JPH07320968A - Manufacture of rare-earth-fe-n bond magnet - Google Patents

Manufacture of rare-earth-fe-n bond magnet

Info

Publication number
JPH07320968A
JPH07320968A JP6105651A JP10565194A JPH07320968A JP H07320968 A JPH07320968 A JP H07320968A JP 6105651 A JP6105651 A JP 6105651A JP 10565194 A JP10565194 A JP 10565194A JP H07320968 A JPH07320968 A JP H07320968A
Authority
JP
Japan
Prior art keywords
iron
rare earth
magnetic material
nitrogen based
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6105651A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
岳史 高橋
Seiji Kojima
清司 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6105651A priority Critical patent/JPH07320968A/en
Publication of JPH07320968A publication Critical patent/JPH07320968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To simplify the manufacturing process of a rare-earth-Fe-N bond magnet and shorten the manufacturing time of the magnet so as to reduce the manufacturing cost of the magnet by unifying the pulverizing process and kneading process of the manufacturing process. CONSTITUTION:A rare-earth-Fe-N bond magnet manufacturing process includes a pulverizing and kneading process in which the pulverization of a magnetic material for a rare-earth-Fe-N bond magnet put in a prescribed container together with a binder and grinding beads and kneading of the pulverized magnetic material are simultaneously performed practically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類−鉄−窒素系ボン
ド磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-iron-nitrogen based bonded magnet.

【0002】[0002]

【従来の技術】希土類−鉄−窒素系ボンド磁石の製造方
法としては以下の工程が挙げられる。
2. Description of the Related Art The following steps are mentioned as a method for producing a rare earth-iron-nitrogen based bonded magnet.

【0003】1)母合金作成工程 2)粗粉砕工程 3)窒化工程 4)微粉砕(単磁区化)工程 5)バインダ−添加による混練工程 6)成形工程 希土類−鉄−窒素系磁性材料は母合金中に窒素を侵入型
に導入することにより強い一軸磁気異方性を示すととも
にキュリ−温度、飽和磁化が向上することが知られてい
る。窒化処理としては、窒素ガス、アンモニアガス、水
素−窒素混合ガス、水素−アンモニア混合ガス等の雰囲
気ガス中での熱処理によって行われている。(例えば特
開平2−57663号) 又、希土類−鉄−窒素系磁性材料の保磁力発現機構はニ
ュ−クリエ−ション型であり、高保磁力を得るためには
単磁区粒子径に微粉砕することが必要であるため、1〜
5μm程度の粒径にまで粉砕が行われる。
1) Mother alloy preparation step 2) Coarse crushing step 3) Nitriding step 4) Fine crushing (single domain formation) step 5) Kneading step by adding binder 6) Forming step Rare earth-iron-nitrogen based magnetic material is mother It is known that by introducing nitrogen into the alloy in an interstitial type, strong uniaxial magnetic anisotropy is exhibited and Curie temperature and saturation magnetization are improved. The nitriding treatment is performed by heat treatment in an atmosphere gas such as nitrogen gas, ammonia gas, hydrogen-nitrogen mixed gas, hydrogen-ammonia mixed gas. (For example, Japanese Patent Application Laid-Open No. 2-57663) Further, the coercive force expression mechanism of the rare earth-iron-nitrogen based magnetic material is a new generation type, and in order to obtain a high coercive force, it is finely pulverized into a single domain particle size. Is required, so 1-
Grinding is performed to a particle size of about 5 μm.

【0004】従来、希土類−鉄−窒素系ボンド磁石は、
希土類−鉄−窒素系磁性材料を上記粒径まで微粉砕した
後、バインダ−成分を添加、混練し、得られたコンパウ
ンドを磁場中成形することにより作成されている。
Conventionally, rare earth-iron-nitrogen based bonded magnets are
It is prepared by finely pulverizing a rare earth-iron-nitrogen based magnetic material to the above particle size, adding a binder component, kneading, and molding the obtained compound in a magnetic field.

【0005】一方、上述した理由から、希土類−鉄−窒
素系磁性材料を単磁区粒子径に微粉砕する必要があり、
このとき、粉砕された微粉末は非常に活性であるため、
酸素存在雰囲気下では酸化反応が進行する。特に、粉砕
工程、混練工程等工程中に熱が発生する場合酸化反応が
促進される。希土類−鉄−窒素系磁性材料においては、
酸化により希土類酸化物とαFeに分解するため磁気特
性が劣化する。このような磁気特性の劣化を避けるた
め、粉砕工程、混練工程は、各々、不活性雰囲気、還元
雰囲気、真空雰囲気等の非酸化性雰囲気下で行われてい
た。
On the other hand, for the reasons described above, it is necessary to finely pulverize the rare earth-iron-nitrogen based magnetic material into single domain particle diameters.
At this time, since the pulverized fine powder is very active,
Oxidation reaction proceeds in the presence of oxygen. Especially, when heat is generated during the crushing step, the kneading step, etc., the oxidation reaction is promoted. In rare earth-iron-nitrogen based magnetic materials,
Since it is decomposed into rare earth oxides and αFe by oxidation, the magnetic properties are deteriorated. In order to avoid such deterioration of magnetic properties, the crushing step and the kneading step have been performed in a non-oxidizing atmosphere such as an inert atmosphere, a reducing atmosphere, or a vacuum atmosphere.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
このような製造方法では、粉砕工程と混練工程が別工程
であるため、各々の工程において使用装置内を非酸化性
雰囲気にする必要があった。
However, in such a conventional manufacturing method, since the crushing step and the kneading step are separate steps, it is necessary to make the apparatus used in each step a non-oxidizing atmosphere. .

【0007】更に又、両者工程間における試料の搬出入
時においても同様の酸化防止対策を講じる必要があり、
粉砕工程及び混練工程に関し、製造工程が非常に繁雑に
なるといった課題があった。又、このことが、工程時間
の短縮や、コスト低減の障害にもなっていた。
Furthermore, it is necessary to take the same anti-oxidation measure when the sample is carried in and out between both steps.
Regarding the crushing process and the kneading process, there is a problem that the manufacturing process becomes very complicated. Further, this has been an obstacle to shortening the process time and cost.

【0008】本発明は、従来の希土類−鉄−窒素系ボン
ド磁石の製造方法のこのような課題を考慮し、従来に比
べてより一層製造工程を簡略化出来、工程時間の短縮化
や、コスト低減が図れる希土類−鉄−窒素系ボンド磁石
の製造方法を提供することを目的とする。
The present invention considers such problems of the conventional method for manufacturing a rare earth-iron-nitrogen based bonded magnet, and further simplifies the manufacturing process, shortens the process time and reduces the cost. An object of the present invention is to provide a method for manufacturing a rare earth-iron-nitrogen based bonded magnet that can be reduced.

【0009】[0009]

【課題を解決するための手段】請求項1の本発明は、希
土類−鉄−窒素系磁性材料を用いる希土類−鉄−窒素系
ボンド磁石の製造方法において、前記希土類−鉄−窒素
系磁性材料とバインダーを粉砕用ビ−ズと共に所定容器
中に投入し、前記希土類−鉄−窒素系磁性材料の微粉砕
と、その微粉砕中又は微粉砕された希土類−鉄−窒素系
磁性材料と前記バインダーとの混練を、実質的に同時に
行う微粉砕・混練工程を備えた希土類−鉄−窒素系ボン
ド磁石の製造方法である。
According to the present invention of claim 1, there is provided a method for producing a rare earth-iron-nitrogen based bonded magnet using a rare earth-iron-nitrogen based magnetic material, wherein the rare earth-iron-nitrogen based magnetic material is used. A binder is put into a predetermined container together with a crushing bead, and the rare earth-iron-nitrogen based magnetic material is finely pulverized, and the rare earth-iron-nitrogen based magnetic material and the binder are pulverized or pulverized. Is a method for producing a rare earth-iron-nitrogen bond magnet, which comprises a fine pulverization / kneading step of substantially simultaneously kneading.

【0010】請求項2の本発明は、上記バインダーが、
熱硬化性樹脂であり、前記微粉砕・混練工程が、希釈用
溶媒を用いて行う工程であり、前記微粉砕された希土類
−鉄−窒素系磁性材料表面に前記熱硬化性樹脂を吸着さ
せる希土類−鉄−窒素系ボンド磁石の製造方法である。
According to the present invention of claim 2, the binder is
It is a thermosetting resin, and the finely pulverizing / kneading step is a step performed using a solvent for dilution, and the finely pulverized rare earth-iron-rare earth for adsorbing the thermosetting resin on the nitrogen-based magnetic material surface. -Iron-Nitrogen bond magnet manufacturing method.

【0011】請求項3の本発明は、上記バインダーが、
熱可塑性樹脂であり、前記微粉砕・混練工程により、前
記微粉砕された希土類−鉄−窒素系磁性材料と前記熱可
塑性樹脂とを混合付着させる希土類−鉄−窒素系ボンド
磁石の製造方法である。
According to a third aspect of the present invention, the binder is
A method for producing a rare earth-iron-nitrogen bond magnet, which is a thermoplastic resin, in which the finely pulverized rare earth-iron-nitrogen magnetic material and the thermoplastic resin are mixed and adhered by the fine pulverization / kneading step. .

【0012】[0012]

【作用】本発明では、例えば、希土類−鉄−窒素系磁性
材料と熱硬化性樹脂及び希釈用溶媒を粉砕用ビ−ズと共
にポット中に投入し、微粉砕を行うと共に微粉末粒子表
面に熱硬化性樹脂を吸着させるか、あるいは、希土類−
鉄−窒素系磁性材料と熱可塑性樹脂を粉砕用ビ−ズと共
にポット中に投入し、乾式で微粉砕を行うと共に微粉末
粒子と熱可塑性樹脂とを混合付着させることにより、粉
砕工程と混練工程の一元化を実現出来る。
In the present invention, for example, a rare earth-iron-nitrogen based magnetic material, a thermosetting resin and a diluting solvent are put into a pot together with a crushing bead, finely crushed, and the surface of the fine powder particles is heated. Adsorb curable resin or rare earth-
The iron-nitrogen based magnetic material and the thermoplastic resin are put into a pot together with a crushing bead, and finely pulverized by a dry method, and fine powder particles and the thermoplastic resin are mixed and adhered to each other, whereby the pulverizing step and the kneading step. Unification can be realized.

【0013】[0013]

【実施例】以下、本発明の実施例に関して、表を参照し
ながら説明する。
EXAMPLES Examples of the present invention will be described below with reference to the tables.

【0014】(実施例1)まず、本発明にかかる一実施
例について述べる。
(Embodiment 1) First, an embodiment according to the present invention will be described.

【0015】原料として、純度99.9%のSmと純度
99.99%の電解鉄を用い高周波溶解炉で溶解し、カ
−ボン製鋳型に流し込んでインゴットを作成した。
As raw materials, Sm having a purity of 99.9% and electrolytic iron having a purity of 99.99% were used for melting in a high-frequency melting furnace and poured into a carbon mold to prepare an ingot.

【0016】得られたインゴットを純度99.99%の
Ar雰囲気下で1200℃で12h均質化処理を行い組
成がSm:10.5原子パ−セント、Fe:89.5原
子パ−セントの母合金を調製した。
The resulting ingot was homogenized in an Ar atmosphere having a purity of 99.99% at 1200 ° C. for 12 hours, and the composition was Sm: 10.5 atomic percent, Fe: 89.5 atomic percent. An alloy was prepared.

【0017】調製した母合金を窒素で置換したグロ−ボ
ックス中で粗粉砕し粒径を100μm以下とした。この
時グロ−ボックス中の酸素濃度は10ppm以下で行っ
た。
The prepared master alloy was coarsely crushed in a nitrogen-substituted glove box to have a particle size of 100 μm or less. At this time, the oxygen concentration in the glow box was 10 ppm or less.

【0018】次に、得られた試料粉末を、水素:0.
6、アンモニア:0.4の比率の水素−アンモニア混合
ガス雰囲気で460℃で1h窒化処理を行った。
Next, the obtained sample powder was charged with hydrogen: 0.
6. Ammonia: Nitrogen treatment was performed for 1 h at 460 ° C. in a hydrogen-ammonia mixed gas atmosphere with a ratio of 0.4.

【0019】窒化処理後、微粉砕・混練工程は、回転ボ
−ルミルを用いて行った。固形エポキシ樹脂及び潜在性
硬化剤をメチルエチルケトンに溶解し溶液とした。この
溶液と、本発明の粉砕用ビーズとしてのステンレス製ビ
−ズ(直径1〜10mm)及び試料粉末をステンレス製
ポットに投入し、ポット内を窒素置換した後、微粉砕及
び混練を同時に行った。この微粉砕・混練工程の後、ふ
るいにかけてステンレス製ビ−ズを除去し、窒素雰囲気
下で乾燥しコンパウンドを得た。得られたコンパウンド
を19kOeの磁場中で圧力10ton/cm2 で圧縮
成形し、その後160℃で1h硬化処理を行いボンド磁
石を作成した。
After the nitriding treatment, the fine pulverization / kneading process was performed using a rotary ball mill. The solid epoxy resin and the latent curing agent were dissolved in methyl ethyl ketone to obtain a solution. This solution, stainless beads (diameter 1 to 10 mm) as the beads for crushing of the present invention and sample powder were put into a stainless pot, the inside of the pot was replaced with nitrogen, and then fine pulverization and kneading were simultaneously performed. . After this fine pulverization / kneading step, the stainless beads were removed by sieving, and the compound was obtained by drying in a nitrogen atmosphere. The obtained compound was compression-molded in a magnetic field of 19 kOe at a pressure of 10 ton / cm @ 2 and then cured at 160 DEG C. for 1 hour to prepare a bonded magnet.

【0020】(比較例1)次に、実施例1に対する比較
例を説明する。
Comparative Example 1 Next, a comparative example with respect to Example 1 will be described.

【0021】窒化粉末を回転ボ−ルミルを用いて窒素雰
囲気下で微粉砕(微粉砕工程)した後、固形エポキシ樹
脂及び潜在性硬化剤をメチルエチルケトンに溶解した溶
液中に浸漬、攪拌して樹脂を吸着させる(混練工程)と
いった個別工程によることを除いては、上記実施例1と
同様にしてボンド磁石を作成した。
The nitriding powder is finely pulverized in a nitrogen atmosphere using a rotary ball mill (fine pulverization step), and then the solid epoxy resin and the latent curing agent are immersed in a solution in which methyl ethyl ketone is dissolved and stirred to form the resin. A bonded magnet was prepared in the same manner as in Example 1 except that it was carried out by an individual process such as adsorption (kneading process).

【0022】(実施例2)次に、本発明にかかる他の実
施例について述べる。
(Embodiment 2) Next, another embodiment according to the present invention will be described.

【0023】窒化処理工程までは上記実施例1と同様に
して試料粉末を作成した。得られた試料粉末とポリアミ
ド樹脂及びステンレス製ビ−ズ(直径1〜10mm)を
ステンレス製ポットに投入し、ポット内部を窒素置換し
た後、微粉砕・混合工程を実行してコンパウンドを得
た。得られたコンパウンドを印加磁場15kOe、金型
温度100℃、射出温度280℃、射出圧力750kg
/cm2 で射出成形を行いボンド磁石を作成した。
Sample powders were prepared in the same manner as in Example 1 up to the nitriding process. The obtained sample powder, polyamide resin, and stainless steel beads (diameter: 1 to 10 mm) were put into a stainless steel pot, the inside of the pot was replaced with nitrogen, and then a fine pulverization / mixing step was performed to obtain a compound. The obtained compound was applied with a magnetic field of 15 kOe, mold temperature 100 ° C., injection temperature 280 ° C., injection pressure 750 kg.
Injection molding was performed at / cm 2 to prepare a bonded magnet.

【0024】(比較例2)次に、実施例2に対する比較
例を説明する。
Comparative Example 2 Next, a comparative example with respect to Example 2 will be described.

【0025】窒化粉末を回転ボ−ルミルを用いて窒素雰
囲気下で微粉砕(微粉砕工程)した後、得られた試料粉
末とポリアミド樹脂をニ−ダ−を用いて260℃で混練
を行いコンパウンドを作成する(混練工程)といった個
別工程によることを除いては上記実施例2と同様にして
ボンド磁石を作成した。
The nitriding powder was finely pulverized in a nitrogen atmosphere using a rotary ball mill (fine pulverization step), and the obtained sample powder and polyamide resin were kneaded with a kneader at 260 ° C. to form a compound. A bonded magnet was prepared in the same manner as in Example 2 above, except for the individual step of preparing (kneading step).

【0026】以上のようにして作成したボンド磁石につ
いて、最大印加磁場15kOeのVSMを用いて磁気特
性を測定した。その結果を(表1)に示す。ここで、
(表1)は、上記実施例及び上記比較例におけるボンド
磁石の磁気特性を示す表である。
The magnetic characteristics of the bond magnet produced as described above were measured using a VSM with a maximum applied magnetic field of 15 kOe. The results are shown in (Table 1). here,
(Table 1) is a table showing the magnetic characteristics of the bonded magnets in the examples and the comparative examples.

【0027】[0027]

【表1】 [Table 1]

【0028】(表1)からわかるように、実施例1と比
較例1、又、実施例2と比較例2において作成したボン
ド磁石は、ほぼ同等の磁気特性を示しており、保磁力の
値が同等であることから、実施例1、実施例2におい
て、十分微粉砕されているといえる。
As can be seen from (Table 1), the bonded magnets produced in Example 1 and Comparative Example 1 and in Example 2 and Comparative Example 2 exhibited almost the same magnetic characteristics and the coercive force value. Since they are equivalent to each other, it can be said that they are sufficiently pulverized in Examples 1 and 2.

【0029】このように、上記実施例では、微粉砕工程
と、バインダー等の混合作業を含む混練工程の一元化を
実現出来る。
As described above, in the above embodiment, it is possible to realize the unification of the fine pulverization step and the kneading step including the operation of mixing the binder and the like.

【0030】以上のように、上記実施例によれば、希土
類−鉄−窒素系磁性材料と熱硬化製樹脂及び希釈用溶媒
を粉砕用ビ−ズと共にポット中に投入し微粉砕を行うと
共に樹脂を吸着させることにより、又、希土類−鉄−窒
素系磁性材料と熱可塑性樹脂を粉砕用ビ−ズと共にポッ
ト中に投入し、微粉砕を行うと共に樹脂を混合付着させ
ることにより、微粉砕工程と混練工程の一元化の実現を
可能とする。これにより、例えば、製造工程の簡略化、
短時間化あるいは、設備費の低減等を図ることが出来、
製造コストの低減を可能とする。
As described above, according to the above-mentioned embodiment, the rare earth-iron-nitrogen based magnetic material, the thermosetting resin and the diluting solvent are put into the pot together with the grinding beads and finely ground and the resin By adsorbing the rare earth-iron-nitrogen based magnetic material and a thermoplastic resin into a pot together with a grinding bead, and finely grinding and adhering the resin to form a fine grinding step. Enables unification of kneading process. This simplifies the manufacturing process,
It is possible to shorten the time or reduce the equipment cost,
Enables reduction of manufacturing cost.

【0031】尚、上記実施例で用いられる熱硬化性樹脂
は、溶剤等を用いて希釈可能なものでありさえすればど
のようなものでも有効であり、その種類や内容は問わな
い。
The thermosetting resin used in the above examples is effective as long as it can be diluted with a solvent or the like, and the kind and content thereof are not limited.

【0032】又、上記実施例で用いられる熱可塑性樹脂
は、溶融温度が後述する理由から希土類−鉄−窒素系磁
性材料の分解温度である600℃よりも低いものであり
さえすればどのようなものでも使用可能であり、その種
類や内容は問わない。ここで、上記理由とは、次のよう
なことである。すなわち、希土類−鉄−窒素系磁性材料
においては、600℃以上で不均化反応を起こしSmN
とαFeに分解する。この分解反応により希土類−鉄−
窒素系磁性材料の磁気特性は著しく劣化するためであ
る。
Further, the thermoplastic resin used in the above-mentioned examples is only required to have a melting temperature lower than 600 ° C. which is the decomposition temperature of the rare earth-iron-nitrogen based magnetic material for the reason described later. Anything can be used, and its type and content do not matter. Here, the above reason is as follows. That is, in the rare earth-iron-nitrogen based magnetic material, a disproportionation reaction occurs at 600 ° C. or higher and SmN
And decomposes into αFe. Rare earth-iron-
This is because the magnetic characteristics of the nitrogen-based magnetic material are significantly deteriorated.

【0033】又、微粉砕・混練工程に用いられる装置
は、粉砕用ビ−ズを用いて1〜5μmまで微粉砕可能な
らば特に限定されるものではなく、例えば回転ボ−ルミ
ル、振動ボ−ルミル、遊星型ボ−ルミル、アトライタ−
等各種ボ−ルミルなどが使用可能である。
The apparatus used in the fine pulverization / kneading step is not particularly limited as long as it can be finely pulverized to 1 to 5 μm by using a bead for pulverization. For example, a rotary ball mill or a vibration ball mill. Lumil, planetary ball mill, attritor
Various ball mills and the like can be used.

【0034】[0034]

【発明の効果】以上述べたところから明らかなように、
本発明は、従来に比べてより一層製造工程を簡略化出来
るといった長所を有する。
As is apparent from the above description,
The present invention has an advantage that the manufacturing process can be further simplified as compared with the conventional method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類−鉄−窒素系磁性材料を用いる希
土類−鉄−窒素系ボンド磁石の製造方法において、前記
希土類−鉄−窒素系磁性材料とバインダーを粉砕用ビ−
ズと共に所定容器中に投入し、前記希土類−鉄−窒素系
磁性材料の微粉砕と、その微粉砕中又は微粉砕された希
土類−鉄−窒素系磁性材料と前記バインダーとの混練
を、実質的に同時に行う微粉砕・混練工程を備えたこと
を特徴とする希土類−鉄−窒素系ボンド磁石の製造方
法。
1. A method of manufacturing a rare earth-iron-nitrogen based bonded magnet using a rare earth-iron-nitrogen based magnetic material, wherein the rare earth-iron-nitrogen based magnetic material and a binder are used for grinding.
Into a predetermined container together with the powder, finely pulverizing the rare earth-iron-nitrogen based magnetic material, and kneading the rare earth-iron-nitrogen based magnetic material and the finely pulverized rare earth-iron-nitrogen based magnetic material with the binder. A method for producing a rare earth-iron-nitrogen based bonded magnet, characterized in that it is provided with a fine pulverization / kneading step which is performed simultaneously with the above.
【請求項2】 バインダーとは、熱硬化性樹脂であり、
前記微粉砕・混練工程は、希釈用溶媒を用いて行い、前
記微粉砕された希土類−鉄−窒素系磁性材料表面に前記
熱硬化性樹脂を吸着させることを特徴とする請求項1記
載の希土類−鉄−窒素系ボンド磁石の製造方法。
2. The binder is a thermosetting resin,
The rare earth element according to claim 1, wherein the finely pulverizing / kneading step is performed using a diluent solvent to adsorb the thermosetting resin on the surface of the finely pulverized rare earth-iron-nitrogen based magnetic material. -A method for manufacturing an iron-nitrogen based bonded magnet.
【請求項3】 バインダーとは、熱可塑性樹脂であり、
前記微粉砕・混練工程により、前記微粉砕された希土類
−鉄−窒素系磁性材料と前記熱可塑性樹脂とを混合付着
させることを特徴とする請求項1記載の希土類−鉄−窒
素系ボンド磁石の製造方法。
3. The binder is a thermoplastic resin,
The rare earth-iron-nitrogen based bonded magnet according to claim 1, wherein the finely pulverized rare earth-iron-nitrogen based magnetic material and the thermoplastic resin are mixed and adhered by the fine pulverization / kneading step. Production method.
JP6105651A 1994-05-19 1994-05-19 Manufacture of rare-earth-fe-n bond magnet Pending JPH07320968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6105651A JPH07320968A (en) 1994-05-19 1994-05-19 Manufacture of rare-earth-fe-n bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6105651A JPH07320968A (en) 1994-05-19 1994-05-19 Manufacture of rare-earth-fe-n bond magnet

Publications (1)

Publication Number Publication Date
JPH07320968A true JPH07320968A (en) 1995-12-08

Family

ID=14413358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6105651A Pending JPH07320968A (en) 1994-05-19 1994-05-19 Manufacture of rare-earth-fe-n bond magnet

Country Status (1)

Country Link
JP (1) JPH07320968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536909A (en) * 2016-11-18 2019-12-19 アルケマ フランス Sinterable magnetic powder composition and three-dimensional article made by sintering this composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536909A (en) * 2016-11-18 2019-12-19 アルケマ フランス Sinterable magnetic powder composition and three-dimensional article made by sintering this composition

Similar Documents

Publication Publication Date Title
JPH0974006A (en) Magnetic material and bonded magnet
US9418779B2 (en) Process for preparing scalable quantities of high purity manganese bismuth magnetic materials for fabrication of permanent magnets
JPH04328805A (en) Anisotropic configuration soft magnet alloy powder and manufacture thereof
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0913151A (en) Rare earth-iron-nitrogen base magnetic material and its production
JPH07320968A (en) Manufacture of rare-earth-fe-n bond magnet
CN111095444B (en) Method for producing magnetic powder and magnetic powder
JPS6181607A (en) Preparation of rare earth magnet
JPH07118815A (en) Hard magnetic material and permanent magnet
JPS6091601A (en) Method for pulverization for rare earth-boron-iron permanent magnet alloy powder
JPH0479202A (en) Permanent magnet consisting of single magnetic domain particle
JPH03101102A (en) Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JPH05144621A (en) Rare earth element-bonded magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
KR20200023107A (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
JPH11260617A (en) Dust core, manufacture of the same, and winding component
JPH11135311A (en) Rare earth-iron-nitrogen magnetic material, its manufacture, and bond magnet using the same
KR100517642B1 (en) COMPOSITION AND FABRICATION OF Pr-Fe-B TYPE MAGNET POWDER
WO2020203739A1 (en) Sm-fe-n-based magnet powder, sm-fe-n-based sintered magnet, and production method therefor
JPS6353202A (en) Production of rare earth element-iron type plastic magnetic material
JPH08316076A (en) Production of neodymium based bond magnet
JPH07297013A (en) Manufacture method of magnetic powder
JPH03160705A (en) Bonded magnet
JPH06112027A (en) Manufacture of high-quality magnet material
JP2001023810A (en) Powder for powder magnetic core