JP2006349563A - Inertial force sensor - Google Patents

Inertial force sensor Download PDF

Info

Publication number
JP2006349563A
JP2006349563A JP2005177844A JP2005177844A JP2006349563A JP 2006349563 A JP2006349563 A JP 2006349563A JP 2005177844 A JP2005177844 A JP 2005177844A JP 2005177844 A JP2005177844 A JP 2005177844A JP 2006349563 A JP2006349563 A JP 2006349563A
Authority
JP
Japan
Prior art keywords
inertial force
force sensor
electrode
surface substrate
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177844A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hirata
善明 平田
Masahiro Tsugai
政広 番
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005177844A priority Critical patent/JP2006349563A/en
Publication of JP2006349563A publication Critical patent/JP2006349563A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems, wherein changes in stress in a frame 1, following a temperature change, are transferred to a sensor circuit and the impedance is changed by a large amount, since wirings 7 that connect an electrode pad 6 in a conventional inertial force sensor and a sensor circuit are embedded into the frame 1 for penetration, and are connected to a fixed electrode 5 and an anchor 2 inside a sensor for constituting the sensor circuit by fixed wiring. <P>SOLUTION: The wiring 7 is provided at a spring-like part 7S as aerial wiring, change in pressure generated in the frame 1 following the temperature change is absorbed by the spring-like part 7S, and thus impedance change in the sensor circuit with respect to the temperature change is inhibited. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加速度や角速度などを測定する静電容量型の慣性力センサに関するものである。   The present invention relates to a capacitance-type inertial force sensor that measures acceleration, angular velocity, and the like.

静電容量型慣性力センサの主たる構成は、上面基板と下面基板の間に固定された固定電極と前記いずれかの基板に固定された支柱であるアンカに設けられる弾性体である梁に空中支持された慣性体である可動電極、ならびに固定電極および可動電極と外部回路とを接続するための配線からなる。慣性力センサに加わる慣性力は、可動電極に加わる慣性力と弾性特性を有する梁の復元力が釣り合う位置を可動電極と固定電極との間の静電容量を測定することから求められる。なお、従来の慣性力センサは、固定電極と可動電極との間の静電容量を外部回路で測定するため、上面基板と下面基板の間に固定電極またはアンカ(可動電極と電気的につながっている)につながるポリシリコン配線を設け、このポリシリコン配線をセンサの側面から引き出し、外部に設けた電極パッドに接続する構成をとっていた(例えば特許文献1参照)。   The main structure of the capacitance-type inertial force sensor is that the fixed electrode fixed between the upper surface substrate and the lower surface substrate and the beam that is an elastic body provided on the anchor that is a support fixed to any one of the substrates are supported in the air. The movable electrode, which is the inertial body, and the wiring for connecting the fixed electrode and the movable electrode to an external circuit. The inertial force applied to the inertial force sensor is obtained by measuring the capacitance between the movable electrode and the fixed electrode at a position where the inertial force applied to the movable electrode and the restoring force of the beam having elastic characteristics are balanced. Since the conventional inertial force sensor measures the electrostatic capacitance between the fixed electrode and the movable electrode with an external circuit, the fixed electrode or anchor (electrically connected to the movable electrode) is interposed between the upper surface substrate and the lower surface substrate. In other words, the polysilicon wiring is connected to an electrode pad provided outside (see, for example, Patent Document 1).

特願2002−40039号(段落0009〜0010、図2)Japanese Patent Application No. 2002-40039 (paragraphs 0009-0010, FIG. 2)

従来の慣性力センサのポリシリコン配線は、電極パッドから下面基板と上面基板とを支持する枠部内で埋め込まれ貫通することで慣性力センサ内部に導かれ、さらに枠部の内側端面から固定した配線で固定電極またはアンカとつながる構成であったため、温度変化に伴う枠部の応力変化が前記固定配線を介してアンカに伝わり、その結果、アンカに支持される可動電極と固定電極との間の静電容量(インピ−ダンス)が大きく変化するという課題があった。   The polysilicon wiring of the conventional inertial force sensor is embedded in the frame part that supports the lower surface substrate and the upper surface substrate from the electrode pad, penetrates into the inertial force sensor, and is fixed from the inner end surface of the frame part. Therefore, the stress change in the frame portion due to the temperature change is transmitted to the anchor through the fixed wiring, and as a result, the static electrode between the movable electrode supported by the anchor and the fixed electrode is transferred. There was a problem that the capacitance (impedance) changed greatly.

本発明の慣性力センサは、上面基板と下面基板は対面し、前記上面基板または前記下面基板に固定された固定電極およびアンカ柱、このアンカ柱に支持された弾性梁、前記弾性梁に進退可能に空中支持された可動電極、前記上面基板と下面基板の間に前記可動電極もしくは固定電極と外部回路とを電気的に接続するバネ状の空中配線部を有する配線を備えた点に特徴を有し、前記可動電極の慣性力に依存して進退する可動電極と前記固定電極との間の静電容量の変化に基づき該慣性力を検知するようにしたものである。   In the inertial force sensor of the present invention, the upper surface substrate and the lower surface substrate face each other, and the fixed electrode and the anchor column fixed to the upper surface substrate or the lower surface substrate, the elastic beam supported by the anchor column, and advanceable and retreatable to the elastic beam A movable electrode supported in the air, and a wiring having a spring-like aerial wiring portion for electrically connecting the movable electrode or the fixed electrode and an external circuit between the upper surface substrate and the lower surface substrate are provided. In addition, the inertial force is detected based on a change in electrostatic capacitance between the movable electrode that moves forward and backward depending on the inertial force of the movable electrode and the fixed electrode.

上記のように構成された本発明の慣性力センサによれば、枠部の内側端面からアンカや固定電極に至る配線部分をバネ状の空中配線部としたので、温度変化に伴う枠部の応力変化は空中配線のバネ状部に吸収され、アンカや固定電極に対して枠部の応力が伝わりにくく、その結果、可動電極と固定電極との間の静電容量(インピ−ダンス)の温度変化に伴う変動を緩和できるという効果が得られる。   According to the inertial force sensor of the present invention configured as described above, the wiring portion extending from the inner end face of the frame portion to the anchor or the fixed electrode is a spring-like aerial wiring portion. The change is absorbed by the spring-like part of the aerial wiring, and the stress of the frame part is difficult to be transmitted to the anchor and the fixed electrode. As a result, the temperature change of the capacitance (impedance) between the movable electrode and the fixed electrode The effect that the fluctuation | variation accompanying this can be eased is acquired.

実施の形態1.
以下図面に基づき、本発明の実施の形態1について詳細に説明する。図1は本発明の一実施の形態例である慣性力センサの概略構成を示す平面図である。図2は図1の一点鎖線に沿って切断したときの断面図ならびにその一部を拡大表示した拡大断面図、図3は図1の一点鎖線Bに沿って切断したときの断面図ならびにその一部を拡大表示した拡大断面図、図4は図1の一点鎖線Cに沿って切断したときの断面図ならびにその一部を拡大表示した拡大断面図である。図5ないし図13は本発明の慣性力センサの製造過程において、図1内に記された一点鎖線A−A部分に相当する断面形状に至るまでの各製造プロセスを経るごとの断面形状を記した途中プロセス断面図ならびにその断面図の一部を拡大表示した拡大断面図である。図14は図1に示す本発明の実施の形態1の慣性力センサと比較するための従来の慣性力センサの概略構成を示す平面図とその断面図である。なお、図1ないし図14において同一部分ないし相当部分については、同一符号を付与している。図15は図1の本発明の慣性力センサと図14の従来の慣性力センサのもつ、周囲環境の温度変化に伴うそれぞれのインピ−ダンスの変化量を測定した結果図である。なお、本発明の慣性力センサは加速度、角速度、角加速度等の慣性力由来の特性を検知するセンサである。
Embodiment 1 FIG.
The first embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of an inertial force sensor according to an embodiment of the present invention. 2 is a cross-sectional view taken along the alternate long and short dash line in FIG. 1 and an enlarged cross-sectional view showing a portion thereof enlarged. FIG. 3 is a cross-sectional view taken along the alternate long and short dash line B in FIG. 4 is an enlarged cross-sectional view in which the portion is enlarged and FIG. 4 is a cross-sectional view taken along the one-dot chain line C in FIG. FIGS. 5 to 13 show the cross-sectional shapes of the inertial force sensor according to the present invention through the respective manufacturing processes up to the cross-sectional shape corresponding to the one-dot chain line AA shown in FIG. It is an expanded sectional view which expanded and displayed a part of the sectional view of the halfway process and the sectional view. 14 is a plan view and a cross-sectional view showing a schematic configuration of a conventional inertial force sensor for comparison with the inertial force sensor of Embodiment 1 of the present invention shown in FIG. 1 to 14, the same reference numerals are given to the same or corresponding parts. FIG. 15 is a graph showing the results of measuring the amount of change in impedance associated with the temperature change of the surrounding environment of the inertial force sensor of the present invention of FIG. 1 and the conventional inertial force sensor of FIG. The inertial force sensor of the present invention is a sensor that detects characteristics derived from inertial forces such as acceleration, angular velocity, and angular acceleration.

図1に示すように本発明の慣性力センサを構成する主要部の配置は、導電体平板である例えばシリコンウエハからエッチング等で抜出し形成された枠1とその内側に同じくシリコンウエハから一体に抜出し形成された1対のアンカ柱2に支持される1対の弾性梁3を介して空中支持された可動電極4および16個の固定電極5を配置し、前記枠1の外側部1aに外部回路(図示しない)と接続するための導電体からなる3個の電極パッド6を配置したものである。なお、前記アンカ柱2もしくは各固定電極5は、導電体配線である例えばポリシリコン製の配線7a、7b、7cによって各電極パッド6a、6b、6cとそれぞれ電気的に接続されている。特に、本発明の配線7においては、その一部が弾性特性を有するようにバネ状の空中配線部7sを有している。なお、ここでいうバネ状とは、U字状、S字状等の蛇行状の変形を吸収できる構造を総称した形状のことである。また、可動電極4には5個の平板電極群からなる2組の可動電極群4aおよび4bが設けられ、それぞれ各固定電極5と対向するように配置され、可動電極4と各固定電極5との間に静電容量を形成する。なお、16個の各固定電極5は、ポリシリコン製の配線7aもしくは7bによって電気的に接続され、それぞれ8個づつの2組の固定電極群5aおよび5bを形成している。なお、可動電極4に設けられた平板電極群の数や固定電極5の数あるいは電極パッド6の数等は変更可能なものであり、ここに記載される数に制約を受けるものではない。   As shown in FIG. 1, the arrangement of the main parts constituting the inertial force sensor of the present invention is as follows. The frame 1 is a conductor flat plate, for example, extracted by etching, etc. A movable electrode 4 supported in the air via a pair of elastic beams 3 supported by a pair of formed anchor pillars 2 and 16 fixed electrodes 5 are arranged, and an external circuit is provided on the outer portion 1 a of the frame 1. Three electrode pads 6 made of a conductor for connection to (not shown) are arranged. The anchor pillar 2 or each fixed electrode 5 is electrically connected to each electrode pad 6a, 6b, 6c by wiring 7a, 7b, 7c made of, for example, polysilicon which is a conductor wiring. In particular, the wiring 7 of the present invention has a spring-like aerial wiring portion 7s so that a part thereof has elastic characteristics. Here, the term “spring shape” as used herein refers to a shape that collectively refers to a structure that can absorb meandering deformation such as a U-shape and an S-shape. Further, the movable electrode 4 is provided with two sets of movable electrode groups 4a and 4b composed of five flat plate electrode groups, which are arranged so as to face the fixed electrodes 5, respectively. Capacitance is formed between the two. The 16 fixed electrodes 5 are electrically connected by polysilicon wiring 7a or 7b to form two sets of fixed electrode groups 5a and 5b of 8 pieces each. Note that the number of plate electrode groups provided on the movable electrode 4, the number of fixed electrodes 5, the number of electrode pads 6, and the like can be changed, and the number described here is not limited.

さらに、図2の断面図に示すように本発明の慣性力センサは、前記枠1とほぼ同じの外形寸法を持つ下面基板である第1ガラス基板8上に枠1を固定し、さらに枠1上に各種絶縁膜等を介してやや小さい外形寸法を持つ上面基板である第2ガラス基板9を固定することから枠1の内側に空洞を設けている。この空洞には、第2のガラス基板9に固定されたアンカ柱2に支持される1対の弾性梁3を介した可動電極4が空中支持されるとともに、第2のガラス基板9に固定された16個の固定電極5(図1、図4参照)ならびに、バネ状の空中配線部7scをもつ配線7cが配置されている。なお、可動電極4と弾性梁3を空中支持するアンカ柱2および16個の各固定電極5は上面基板である第2ガラス基板9に固定されることにより位置決めされている。   Further, as shown in the cross-sectional view of FIG. 2, the inertial force sensor of the present invention fixes the frame 1 on the first glass substrate 8, which is a bottom substrate having substantially the same external dimensions as the frame 1, and further A cavity is provided inside the frame 1 because the second glass substrate 9, which is a top substrate having a slightly smaller outer dimension, is fixed on the top via various insulating films and the like. In this cavity, the movable electrode 4 is supported in the air via a pair of elastic beams 3 supported by the anchor column 2 fixed to the second glass substrate 9 and is fixed to the second glass substrate 9. Further, 16 fixed electrodes 5 (see FIGS. 1 and 4) and a wiring 7c having a spring-like aerial wiring portion 7sc are arranged. The anchor pillar 2 and the 16 fixed electrodes 5 that support the movable electrode 4 and the elastic beam 3 in the air are positioned by being fixed to a second glass substrate 9 that is a top substrate.

つぎに、図2(b)および図3(b)の拡大断面図を用いてシリコンウエハから抜き出された枠1上に固定された電極パッド6cと配線7cと各種絶縁膜と上面基板である第2ガラス基板9の配置構造について述べる。なお、具体的な本発明の慣性力センサの製造工程については後で詳細に説明する。図2(b)に示されるように、枠1上には第1絶縁膜11、第2絶縁膜12、第3絶縁膜13、第4絶縁膜14、第5絶縁膜15が形成され、その上に電極パッド6cが形成されるか、もしくはポリシリコン膜16の形成と共に第2のガラス基板9が固定されている。なお、第3絶縁膜13の一部は図3(b)に示されるようにポリシリコン配線7cが埋め込まれ入代わっており、さらにこの配線7cは、図2(b)に示されるよう電極パッド6c下部の第4絶縁膜14および第5絶縁膜15に設けられた貫通孔を介して電極パッド6cと接続されている。   Next, electrode pads 6c, wirings 7c, various insulating films, and a top substrate fixed on the frame 1 extracted from the silicon wafer using the enlarged cross-sectional views of FIGS. 2B and 3B. The arrangement structure of the second glass substrate 9 will be described. A specific manufacturing process of the inertial force sensor of the present invention will be described in detail later. As shown in FIG. 2B, a first insulating film 11, a second insulating film 12, a third insulating film 13, a fourth insulating film 14, and a fifth insulating film 15 are formed on the frame 1, An electrode pad 6c is formed thereon, or the second glass substrate 9 is fixed together with the formation of the polysilicon film 16. Incidentally, a part of the third insulating film 13 is replaced with a polysilicon wiring 7c as shown in FIG. 3B, and this wiring 7c is further replaced by an electrode pad as shown in FIG. 2B. 6c is connected to the electrode pad 6c through a through hole provided in the fourth insulating film 14 and the fifth insulating film 15 below.

つぎに、図4(b)の拡大断面図を用いて、固定電極群5bとポリシリコン配線7aおよび7bと各種絶縁膜との配置構造について述べる。なお、具体的な本発明の慣性力センサの製造工程については後で詳細に説明する。図4(b)に示されるように固定電極群5b上には、第1絶縁膜11、第2絶縁膜12、第3絶縁膜13、第4絶縁膜14、第5絶縁膜15、ポリシリコン膜16が形成され、さらにその上に第2のガラス基板9が固定されている。ポリシリコン配線7aおよび7bは、第3絶縁膜13の一部にこれら配線が埋め込まれ入代わっている。ポリシリコン配線7bは、第1絶縁膜11および第2絶縁膜12に設けられた貫通孔を介して固定電極群5bと接続している。なお、ポリシリコン配線7bは固定電極群5aと電気的に接続することは無い。また、図示しないが、第1絶縁膜11および第2絶縁膜12に設けられた貫通孔を介して固定電極群5aと接続される。なお、ポリシリコン配線7aは固定電極群5bと接続されることは無い。   Next, an arrangement structure of the fixed electrode group 5b, the polysilicon wirings 7a and 7b, and various insulating films will be described with reference to the enlarged sectional view of FIG. A specific manufacturing process of the inertial force sensor of the present invention will be described in detail later. As shown in FIG. 4B, on the fixed electrode group 5b, the first insulating film 11, the second insulating film 12, the third insulating film 13, the fourth insulating film 14, the fifth insulating film 15, and polysilicon are formed. A film 16 is formed, and the second glass substrate 9 is fixed thereon. The polysilicon wirings 7 a and 7 b are replaced by being embedded in a part of the third insulating film 13. The polysilicon wiring 7 b is connected to the fixed electrode group 5 b through through holes provided in the first insulating film 11 and the second insulating film 12. The polysilicon wiring 7b is not electrically connected to the fixed electrode group 5a. In addition, although not shown, it is connected to the fixed electrode group 5 a through a through hole provided in the first insulating film 11 and the second insulating film 12. The polysilicon wiring 7a is not connected to the fixed electrode group 5b.

本発明の慣性力センサの動作について、以下に説明する。例えば図1の紙面左右方向に加速度が加わると、可動電極4に加速度に依存した慣性力が加わり、弾性特性を有する弾性梁3の復元力と釣り合う位置まで可動電極4の位置が移動するため、固定電極5との相対的な位置が変化する。可動電極4に設けられた平板電極群である可動電極群4aないし4bは、固定電極群5aもしくは固定電極群5bと互いに対向する関係に配置されているので、それぞれの対向面で静電容量を形成する。可動電極4と固定電極群5aおよび6bの相対的な位置が移動するに伴い、静電容量は差動的に変化するので、可動電極4と固定電極群5aもしくは6b間の少なくともいずれか一方の静電容量の変化を測定することから、可動電極4に加わった慣性力や加速度を検出できる。なお、可動電極4(可動電極群4a、4b)と固定電極群5aならびに6b間の静電容量の変化は、それぞれと電気的に接続される各電極パッド6cと6a間または6cと6b間に係るインピ−ダンスを図示しない外部回路により測定可能である。従って、本発明の実施の形態1の慣性力センサに加わる慣性力は、慣性力センサに設けられた各電極パッド6間のインピ−ダンス測定から検知できることは明らかである。   The operation of the inertial force sensor of the present invention will be described below. For example, when acceleration is applied in the left-right direction in FIG. 1, inertial force depending on acceleration is applied to the movable electrode 4, and the position of the movable electrode 4 moves to a position that balances with the restoring force of the elastic beam 3 having elastic characteristics. The relative position with respect to the fixed electrode 5 changes. The movable electrode groups 4a to 4b, which are plate electrode groups provided on the movable electrode 4, are arranged in a relationship facing each other with the fixed electrode group 5a or the fixed electrode group 5b. Form. As the relative position of the movable electrode 4 and the fixed electrode groups 5a and 6b moves, the capacitance changes differentially, so that at least one of the movable electrode 4 and the fixed electrode group 5a or 6b is at least one of them. Since the change in capacitance is measured, the inertial force and acceleration applied to the movable electrode 4 can be detected. Note that the change in capacitance between the movable electrode 4 (movable electrode groups 4a and 4b) and the fixed electrode groups 5a and 6b varies between the electrode pads 6c and 6a or 6c and 6b electrically connected to each other. Such an impedance can be measured by an external circuit (not shown). Therefore, it is clear that the inertial force applied to the inertial force sensor according to the first embodiment of the present invention can be detected from the impedance measurement between the electrode pads 6 provided in the inertial force sensor.

図5ないし図13を用いて本発明の慣性力センサの製造工程について説明する。図5ないし図13の(a)図は、図1における一点鎖線Aに沿って切断した断面に相当する部位に対して各製造工程に伴って変化する途中プロセスの断面形状について示した途中プロセス断面図である。図5ないし図13の(b)図は、対応する各図番(a)の図面中に記した2点鎖線で囲った部分の拡大断面図である。   The manufacturing process of the inertial force sensor of the present invention will be described with reference to FIGS. FIG. 5A to FIG. 13A are cross-sectional views of the intermediate process showing the cross-sectional shape of the intermediate process that changes with each manufacturing process with respect to the portion corresponding to the cross section cut along the alternate long and short dash line A in FIG. FIG. FIGS. 5 to 13B are enlarged cross-sectional views of a portion surrounded by a two-dot chain line in the corresponding drawing number (a).

図5はシリコンウエハ10上にシリコン酸化膜などの第1絶縁膜11及びシリコン窒化膜などの第2絶縁膜12を製膜装置により堆積した状態である。ただし、ポリシリコン配線7とシリコンウエハ10から抜出して形成する各種の要部(枠1やアンカ柱2や固定電極5等)および電気的に接続させる予定部位については、あらかじめマスキング材料等を用いて開口部位をパタ−ニングし、その後エッチングにより第2絶縁膜12の不要箇所を除去しておく。なお、第1絶縁膜11は後工程で実施されるシリコンウエハ10から各種の要部をそれぞれ抜出すための貫通エッチング処理において、エッチングストッパ層の役割を持ち、余計な個所のエッチングを阻止する。   FIG. 5 shows a state in which a first insulating film 11 such as a silicon oxide film and a second insulating film 12 such as a silicon nitride film are deposited on the silicon wafer 10 by a film forming apparatus. However, various main parts (frame 1, anchor pillar 2, fixed electrode 5, etc.) extracted from the polysilicon wiring 7 and the silicon wafer 10 and parts to be electrically connected are previously used with a masking material or the like. The opening portion is patterned, and then unnecessary portions of the second insulating film 12 are removed by etching. The first insulating film 11 serves as an etching stopper layer in the through etching process for extracting various main parts from the silicon wafer 10 to be performed in a later process, and prevents the etching of unnecessary portions.

図6はポリシリコン配線7を製膜装置によりパタ−ニングして堆積した状態である。なお、この部位のポリシリコン配線7はボロンなどの不純物を混入し、低電気抵抗の薄膜としておくことが望ましい。   FIG. 6 shows a state in which the polysilicon wiring 7 is deposited by patterning with a film forming apparatus. Note that it is desirable that the polysilicon wiring 7 in this portion is mixed with an impurity such as boron to form a thin film having a low electrical resistance.

図7はシリコン酸化膜などの第3絶縁膜13をパタ−ニング堆積した状態である。第3絶縁膜13は先に形成したポリシリコン配線7を埋め込む形で形成し、段差を埋める役割を持つ。   FIG. 7 shows a state in which a third insulating film 13 such as a silicon oxide film is pattern-deposited. The third insulating film 13 is formed so as to bury the previously formed polysilicon wiring 7 and has a role of filling the step.

図8はシリコン酸化膜などの第4絶縁膜14及びシリコン窒化膜などの第5絶縁膜15を堆積した状態である。ただし、ポリシリコン配線7と接合用ポリシリコン膜16と電気的に接続させる予定部位は、マスキング材料等により開口部位をパタ−ニング化し開口しておく。   FIG. 8 shows a state in which a fourth insulating film 14 such as a silicon oxide film and a fifth insulating film 15 such as a silicon nitride film are deposited. However, the opening portion of the portion to be electrically connected to the polysilicon wiring 7 and the bonding polysilicon film 16 is patterned and opened with a masking material or the like.

図9は第2ガラス基板9と接合するポリシリコン膜16をパタ−ニングして堆積した状態である。ポリシリコン膜16の表面はポリシリコン配線7に対する第3絶縁膜13により埋込まれ段差部を消失させ、また、加熱処理、メカニカル研磨、化学研磨などにより、表面粗さを500Å以下とすることが、第2ガラス基板9との密着性を上げる上で望ましい。またポリシリコン膜16はボロンなどの不純物を含まないノンド−プポリシリコンであることが望ましい。これは、ポリシリコン膜16をノンド−プポリシリコンとすることで、比較的低温での陽極接合法であっても第2ガラス基板9との十分な密着性を確保できることに基づくものである。   FIG. 9 shows a state in which a polysilicon film 16 to be bonded to the second glass substrate 9 is patterned and deposited. The surface of the polysilicon film 16 is buried by the third insulating film 13 with respect to the polysilicon wiring 7 to eliminate the stepped portion, and the surface roughness may be reduced to 500 mm or less by heat treatment, mechanical polishing, chemical polishing or the like. It is desirable for improving the adhesion with the second glass substrate 9. The polysilicon film 16 is preferably non-doped polysilicon that does not contain impurities such as boron. This is based on the fact that the polysilicon film 16 is non-doped polysilicon, so that sufficient adhesion to the second glass substrate 9 can be ensured even by an anodic bonding method at a relatively low temperature.

言い換えると、ポリシリコン膜16に対する第2ガラス基板9側の電位を400〜1500Vの負バイアスとし、ポリシリコン膜16を第2ガラス基板9に接着させ、300〜500℃に昇温度して0.2〜5時間保持する場合、ポリシリコン膜16中の不純物濃度を100ppb以下にしない限り(ただし、酸素とカ−ボンは除く)、十分な密着強度が得られず、ポリシリコン膜16と第2ガラス基板9の接着ができないことによる。この知見に基づいて本発明の実施の形態1に記載の慣性力センサでは、用いたポリシリコン膜16をノンド−プのポリシリコンとしたため、高い機械的な信頼性をもったものにできるという効果が得られる。   In other words, the potential on the second glass substrate 9 side with respect to the polysilicon film 16 is set to a negative bias of 400 to 1500 V, the polysilicon film 16 is adhered to the second glass substrate 9, and the temperature is raised to 300 to 500 ° C. In the case of holding for 2 to 5 hours, unless the impurity concentration in the polysilicon film 16 is 100 ppb or less (except for oxygen and carbon), sufficient adhesion strength cannot be obtained, and the polysilicon film 16 and the second film This is because the glass substrate 9 cannot be bonded. Based on this knowledge, in the inertial force sensor according to the first embodiment of the present invention, since the polysilicon film 16 used is non-doped polysilicon, it is possible to achieve high mechanical reliability. Is obtained.

図10は、外部回路とワイヤボンディングで電気的接続する電極パッド6をアルミニュウムや金などを用いたスパッタリングやめっき等のプレ−ティング技術により形成した状態である。   FIG. 10 shows a state in which electrode pads 6 that are electrically connected to an external circuit by wire bonding are formed by a plating technique such as sputtering or plating using aluminum or gold.

図11は第2ガラス基板9をポリシリコン膜16と陽極接合した状態である。第2ガラス基板9は予め電極パッド6上に穴を空け、ワイヤボンディング可能な構造にしている。なお、第2ガラス基板9を接合後、シリコンウエハ10は機械研磨ないし化学研磨等を用いたラッピング研磨等で所望の厚み、たとえば数十μm〜百μm程度に加工されている。   FIG. 11 shows a state in which the second glass substrate 9 is anodically bonded to the polysilicon film 16. The second glass substrate 9 has a structure in which holes are formed in advance on the electrode pads 6 so that wire bonding can be performed. After the second glass substrate 9 is bonded, the silicon wafer 10 is processed to a desired thickness, for example, about several tens of μm to one hundred μm, by lapping polishing using mechanical polishing or chemical polishing.

図12はシリコンウエハ10を裏面よりドライエッチングなどで貫通するようにエッチングしてアンカ柱2、弾性梁3、可動電極4、固定電極5、枠1などを形成した状態である。なお、第1絶縁膜11はエッチングストップ層として機能する。すなわち、第1絶縁膜11は上記ドライエッチング時にエッチングしたくない部分であるポリシリコン配線7およびポリシリコン膜16に対して損傷させないようにするものである。   FIG. 12 shows a state where the anchor pillar 2, the elastic beam 3, the movable electrode 4, the fixed electrode 5, the frame 1 and the like are formed by etching the silicon wafer 10 so as to penetrate through the back surface by dry etching or the like. The first insulating film 11 functions as an etching stop layer. That is, the first insulating film 11 prevents damage to the polysilicon wiring 7 and the polysilicon film 16, which are portions that are not desired to be etched during the dry etching.

図13は第1絶縁膜11をフッ酸などで選択除去した後、第1ガラス基板8と陽極接合し、センサ検出部を密封構造とした状態である。なお、第1ガラス基板8には、あらかじめセンサ検出部である可動電極4等が設けられる可動領域下に溝を形成し、可動の妨げとならないようにしている。以上説明した製造工程により、本発明の慣性力センサは完成する。   FIG. 13 shows a state where the first insulating film 11 is selectively removed with hydrofluoric acid or the like and then anodic bonded to the first glass substrate 8 so that the sensor detection unit has a sealed structure. In addition, a groove is formed in advance in the first glass substrate 8 below a movable region where the movable electrode 4 or the like as a sensor detection unit is provided so as not to hinder the movement. The inertial force sensor of the present invention is completed by the manufacturing process described above.

本発明の実施の形態1によれば、ポリシリコン配線7の一部に弾性特性を有するようにバネ状の空中配線部7scを枠1とアンカ柱2の間に、また、枠1と固定電極部6aあるいは6bの間に7saあるいは7sbを新たに設けたことにより、温度変化による接合界面の歪みが発生する枠部10の影響をバネ状の空中配線部7scに吸収させることができる。すなわち、ポリシリコン配線7は枠部10に発生する歪みをアンカ柱2や固定電極5に伝達し難くなるので、温度安定性の高い慣性力センサを実現できるという格別な効果が得られる。   According to the first embodiment of the present invention, a spring-like aerial wiring portion 7sc is provided between the frame 1 and the anchor pillar 2 so that a part of the polysilicon wiring 7 has elastic characteristics, and the frame 1 and the fixed electrode. By newly providing 7sa or 7sb between the parts 6a or 6b, the influence of the frame part 10 that causes distortion of the bonding interface due to temperature change can be absorbed by the spring-like aerial wiring part 7sc. That is, since the polysilicon wiring 7 is difficult to transmit the strain generated in the frame portion 10 to the anchor pillar 2 and the fixed electrode 5, a special effect that an inertial force sensor with high temperature stability can be realized.

以下、バネ状の空中配線部を持たない従来の慣性力センサとバネ状の空中配線部を持つ本発明の慣性力センサを比較することから、本発明のより具体的な効果について説明を加える。図14は、図1に示した本発明の実施の形態1の慣性力センサと比較するための、バネ状の空中配線をもたない従来の慣性力センサの平面図とその断面図である。本発明の慣性力センサを示す図1及び図2(a)との比較から判るように、従来の慣性力センサの構造は配線にバネ状の空中配線部分を備えず、固定した配線を用いたこと以外は、図1記載の本発明の慣性力センサと全く同じ構造(構成)である。   Hereinafter, since the inertial force sensor of the present invention having the spring-like aerial wiring portion and the conventional inertial force sensor having the spring-like aerial wiring portion will be compared, a more specific effect of the present invention will be described. FIG. 14 is a plan view and a cross-sectional view of a conventional inertial force sensor having no spring-like aerial wiring for comparison with the inertial force sensor according to Embodiment 1 of the present invention shown in FIG. As can be seen from a comparison with FIG. 1 and FIG. 2 (a) showing the inertial force sensor of the present invention, the structure of the conventional inertial force sensor does not include a spring-like aerial wiring portion in the wiring, and uses a fixed wiring. Except for this, it has the same structure (configuration) as the inertial force sensor of the present invention shown in FIG.

図15は本発明の慣性力センサと比較例の慣性力センサにおいて、温度変化に伴う電極パッド6cと6a間に加わるインピ−ダンスの変化量を図示しない外部回路により測定した結果である。本発明の慣性力センサ(バネ状空中配線)の温度変化に伴う電極間のインピ−ダンスの変化量は、従来の慣性力センサ(固定配線)との比較において約1/4と少なくなっている。枠1とアンカ柱2もしくは固定電極5との間に設けた配線の一部をバネ状の空中配線することで、温度変化に伴い発生した枠1の歪みの影響がアンカ柱2や固定電極5に伝わりにくくなり、その結果、アンカ柱2に空中支持される可動電極4の位置や固定電極5の位置が変化しにくくなるため、インピ−ダンスの変化量が少なくなったと考えられる。従って、本発明の実施の形態1の慣性力センサの構成により、温度変化に対して変動し難い高精度なセンサを実現できるという効果が得られる。   FIG. 15 shows the results of measuring the amount of change in impedance applied between the electrode pads 6c and 6a due to the temperature change by an external circuit (not shown) in the inertial force sensor of the present invention and the inertial force sensor of the comparative example. The amount of change in the impedance between the electrodes accompanying the temperature change of the inertial force sensor (spring-like aerial wiring) of the present invention is reduced to about ¼ compared with the conventional inertial force sensor (fixed wiring). . A part of the wiring provided between the frame 1 and the anchor column 2 or the fixed electrode 5 is spring-like aerial wiring, so that the influence of the distortion of the frame 1 caused by the temperature change is affected by the anchor column 2 and the fixed electrode 5. As a result, the position of the movable electrode 4 supported by the anchor column 2 in the air and the position of the fixed electrode 5 are less likely to change, and it is considered that the amount of change in impedance is reduced. Therefore, the configuration of the inertial force sensor according to the first embodiment of the present invention can provide an effect that a highly accurate sensor that does not easily change with respect to a temperature change can be realized.

また、慣性力センサの枠1およびアンカ柱、弾性梁、可動電極ならびに固定電極が共に第2ガラス基板9に接合されたシリコンウエハから抜出し形成されるため、枠1およびアンカ柱、弾性梁、可動電極ならびに固定電極の相対的な位置関係が、製造工程の途中で揺らぐことなく、また、再配置させることなく高精度に特定されるという効果が得られる。   In addition, since the inertial force sensor frame 1 and the anchor column, the elastic beam, the movable electrode, and the fixed electrode are all formed by being extracted from the silicon wafer bonded to the second glass substrate 9, the frame 1 and the anchor column, the elastic beam, the movable electrode are movable. There is an effect that the relative positional relationship between the electrode and the fixed electrode is specified with high accuracy without being shaken during the manufacturing process and without being rearranged.

また、シリコンウエハ10から抜出された1対のアンカ柱2に支持される1対の弾性梁3を介して空中支持された可動電極4および16個の固定電極5等を上下基板により密封するため、外乱の影響に強く信頼性の高い慣性力センサを実現できる。さらに密封構造のため、高価な金属パッケ−ジ、セラミックパッケ−ジが不要であり、一般の半導体集積回路チップに使用されている安価なプラスチックパッケ−ジを適用でき、慣性力センサの低価格化が実現できるという効果がある。   Further, the movable electrode 4 supported in the air and the 16 fixed electrodes 5 and the like are sealed by the upper and lower substrates through a pair of elastic beams 3 supported by the pair of anchor pillars 2 extracted from the silicon wafer 10. Therefore, it is possible to realize an inertial force sensor that is highly resistant to disturbance and highly reliable. Furthermore, because of the sealed structure, expensive metal packages and ceramic packages are not required, and inexpensive plastic packages used for general semiconductor integrated circuit chips can be applied, and the inertial force sensor can be reduced in price. There is an effect that can be realized.

実施の形態2.
以下図面に基づき、本発明の実施の形態2について詳細に説明する。図16(a)は、本発明の実施の形態2に用いられる慣性力センサの概略構成を示す平面図である。図16(b)及び(c)は、図16(a)に記された一点鎖線A−Aもしくは一点鎖線B−Bに沿って切断したときのそれぞれの断面について拡大表示した拡大断面図である。なお、図16において図1ないし図14に記載した部分と同一ないし相当部分については、同一符号を付与している。
Embodiment 2. FIG.
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings. FIG. 16A is a plan view showing a schematic configuration of the inertial force sensor used in Embodiment 2 of the present invention. FIGS. 16B and 16C are enlarged cross-sectional views showing enlarged views of the respective cross sections when cut along the one-dot chain line AA or one-dot chain line BB shown in FIG. . In FIG. 16, the same or corresponding parts as those shown in FIGS. 1 to 14 are given the same reference numerals.

実施の形態2に用いられる慣性力センサと実施の形態1に用いられる慣性力センサとの大きな差異は、可動電極4の内側に固定電極5を配置した点である。すなわち、以下に説明する部分を除き、実施の形態2に用いられる慣性力センサは、実施の形態1に用いられる慣性力センサとほぼ同一の構成である。以下、相違する部分について詳細に説明する。図16(a)において実施の形態2に用いられる慣性力センサの固定電極群5a及び6bは可動電極4の内側に設けられた空隙の内部に配置されている。各固定電極5はポリシリコン配線7aもしくは7bのいずれかによって電気的に接続され、固定電極群5a及び6bを構成している。配線7a、配線7bは、可動電極4に設けられた可動電極群4aおよび4b上をまたぐように配置されている。すなわち図16(b)及び(c)からわかるように、ポリシリコン配線7aおよび7bはシリコンウエハ10から抜出した可動電極群4aおよび4bと接触しないようにこれらの上に空間を介して空中に配置されている。以上が相違点である。   A major difference between the inertial force sensor used in the second embodiment and the inertial force sensor used in the first embodiment is that the fixed electrode 5 is arranged inside the movable electrode 4. That is, the inertial force sensor used in the second embodiment has substantially the same configuration as that of the inertial force sensor used in the first embodiment, except for the parts described below. Hereinafter, the different parts will be described in detail. In FIG. 16A, the stationary electrode groups 5a and 6b of the inertial force sensor used in the second embodiment are arranged inside a gap provided inside the movable electrode 4. Each fixed electrode 5 is electrically connected by either polysilicon wiring 7a or 7b, and constitutes fixed electrode groups 5a and 6b. The wiring 7 a and the wiring 7 b are arranged so as to straddle the movable electrode groups 4 a and 4 b provided on the movable electrode 4. That is, as can be seen from FIGS. 16B and 16C, the polysilicon wirings 7a and 7b are arranged in the air via spaces so as not to contact the movable electrode groups 4a and 4b extracted from the silicon wafer 10. Has been. The above is the difference.

上記実施の形態2に用いられる慣性力センサにおいては、可動電極4に設けられる可動電極群4aおよび4bに自由端をなくした構造としたため、実施の形態1に用いられる電極群4aおよび4bが櫛歯状の自由端を有した電極構造と異なる。従って、可動電極4の機械剛性が高くなるので、加速度による可動電極4の構造変形が発生しなくなり、信頼性の高い慣性力センサを実現できるという効果が生まれる。   In the inertial force sensor used in the second embodiment, since the movable electrode groups 4a and 4b provided on the movable electrode 4 have a structure in which the free ends are eliminated, the electrode groups 4a and 4b used in the first embodiment are combed. Different from the electrode structure with a tooth-like free end. Therefore, since the mechanical rigidity of the movable electrode 4 is increased, the structural deformation of the movable electrode 4 due to acceleration does not occur, and an effect that a highly reliable inertial force sensor can be realized.

実施の形態3.
以下図面に基づき、本発明の実施の形態3について詳細に説明する。図17(a)は、本発明の実施の形態3に用いられる慣性力センサの概略構成を示す平面図である。図17(b)は、図17(a)に記された一点鎖線A−Aに沿って切断したときの断面図である。なお、図17において図1ないし図14および図16に記載した部分と同一ないし相当部分については、同一符号を付与している。
Embodiment 3 FIG.
Hereinafter, a third embodiment of the present invention will be described in detail with reference to the drawings. FIG. 17A is a plan view showing a schematic configuration of the inertial force sensor used in Embodiment 3 of the present invention. FIG. 17B is a cross-sectional view taken along the alternate long and short dash line AA shown in FIG. In FIG. 17, the same or corresponding parts as those shown in FIGS. 1 to 14 and 16 are denoted by the same reference numerals.

実施の形態3に用いられる慣性力センサと実施の形態1に用いられる慣性力センサとの大きな差異は、可動電極4の可動方向を紙面に対し垂直方向とした点である。以下、詳細に説明する。図16において、8個のアンカ柱2に空中支持される弾性梁3(実施の形態1および2とは形状が異なる)により支持された可動電極4は、紙面に対し上下に可動できるように構成されている。各アンカ柱2は第2ガラス基板9上に各種の絶縁膜を介して位置決め固定されている。可動電極4と対向する第1ガラス基板8及びガラス第2ガラス基板9上にはそれぞれ金属製の固定電極17a及び17bが形成されている。固定電極17a及び17bは対応する電極ポスト18a及び18bと電気的に接続され、さらにポリシリコン配線7a及び7bを介して電極パッド6a及び6bに接続されている。以上説明した部分を除き、実施の形態3に用いられる慣性力センサは、実施の形態1に用いられる慣性力センサとほぼ同様の構成である。   The major difference between the inertial force sensor used in Embodiment 3 and the inertial force sensor used in Embodiment 1 is that the movable electrode 4 is moved in a direction perpendicular to the paper surface. Details will be described below. In FIG. 16, the movable electrode 4 supported by the elastic beam 3 (different in shape from the first and second embodiments) supported in the air by the eight anchor pillars 2 is configured to be movable up and down with respect to the paper surface. Has been. Each anchor column 2 is positioned and fixed on the second glass substrate 9 via various insulating films. Metal fixed electrodes 17a and 17b are formed on the first glass substrate 8 and the glass second glass substrate 9 facing the movable electrode 4, respectively. The fixed electrodes 17a and 17b are electrically connected to the corresponding electrode posts 18a and 18b, and are further connected to the electrode pads 6a and 6b via the polysilicon wirings 7a and 7b. Except for the portions described above, the inertial force sensor used in the third embodiment has substantially the same configuration as the inertial force sensor used in the first embodiment.

このような構成にすることにより、本発明の実施の形態3に用いられる慣性力センサは、紙面に向かって垂直方向(面外方向)の慣性力を高精度で検知する小型かつ薄型の慣性力センサとして機能することは明らかである。   By adopting such a configuration, the inertial force sensor used in Embodiment 3 of the present invention is a small and thin inertial force that detects the inertial force in the vertical direction (out-of-plane direction) toward the paper surface with high accuracy. It is clear that it functions as a sensor.

実施の形態1における本発明の慣性力センサの平面図。FIG. 3 is a plan view of the inertial force sensor of the present invention in the first embodiment. 実施の形態1における本発明の慣性力センサの断面図。Sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの断面図。Sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの断面図。Sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における本発明の慣性力センサの途中プロセス断面図。Sectional process sectional drawing of the inertial force sensor of this invention in Embodiment 1. FIG. 実施の形態1における従来の慣性力センサの平面図と断面図。FIG. 2 is a plan view and a cross-sectional view of a conventional inertial force sensor according to Embodiment 1. 実施の形態1における本発明の慣性力センサと従来の慣性力センサとの温度変化に伴うインピ−ダンスの変化量について測定した結果図。The result figure which measured about the variation | change_quantity of the impedance accompanying the temperature change of the inertial force sensor of this invention in Embodiment 1, and the conventional inertial force sensor. 実施の形態2における本発明の慣性力センサを示す平面図と断面図。The top view and sectional drawing which show the inertial force sensor of this invention in Embodiment 2. FIG. 実施の形態3における本発明の慣性力センサを示す平面図と断面図。FIG. 6 is a plan view and a cross-sectional view showing an inertial force sensor of the present invention in a third embodiment.

符号の説明Explanation of symbols

2 アンカ柱 3 弾性梁
4 可動電極 6 固定電極
7 配線 7S バネ状の空中配線部
8 第1ガラス基板(下面基板) 9 第2ガラス基板(上面基板)
10 シリコンウエハ(導電体平板)

2 Anchor pillar 3 Elastic beam 4 Movable electrode 6 Fixed electrode 7 Wiring 7S Spring-like aerial wiring section
8 First glass substrate (lower substrate) 9 Second glass substrate (upper substrate)
10 Silicon wafer (conductor plate)

Claims (5)

上面基板と下面基板は対面し、前記上面基板または前記下面基板に固定された固定電極およびアンカ柱、このアンカ柱に支持された弾性梁、前記弾性梁に進退可能に空中支持された可動電極、前記上面基板と下面基板の間に前記可動電極もしくは固定電極と外部回路とを電気的に接続するバネ状の空中配線部を有する配線を備え、前記可動電極の慣性力に依存して進退する可動電極と前記固定電極との間の静電容量の変化に基づき該慣性力を検知するようにしたことを特徴とする慣性力センサ。   The upper surface substrate and the lower surface substrate face each other, the fixed electrode and the anchor column fixed to the upper surface substrate or the lower surface substrate, the elastic beam supported by the anchor column, the movable electrode supported in the air so as to advance and retreat on the elastic beam, A movable wire that has a spring-like aerial wiring portion that electrically connects the movable electrode or the fixed electrode and an external circuit between the upper surface substrate and the lower surface substrate, and moves forward and backward depending on the inertial force of the movable electrode An inertial force sensor, wherein the inertial force is detected based on a change in capacitance between an electrode and the fixed electrode. 上面基板と下面基板は対面し、前記上面基板または前記下面基板に固定されたアンカ柱、このアンカ柱に支持された弾性梁、前記弾性梁に進退可能に空中支持された可動電極、前記可動電極の内側に前記上面基板もしくは下面基板に固定された固定電極を備え、前記可動電極の慣性力に依存して進退する可動電極と前記固定電極との間の静電容量の変化に基づき該慣性力を検知するようにしたことを特徴とする慣性力センサ。   The upper surface substrate and the lower surface substrate face each other, the anchor column fixed to the upper surface substrate or the lower surface substrate, the elastic beam supported by the anchor column, the movable electrode supported in the air so as to advance and retreat on the elastic beam, the movable electrode A fixed electrode fixed to the upper surface substrate or the lower surface substrate, and the inertial force based on a change in capacitance between the movable electrode that moves forward and backward depending on the inertial force of the movable electrode and the fixed electrode. An inertial force sensor characterized by detecting the above. 請求項1または請求項2記載の慣性力センサのアンカ柱、弾性梁、可動電極および固定電極が共に同一の導電体平板から抜出し形成されたことを特徴とする慣性力センサ。   3. An inertial force sensor according to claim 1, wherein the anchor column, the elastic beam, the movable electrode, and the fixed electrode of the inertial force sensor according to claim 1 are extracted from the same conductor flat plate. 請求項3記載の慣性力センサの導電体平板がシリコンウエハであることを特徴とする慣性力センサ。   4. The inertial force sensor according to claim 3, wherein the conductor flat plate of the inertial force sensor is a silicon wafer. 請求項1または請求項2記載の慣性力センサの上面基板および下面基板がガラス基板であり、また、この上面基板または下面基板の対面する側の表面にノンド−プドポリシリコン膜が陽極接合法で接着されていることを特徴とする慣性力センサ。

3. The upper surface substrate and the lower surface substrate of the inertial force sensor according to claim 1 or 2 are glass substrates, and a non-doped polysilicon film is an anodic bonding method on the surface of the upper surface substrate or the lower surface substrate facing each other. An inertial force sensor that is bonded with

JP2005177844A 2005-06-17 2005-06-17 Inertial force sensor Pending JP2006349563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177844A JP2006349563A (en) 2005-06-17 2005-06-17 Inertial force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177844A JP2006349563A (en) 2005-06-17 2005-06-17 Inertial force sensor

Publications (1)

Publication Number Publication Date
JP2006349563A true JP2006349563A (en) 2006-12-28

Family

ID=37645574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177844A Pending JP2006349563A (en) 2005-06-17 2005-06-17 Inertial force sensor

Country Status (1)

Country Link
JP (1) JP2006349563A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156581A (en) * 2007-12-25 2009-07-16 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Inclination detecting element
WO2011014176A1 (en) 2009-07-30 2011-02-03 Hewlett-Packard Development Company, L.P. Nanowire-based systems for performing raman spectroscopy
JP2012088319A (en) * 2011-11-01 2012-05-10 Denso Corp Semiconductor device and method of manufacturing the same
JP2012098208A (en) * 2010-11-04 2012-05-24 Seiko Epson Corp Functional element, method for manufacturing functional element, physical quantity sensor and electronic apparatus
JP2013040857A (en) * 2011-08-17 2013-02-28 Seiko Epson Corp Physical quantity sensor and electronic apparatus
JP2015062040A (en) * 2015-01-07 2015-04-02 セイコーエプソン株式会社 Functional element, method for manufacturing functional element, physical quantity sensor and electronic apparatus
CN105301283A (en) * 2014-06-17 2016-02-03 精工爱普生株式会社 Functional element, electronic device and mobile object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218545A (en) * 1998-02-02 1999-08-10 Omron Corp Capacitance type acceleration sensor and detecting method
JP2002296173A (en) * 2002-03-19 2002-10-09 Olympus Optical Co Ltd Fine passage element
WO2002103368A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Silicon device
JP2003344445A (en) * 2002-05-24 2003-12-03 Mitsubishi Electric Corp Inertia force sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218545A (en) * 1998-02-02 1999-08-10 Omron Corp Capacitance type acceleration sensor and detecting method
WO2002103368A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Silicon device
JP2002296173A (en) * 2002-03-19 2002-10-09 Olympus Optical Co Ltd Fine passage element
JP2003344445A (en) * 2002-05-24 2003-12-03 Mitsubishi Electric Corp Inertia force sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156581A (en) * 2007-12-25 2009-07-16 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Inclination detecting element
JP4686747B2 (en) * 2007-12-25 2011-05-25 財団法人北九州産業学術推進機構 Tilt detection element
WO2011014176A1 (en) 2009-07-30 2011-02-03 Hewlett-Packard Development Company, L.P. Nanowire-based systems for performing raman spectroscopy
JP2012098208A (en) * 2010-11-04 2012-05-24 Seiko Epson Corp Functional element, method for manufacturing functional element, physical quantity sensor and electronic apparatus
US9086428B2 (en) 2010-11-04 2015-07-21 Seiko Epson Corporation Functional device, method of manufacturing the functional device, physical quantity sensor, and electronic apparatus
US9678100B2 (en) 2010-11-04 2017-06-13 Seiko Epson Corporation Functional device, method of manufacturing the functional device, physical quantity sensor, and electronic apparatus
JP2013040857A (en) * 2011-08-17 2013-02-28 Seiko Epson Corp Physical quantity sensor and electronic apparatus
US9310393B2 (en) 2011-08-17 2016-04-12 Seiko Epson Corporation Physical quantity sensor and electronic apparatus
JP2012088319A (en) * 2011-11-01 2012-05-10 Denso Corp Semiconductor device and method of manufacturing the same
CN105301283A (en) * 2014-06-17 2016-02-03 精工爱普生株式会社 Functional element, electronic device and mobile object
JP2015062040A (en) * 2015-01-07 2015-04-02 セイコーエプソン株式会社 Functional element, method for manufacturing functional element, physical quantity sensor and electronic apparatus

Similar Documents

Publication Publication Date Title
KR102217083B1 (en) Pressure sensor
US7905149B2 (en) Physical sensor and method of process
JP2006349563A (en) Inertial force sensor
EP2346083A1 (en) Mems sensor
US20180246141A1 (en) Dynamic quantity sensor
US11320324B2 (en) Sensor device
JP6258977B2 (en) Sensor and manufacturing method thereof
JP2009241164A (en) Semiconductor sensor apparatus and manufacturing method therefor
JP4839466B2 (en) Inertial force sensor and manufacturing method thereof
JP3938199B1 (en) Wafer level package structure and sensor device
JP3938205B1 (en) Sensor element
JP5130151B2 (en) Capacitive semiconductor physical quantity sensor manufacturing method and capacitive semiconductor physical quantity sensor
JP3938202B1 (en) Manufacturing method of sensor package
JP2006214963A (en) Acceleration sensor, electronic equipment, and manufacturing method for acceleration sensor
JP4665733B2 (en) Sensor element
JP4817287B2 (en) Method for manufacturing mechanical quantity sensor
JP5929645B2 (en) Physical quantity sensor
JP2001044449A (en) Force detection sensor and manufacture of force detection sensor
JP2010177280A (en) Method of manufacturing semiconductor sensor, and semiconductor sensor
JP2010156577A (en) Mems sensor and method of manufacturing the same
JP5069410B2 (en) Sensor element
JP2008157825A (en) Sensor device
JPH07128365A (en) Semiconductor acceleration sensor and fabrication thereof
JP2006300904A (en) Physical quantity sensor
JP2007263767A (en) Sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601