG. A conductive path 9 made of a conductive metal layer of aluminum or the like continuous to the support portion 2 via 3 is drawn around, and the conductive path 9 is configured to be broken when the beam portion 3 is damaged. There is known a semiconductor sensor configured to detect the damage of the beam portion 3 when it becomes non-conductive (for example, Japanese Patent Publication No. 5-58140).
(See Japanese Patent Publication No. Hei 1-163637).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述した
従来例は、導電路9が破断しないと損傷を検知すること
ができないために、梁部3の受けた損傷が片面側のみに
留まった状態のとき、例えば導電路9の形成されない梁
部3の裏面側からひび割れが生じ、このひび割れが梁部
3表面側の導電路9まで到達しない状態(ハーフクラッ
ク)であるときは、導電路9は破断せず、したがって梁
部3の損傷を検知することができないという問題があ
る。
However, in the above-mentioned conventional example, since the damage cannot be detected unless the conductive path 9 is broken, the damage received by the beam portion 3 is limited to only one side. For example, when a crack is generated from the back surface side of the beam portion 3 where the conductive path 9 is not formed and the crack does not reach the conductive path 9 on the front surface side of the beam portion 3 (half crack), the conductive path 9 is broken. Therefore, there is a problem that damage to the beam portion 3 cannot be detected.

【0005】本発明はこの点に着目してなされたもの
で、その主な目的は、梁部に片面側のみの損傷が生じた
場合あってもこれを検知し、損傷検知精度を高めること
が可能な半導体センサを提供しようとするものである。
The present invention has been made by paying attention to this point, and its main purpose is to detect the damage even if only one side of the beam portion occurs, and to improve the damage detection accuracy. It is intended to provide a possible semiconductor sensor.

【0006】[0006]

【課題を解決するための手段】本発明は、支持部から梁
部を介して連続形成される重り部を有するシリコン基板
からなり、前記重り部の変位により外力を検出する半導
体センサにおいて、前記梁部の上,下面側に前記梁部の
損傷を検知する導体路を形成したものである。
The present invention provides a semiconductor sensor comprising a silicon substrate having a weight portion continuously formed from a support portion through a beam portion, wherein the semiconductor sensor detects an external force by displacement of the weight portion. Conductor paths for detecting damage to the beam portion are formed on the upper and lower surfaces of the portion.

【0007】また本発明は前記構成において、前記梁部
に前記重り部の変位により外力を検出するピエゾ抵抗を
備え、このピエゾ抵抗の外側に前記上面側の導体路を引
き回し形成したものである。
Further, according to the present invention, in the above structure, the beam portion is provided with a piezoresistor for detecting an external force by the displacement of the weight portion, and the conductor path on the upper surface side is formed outside the piezoresistor.

【0008】[0008]

【作用】本発明によれば、損傷検知用の導体路が梁部の
上,下面側双方に形成されることにより、ハーフクラッ
ク等片面側のみの損傷であっても、梁部の損傷に伴い
上,下面側のいづれかの導体路が破断されるため、梁部
の損傷が検知される。
According to the present invention, the conductor paths for damage detection are formed on both the upper and lower surfaces of the beam portion, so that even if the damage is on only one side such as a half crack, the damage is caused by the damage to the beam portion. Since the conductor path on either the upper or lower surface is broken, damage to the beam is detected.

【0009】また本発明によれば、上面側の導体路がピ
エゾ抵抗の外側に引き回し形成されることにより、ピエ
ゾ抵抗が損傷する前に上面側の導体路が破断されるた
め、梁部の損傷が早期に検知される。
Further, according to the present invention, since the conductor path on the upper surface side is formed around the piezoresistor, the conductor path on the upper surface side is broken before the piezoresistor is damaged, so that the beam portion is damaged. Is detected early.

【0010】[0010]

【実施例】以下、図1〜図4に基づき本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0011】図1は本発明の一実施例による加速度セン
サ(半導体センサ)の概要を示す要部断面図である。図
1において加速度センサは、選択的なエッチングにより
溝部10及び薄肉の梁部11が形成され、枠状の支持部12に
梁部11を介して連続する厚肉の重り部13を片持ち状に支
持するN型シリコン基板14と、このシリコン基板14の梁
部11にブリッジ回路を構成するよう形成されたピエゾ抵
抗15とを備え、重り部13に加わる加速度により梁部11が
撓んだとき、その応力によってピエゾ抵抗15の抵抗値が
変化するようになっている。またシリコン基板14の上,
下側にはガラス等の絶縁材料からなる一対の上,下スト
ッパ16,17が固着されており、これらストッパ16,17
は、重り部13の上下方向への変位を規制することによ
り、過大な加速度に対する梁部11の応力破壊を防止する
ものである。そして前記ブリッジ回路にはリード線15a
が接続され、ピエゾ抵抗15の抵抗値変化を外部へ出力す
るようになっている。
FIG. 1 is a sectional view showing the outline of an acceleration sensor (semiconductor sensor) according to an embodiment of the present invention. In the acceleration sensor shown in FIG. 1, a groove 10 and a thin beam portion 11 are formed by selective etching, and a thick weight portion 13 continuous to the frame-shaped support portion 12 via the beam portion 11 is cantilevered. A supporting N-type silicon substrate 14 and a beam portion 11 of the silicon substrate 14 are provided with a piezoresistor 15 formed so as to form a bridge circuit, and when the beam portion 11 is bent by the acceleration applied to the weight portion 13, The stress causes the resistance value of the piezoresistor 15 to change. Also on the silicon substrate 14,
A pair of upper and lower stoppers 16 and 17 made of an insulating material such as glass are fixed to the lower side.
In order to prevent the stress destruction of the beam portion 11 against an excessive acceleration, the displacement of the weight portion 13 in the vertical direction is regulated. The lead wire 15a is connected to the bridge circuit.
Is connected, and the resistance value change of the piezoresistor 15 is output to the outside.

【0012】図2は図1に示したシリコン基板14の基板
面を示す平面図であり、図2(a)はシリコン基板14の
上面を、図2(b)はシリコン基板14の下面をそれぞれ
示している。図2(a)においてシリコン基板14の上面
には、ピエゾ抵抗15の外側を囲むように梁部11の平面方
向両側端部及び重り部13の一部を経由して支持部12まで
延びる一本の連続した導電路からなる第1の導体路18が
アルミ等の導電性材料により引き回し形成され、その延
長端には支持部12上に位置して2つの第1の端子部19,
20が一体に形成されている。また図2(b)においてシ
リコン基板14の下面側表層内部には、梁部11の平面方向
両側端部及び重り部13の一部を経由して支持部12までに
延びる拡散層からなる第2の導体路21が形成され、この
第2の導体路21は、図3に示すようにトレンチ部22を通
じて上面側からシリコン基板14の内部に拡散形成された
中継接続用の導体部23及びコンタクトホール24を介して
シリコン基板14上面に形成されたアルミ等の導電性材料
からなる配線部25に接続され、この配線部25の端部には
支持部12上に位置して2つの第2の端子部26,27(図2
(a)参照)が一体に形成されている。なお、図2,図
3ではピエゾ抵抗15周辺部の配線構造を省略して示して
いる。
2A and 2B are plan views showing the substrate surface of the silicon substrate 14 shown in FIG. 1. FIG. 2A shows the upper surface of the silicon substrate 14, and FIG. 2B shows the lower surface of the silicon substrate 14. Shows. In FIG. 2 (a), on the upper surface of the silicon substrate 14, a single piece extending to the support portion 12 so as to surround the outside of the piezoresistor 15 via both side ends of the beam portion 11 in the plane direction and a part of the weight portion 13. A first conductor path 18 consisting of a continuous conductor path of is formed of a conductive material such as aluminum, and its extended end is located on the support portion 12 and has two first terminal portions 19,
20 are integrally formed. In FIG. 2B, a second diffusion layer is formed inside the lower surface of the silicon substrate 14 and extends to both sides of the beam portion 11 in the plane direction and a part of the weight portion 13 to reach the support portion 12. 3 is formed, and the second conductor path 21 is formed by diffusing and forming a relay connection conductor portion 23 and a contact hole in the silicon substrate 14 from the upper surface side through the trench portion 22 as shown in FIG. Is connected to a wiring portion 25 made of a conductive material such as aluminum formed on the upper surface of the silicon substrate 14 via 24, and the end portion of the wiring portion 25 is located on the supporting portion 12 and has two second terminals. Parts 26, 27 (Fig. 2
(See (a)) is integrally formed. 2 and 3, the wiring structure around the piezoresistor 15 is omitted.

【0013】そして第1の端子部19,20及び第2の端子
部26,27を通じて第1の導体路18並びに第2の導体路21
には、所定量の電流が供給され、通常時にはこれら導体
路18,21が通電状態となるようにし、梁部11あるいは重
り部13に折れやひび割れが発生した損傷時にはその損傷
に伴い第1の導体路18もしくは第2の導体路21のいづれ
か、あるいは第1の導体路18及び第2の導体路21の双方
が破断して不導通状態となるようにしており、このよう
に第1の導体路18あるいは第2の導体路21の破断により
梁部11付近の損傷を検知する構成となっている。
Then, the first conductor path 18 and the second conductor path 21 are provided through the first terminal portions 19 and 20 and the second terminal portions 26 and 27.
Is supplied with a predetermined amount of current so that the conductor paths 18 and 21 are normally energized, and when the beam portion 11 or the weight portion 13 is broken or cracked, the first path is caused by the damage. Either the conductor path 18 or the second conductor path 21, or both of the first conductor path 18 and the second conductor path 21 are broken so as to be in a non-conductive state. Damage to the vicinity of the beam portion 11 is detected by the breakage of the path 18 or the second conductor path 21.

【0014】図4は図1から図3に示した加速度センサ
の製造方法の一例を示す説明図であり、まずN型シリコ
ン基板14の上面に所定領域を除いてSiO2 からなる酸
化膜28を形成し、この酸化膜28を除いた領域にボロンの
拡散等により第2の導体路21を形成する(図4
(a))。
FIG. 4 is an explanatory view showing an example of a method of manufacturing the acceleration sensor shown in FIGS. 1 to 3. First, an oxide film 28 made of SiO 2 is formed on the upper surface of the N-type silicon substrate 14 except for a predetermined region. The second conductor path 21 is formed in the region excluding the oxide film 28 by diffusion of boron or the like (FIG. 4).
(A)).

【0015】つぎにシリコン基板14の上面にN型エピタ
キシャル層(以下、エピ層という)14aを成長形成する
(図4(b))。
Next, an N type epitaxial layer (hereinafter referred to as an epi layer) 14a is grown and formed on the upper surface of the silicon substrate 14 (FIG. 4B).

【0016】つぎに第2の導体路21の端部上方に位置す
るエピ層14aの上面にレジスト(図示しない)をパター
ン形成し、このレジストを除いた領域を例えばフッ硝酸
からなるエッチング液にて部分的に取り除いてトレンチ
部22を形成する(図4(c))。
Next, a resist (not shown) is patterned on the upper surface of the epi layer 14a located above the end of the second conductor path 21, and the area excluding this resist is etched with an etching solution of, for example, hydrofluoric nitric acid. The trench portion 22 is formed by partially removing it (FIG. 4C).

【0017】つぎに前記レジストを除去した後、トレン
チ部22及びエピ層14aの所定個所に、ボロンの拡散等に
より導体部23とリード29、ボロンのイオン注入等により
ピエゾ抵抗15をそれぞれ設け、エピ層14aの上面に再び
酸化膜28を形成する(図4(d))。
Next, after removing the resist, the conductor portion 23 and the lead 29 are provided at predetermined portions of the trench portion 22 and the epi layer 14a by diffusion of boron or the like, and the piezoresistive 15 is formed by ion implantation of boron or the like. An oxide film 28 is formed again on the upper surface of the layer 14a (FIG. 4 (d)).

【0018】つぎに導体部23及びリード29の所定個所に
対応する酸化膜28にコンタクトホール24,30を形成し、
酸化膜28の上面に蒸着等により配線部25,第2の端子部
26,27(図2(a)参照)及び配線電極31、第1の導体
路18,第1の端子部19,20(図2(a)参照)を形成す
る(図4(e))。これによりピエゾ抵抗15はリード29
を介して配線電極31と接続される。
Next, contact holes 24 and 30 are formed in the oxide film 28 corresponding to predetermined portions of the conductor portion 23 and the lead 29,
The wiring portion 25 and the second terminal portion are formed on the upper surface of the oxide film 28 by vapor deposition or the like.
26, 27 (see FIG. 2A), the wiring electrode 31, the first conductor path 18, and the first terminal portions 19, 20 (see FIG. 2A) are formed (FIG. 4E). This allows the piezoresistor 15 to lead 29
It is connected to the wiring electrode 31 via.

【0019】つぎにシリコン基板14の下面にSi34
からなる耐エッチング膜32をパターン形成し、シリコン
基板14をKOH等のアルカリエッチング液により異方性
エッチングする。これによりN型シリコン基板14は、梁
部11を残すよう第2の導体路21付近までエッチングが進
行し、同時に溝部10がエッチングにより除去され、耐エ
ッチング膜31を除去すると溝部10,梁部11,支持部12,
重り部13を有したウェハ構造が得られる(図4
(f))。
Next, Si 3 N 4 is formed on the lower surface of the silicon substrate 14.
An etching resistant film 32 made of is formed into a pattern, and the silicon substrate 14 is anisotropically etched with an alkali etching solution such as KOH. As a result, the N-type silicon substrate 14 is etched to the vicinity of the second conductor path 21 so as to leave the beam portion 11, and at the same time, the groove portion 10 is removed by etching. When the etching resistant film 31 is removed, the groove portion 10 and the beam portion 11 are removed. , Support 12,
A wafer structure having a weight 13 is obtained (FIG. 4).
(F)).

【0020】このようなシリコンウェハは、パイレック
スガラスからなる上,下ストッパ16,17を陽極接合等に
より固着した後、個々のチップにダイシングされ、配線
電極32の電極端子(図示しない)にリード線15aをワイ
ヤボンディング等により接続するとともに、第1の端子
部19,20及び第2の端子26,27を図示しない適宜接続手
段(例えばワイヤボンディング)により外部と接続する
ことにより、図1から図3に示した加速度センサが完成
する。
Such a silicon wafer is made of Pyrex glass, and after fixing the upper and lower stoppers 16 and 17 by anodic bonding or the like, it is diced into individual chips, and lead wires are connected to electrode terminals (not shown) of the wiring electrodes 32. 1 to 3 by connecting 15a by wire bonding or the like and connecting the first terminal portions 19, 20 and the second terminals 26, 27 to the outside by appropriate connecting means (for example, wire bonding) not shown. The acceleration sensor shown in is completed.

【0021】以上、詳述したように本実施例では、シリ
コン基板14の上面及び下面側に梁部11及び重り部13の一
部を経由して支持部12まで延びる第1,第2の導体路1
8,21を形成し、これら導体路18,21のうち少なくとも
一方の導体路18,21が梁部11の損傷に伴い破断するよう
構成したことにより、ハーフクラック等片面側のみの梁
部11の損傷であっても、上,下面側のいづれかの導体路
18,21が破断されて不導通状態となるため、梁部の損傷
を検知することができる。
As described above in detail, in the present embodiment, the first and second conductors extending to the support portion 12 on the upper surface and the lower surface side of the silicon substrate 14 via the beam portion 11 and a part of the weight portion 13 are provided. Road 1
8 and 21 are formed, and at least one of the conductor paths 18 and 21 is configured to be broken when the beam portion 11 is damaged. Even if damaged, either the upper or lower conductor path
Since the parts 18 and 21 are broken and become non-conductive, damage to the beam can be detected.

【0022】また本実施例によれば、ピエゾ抵抗15の外
側に第1の導体路18を引き回し形成したことにより、例
えば梁部11の側端から損傷が生じた場合、外側に位置す
る第1の導体路18がピエゾ抵抗15の損傷に先立って破断
するため、ピエゾ抵抗15が損傷する前に梁部11の損傷を
検知することができる。
Further, according to this embodiment, since the first conductor path 18 is formed outside the piezoresistor 15, for example, when the side end of the beam portion 11 is damaged, the first conductor path 18 located outside the first portion is positioned. Since the conductor path 18 is broken prior to the damage of the piezoresistor 15, the damage of the beam portion 11 can be detected before the damage of the piezoresistor 15.

【0023】なお本実施例では、第1,第2の導体路1
8,21を梁部11及び重り部13の一部を経由して支持部12
まで延びるよう形成したが、これら導体路18,21は、例
えば第1の導体路18を溝部10に沿って重り部13の全周を
囲むように延長して設け、重り部13の損傷を検知可能に
設けたり、あるいは第2の導体路21を重り部13側に延長
して設けることも可能であり、第1,第2の導体路18,
21の少なくとも一部が梁部11を経由するよう形成されて
いれば適宜設計変更が可能である。
In this embodiment, the first and second conductor paths 1
8 and 21 are passed through the beam 11 and a part of the weight 13 to support 12
Although the conductor paths 18 and 21 are formed so as to extend up to, the first conductor path 18 is provided, for example, by extending the first conductor path 18 so as to surround the entire circumference of the weight portion 13 along the groove portion 10 to detect damage to the weight portion 13. It is also possible to provide the second conductor path 21 or to extend the second conductor path 21 toward the weight portion 13 side.
If at least a part of 21 is formed so as to pass through the beam portion 11, the design can be changed appropriately.

【0024】また本実施例では、第1の導体路18をアル
ミの印刷,蒸着等により独立した導体路として形成した
が、拡散等からなる導体を部分的に交えて一本の導体路
として設けることも可能であり、さらにピエゾ抵抗16の
配線電極31の一部を利用することも可能である。
Further, in the present embodiment, the first conductor path 18 is formed as an independent conductor path by printing, vapor deposition or the like of aluminum, but conductors made of diffusion or the like are partially provided to form one conductor path. It is also possible to use a part of the wiring electrode 31 of the piezoresistor 16.

【0025】また本実施例では、第2の導体路21を梁部
11の下面側外部に露出しないよう形成したが、外部に露
出する場合は、第2の導体路21の表面を例えばSiO2
からなる酸化膜で被覆すれば良い。
Further, in this embodiment, the second conductor path 21 is connected to the beam portion.
Although it is formed so as not to be exposed to the outside of the lower surface side of 11, the surface of the second conductor path 21 may be exposed to the outside with, for example, SiO 2
It may be covered with an oxide film made of.

【0026】また本実施例では、第1,第2の導体路1
8,21からなる損傷検知手段をピエゾ抵抗15の抵抗値変
化により加速度を検出する加速度センサに適用したが、
このような損傷検知手段は、従来例の図6に示すような
静電容量型の加速度センサに適用することも可能であ
る。
In this embodiment, the first and second conductor paths 1
The damage detection means consisting of 8 and 21 was applied to the acceleration sensor that detects the acceleration by changing the resistance value of the piezoresistor 15.
Such damage detecting means can also be applied to a capacitance type acceleration sensor as shown in FIG. 6 of a conventional example.

【0027】また本発明の半導体センサは、実施例で述
べた加速度センサの他、触圧や気圧等の圧力、機械的振
動の物理的な外力等を検出するセンサとしても利用する
ことができる。
The semiconductor sensor of the present invention can be used as a sensor for detecting a pressure such as a tactile pressure or atmospheric pressure, a physical external force of mechanical vibration, etc., in addition to the acceleration sensor described in the embodiments.

【0028】[0028]

【発明の効果】以上、詳述したように本発明は、支持部
から梁部を介して連続形成される重り部を有するシリコ
ン基板からなり、前記重り部の変位により外力を検出す
る半導体センサにおいて、少なくとも前記梁部の上,下
面側に前記梁部の損傷を検知する導体路を形成したこと
により、ハーフクラック等片面側のみの損傷であって
も、上,下面側のいづれかの導体路が破断されるため、
梁部の損傷が検知され、これにより損傷検知精度を向上
させることが可能な半導体センサを提供することができ
る。
As described above in detail, the present invention is a semiconductor sensor which comprises a silicon substrate having a weight portion continuously formed from a support portion through a beam portion, and which detects an external force by displacement of the weight portion. By forming a conductor path for detecting damage to the beam section at least on the upper and lower sides of the beam section, even if the damage is on only one side such as a half crack, the conductor path on either the upper or lower side is Because it breaks
It is possible to provide a semiconductor sensor capable of detecting damage to a beam portion and improving damage detection accuracy.

【0029】また本発明は前記構成において、前記梁部
に前記重り部の変位により外力を検出するピエゾ抵抗を
備え、このピエゾ抵抗の外側に前記上面側の導体路を引
き回し形成したことにより、ピエゾ抵抗が損傷する前に
梁部の損傷を検知することができ、これにより損傷の早
期検知を可能とする半導体センサを提供することができ
る。
According to the present invention, in the above structure, the beam portion is provided with a piezoresistor for detecting an external force by the displacement of the weight portion, and the conductor path on the upper surface side is formed outside the piezoresistor. It is possible to provide a semiconductor sensor that can detect damage to the beam portion before the resistance is damaged, thereby enabling early detection of damage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による加速度センサの概要を
示す要部断面図である。
FIG. 1 is a sectional view of an essential part showing an outline of an acceleration sensor according to an embodiment of the present invention.

【図2】図1のシリコン基板の上,下面を示す平面図で
ある。
2 is a plan view showing the upper and lower surfaces of the silicon substrate of FIG. 1. FIG.

【図3】図2の梁部付近の断面図である。FIG. 3 is a cross-sectional view near the beam portion of FIG.

【図4】同上実施例による加速度センサの製造工程を示
す説明図である。
FIG. 4 is an explanatory diagram showing a manufacturing process of the acceleration sensor according to the embodiment.

【図5】従来例を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional example.

【図6】他の従来例を示す断面図である。FIG. 6 is a cross-sectional view showing another conventional example.

【図7】他の従来例を示す平面図である。FIG. 7 is a plan view showing another conventional example.

【符号の説明】[Explanation of symbols]

11 梁部 12 支持部 13 重り部 14 シリコン基板 15 ピエゾ抵抗 18 第1の導体路 21 第2の導体路 11 Beam part 12 Support part 13 Weight part 14 Silicon substrate 15 Piezoresistor 18 First conductor path 21 Second conductor path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 支持部から梁部を介して連続形成される
重り部を有するシリコン基板からなり、前記重り部の変
位により外力を検出する半導体センサにおいて、前記梁
部の上,下面側に前記梁部の損傷を検知する導体路を形
成したことを特徴とする半導体センサ。
1. A semiconductor sensor comprising a silicon substrate having a weight portion continuously formed from a support portion via a beam portion, wherein the semiconductor sensor detects an external force by displacement of the weight portion, wherein the upper and lower surfaces of the beam portion are provided with A semiconductor sensor characterized in that a conductor path for detecting damage to a beam portion is formed.
【請求項2】 前記梁部に前記重り部の変位により外力
を検出するピエゾ抵抗を備え、このピエゾ抵抗の外側に
前記上面側の導体路を引き回し形成したことを特徴とす
る請求項1記載の半導体センサ。
2. The piezoresistor for detecting an external force by the displacement of the weight portion is provided on the beam portion, and the conductor path on the upper surface side is formed around the piezoresistor outside the piezoresistor. Semiconductor sensor.
JP14249994A 1994-05-31 1994-05-31 Semiconductor sensor Pending JPH07325105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14249994A JPH07325105A (en) 1994-05-31 1994-05-31 Semiconductor sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14249994A JPH07325105A (en) 1994-05-31 1994-05-31 Semiconductor sensor

Publications (1)

Publication Number Publication Date
JPH07325105A true JPH07325105A (en) 1995-12-12

Family

ID=15316764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14249994A Pending JPH07325105A (en) 1994-05-31 1994-05-31 Semiconductor sensor

Country Status (1)

Country Link
JP (1) JPH07325105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990023590A (en) * 1997-08-16 1999-03-25 클라우스 포스, 게오르그 뮐러 Mass flow sensor
WO2014196320A1 (en) * 2013-06-04 2014-12-11 株式会社村田製作所 Acceleration sensor
CN110615402A (en) * 2018-06-19 2019-12-27 中国科学院声学研究所 MEMS piezoelectric vector hydrophone with simply supported cantilever beam structure and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990023590A (en) * 1997-08-16 1999-03-25 클라우스 포스, 게오르그 뮐러 Mass flow sensor
WO2014196320A1 (en) * 2013-06-04 2014-12-11 株式会社村田製作所 Acceleration sensor
JP5930127B2 (en) * 2013-06-04 2016-06-08 株式会社村田製作所 Acceleration sensor
US10156584B2 (en) 2013-06-04 2018-12-18 Murata Manufacturing Co., Ltd. MEMS piezoresistive acceleration sensor
CN110615402A (en) * 2018-06-19 2019-12-27 中国科学院声学研究所 MEMS piezoelectric vector hydrophone with simply supported cantilever beam structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US5594171A (en) Capacitance type acceleration sensor
EP1119032B1 (en) A method for producing a semiconductor device& x9;& x9;
KR20000064964A (en) Element for acceleration sensor and manufacturing method thereof
JPH0688837A (en) Acceleration sensor
KR20030026872A (en) Acceleration sensor
JP2006349563A (en) Inertial force sensor
JP2822486B2 (en) Strain-sensitive sensor and method of manufacturing the same
KR100904994B1 (en) Method for fabricating pressure sensor and structure of the same
US6718824B2 (en) Semiconductor dynamic quantity detecting sensor and manufacturing method of the same
JPH07325105A (en) Semiconductor sensor
JP3494022B2 (en) Manufacturing method of semiconductor acceleration sensor
JP3551745B2 (en) Manufacturing method of semiconductor acceleration sensor
JPH11160348A (en) Semiconductor accelerometer
JPH11218543A (en) Acceleration sensor
JPH07273351A (en) Semiconductor sensor
JPH05340956A (en) Acceleration sensor
JPH11214706A (en) Semiconductor sensor and its manufacture
JP3189420B2 (en) Acceleration sensor
JPH075192A (en) Semiconductor acceleration sensor and fabrication thereof
JP3405222B2 (en) Semiconductor acceleration sensor element and method of manufacturing the same
JPH07260821A (en) Semiconductor sensor
JPH08160066A (en) Acceleration sensor
JPH10284737A (en) Manufacture of capacitive semiconductor sensor
JPH10189500A (en) Manufacture of vibration type semiconductor sensor
JPH07263712A (en) Semiconductor sensor