JPH07318672A - Electrolytic low temperature fusion reactor - Google Patents

Electrolytic low temperature fusion reactor

Info

Publication number
JPH07318672A
JPH07318672A JP4117907A JP11790792A JPH07318672A JP H07318672 A JPH07318672 A JP H07318672A JP 4117907 A JP4117907 A JP 4117907A JP 11790792 A JP11790792 A JP 11790792A JP H07318672 A JPH07318672 A JP H07318672A
Authority
JP
Japan
Prior art keywords
light water
cathode
excessive
water
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4117907A
Other languages
Japanese (ja)
Inventor
Yoshito Tanaka
義人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4117907A priority Critical patent/JPH07318672A/en
Publication of JPH07318672A publication Critical patent/JPH07318672A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To sustain an excessive caloritic value by disposing a permanent magnet or an electromagnet in an electrolytic bath and passing lines of magnetic force to a cathode. CONSTITUTION:A heat-exchanging pipe 2 is passed through an electrolytic bath and magnet plates 3, 3' are disposed at a constant interval while arranging the polarity. Linear, grid or planar cathodes 4, 4',... made of palladium or the like are then fixed to one side thereof and anodes 5, 5',... made of platinum, gold, etc. are fixed to the other side. Heavy water is added with impurity, i.e., light water, and subjected to electrolysis, a black hydrogenated compound covers the surface of the cathode 4, 4,... is the light water is excessive to increase the electric resistance gradually thus decreasing the current value. When the hydrogenated compound is removed at a constant time interval to regenerate the electrode, an excessive calorific value can be achieved only with the light water. When caustic soda is employed as the electrolyte, the light water is limited to several % including the impurities end the concentration can be increased by several times using potassium hydroxide or lithium hydroxide.

Description

【発明の詳細な説明】 (0001) (産業上の利用分野)本発明は低温核融合に関するもの
である。 (0002) (従来の技術)従来、低温核融合は陰極にパラジウム、
チタン等を用い、陽極に白金や金を用いて、重水を電気
分解し、過剰発熱量を得るものであった。 (0003) (発明が解決しようとする課題)低温核融合は3年前、
米英の化学者によって発表されて以来、多数の科学者に
よって追試が行なわれた。しかし、約1割の科学者が過
剰発熱量を確認したが、9割の科学者が発熱を見ること
がなかった。持続する過剰発熱量を発生させることが課
題である。 (0004) (課題を解決するための手段)陰極の近くに永久磁石や
電磁石を配置し、陰極に磁力線を通すこと、さらに、重
水に軽水を少しづつ添加してやること、あるいは、軽水
だけで電気分解することによって、過剰発熱量を持続し
て発生させることができる。 (0005) (作用)電極に磁力線が作用することによって 、電極
の電子がシンクロトロン放射をおこすことと、電子がそ
のスピンを陽子のスピンと平行にしてぶつかり、このと
き両者が反発しあうこととによって、電子が運動エネル
ギーを減少し、陽子の内部に電子が入って回転すること
が可能となる。 (0006)この状態にある電子と陽子をep粒子と名
付けておこう。電気分解をする電流の電子がep粒子に
ぶつかって、内部の電子にエネルギーが与えられ、これ
が蓄積されて質量増加を起こし、 (0007) 【化1】 によって、2個のep粒子から重水素Dと高速eを生じ
る。 (0008)このように反応するのは重水に不純物とし
て含まれている軽水素であるから、これが無くならない
ように軽水を添加してやることによって、発熱を持続さ
せることができる。 (0009) (実施例)実施例について図面を参照して説明すると、
図1は電解槽1の中に熱交換用のパイプ2を通したタイ
プのもので、磁石板3、3′…を等間隔に、N−Sを同
じ向きにして並べ、そのひとつの面にパラジウム等の線
状、格子状、あるいは、板状の陰極4、4’…を取り付
け、反対側の面に白金、金等の陽極5、5’…を取り付
けたものである。 (0010)図2は熱交換器6を電解槽1の外側に設け
るタイプのもので、陰極4、4’…と陽極5、5’…は
交互に等間隔にとりつけ、電解槽1の外側に電磁石のコ
イル7をとりつけたものである。電磁石7はU字型や筒
型の永久磁石におきかえることができる。 (0011)重水にその不純物である軽水を追加して電
気分解すると、軽水が多すぎるときには、黒色の水素化
物が陰極表面を覆い、だんだん電気抵抗が大きくなり、
電流値が低下する。電解液にカセイソーダを使用する場
合、軽水は不純物を含めて数%程度が限度である。水酸
化カリウムや水酸化リチウムを用いる場合には、さらに
数倍の濃度に上げることができる。 (0012)一定時間の間隔で水素化物を取り除き、電
極を再生するなら、重水なしで軽水だけで、過剰発熱量
を得ることができる。 (0013)ep粒子は外部からの電子eの衝突によっ
てエネルギー〜質量を増大させ、中性子nにまで成長す
る。これが (0014) 【化2】 によって、三重水素Tとガンマー線rを生じ、さらに、 (0015) 【化3】 によって、ヘリウムHeと電子e、及びガンマー線rを
生じる。 (0016)重水素Dはep粒子と同様の機構で、eD
粒子を形成し、 (0017) 【化4】 によって、トリチウムTと高速電子eを生じる。トリチ
ウムTも同様にeT粒子を形成し (0018) 【化5】 によって、ヘリウムHeと2個の高速電子eを生じる。
したがって、最終的に装置の中にはヘリウムがたまる。 (0019)本発明では電解槽1の頂部には、ヘリウム
除去装置が組み込まれている。パラジウム膜を金で補強
したもので、水素とヘリウムを分離する。
Description: (0001) (Industrial field of application) The present invention relates to cold fusion. (0002) (Prior Art) Conventionally, low temperature fusion has involved palladium on the cathode,
Heavy water was electrolyzed by using titanium or the like and platinum or gold for the anode to obtain an excessive heating value. (0003) (Problems to be solved by the invention) Cold fusion was three years ago,
Since it was announced by American and British chemists, it has been tested by numerous scientists. However, about 10% of scientists confirmed excessive fever, but 90% of scientists did not see fever. The challenge is to generate a persistent excess calorific value. (0004) (Means for Solving the Problem) A permanent magnet or an electromagnet is arranged near the cathode, and a magnetic field line is passed through the cathode. Further, light water is added little by little to heavy water, or electrolysis is performed using only light water. By doing so, the excessive heating value can be continuously generated. (0005) (Action) The action of magnetic lines of force on the electrodes causes the electrons at the electrodes to emit synchrotron radiation, and the electrons collide with their spins in parallel with the spins of the protons, causing them to repel each other. This reduces the kinetic energy of the electron, allowing it to rotate inside the proton. (0006) Let us name the electrons and protons in this state ep particles. Electrons of a current that electrolyzes hit the ep particles, energy is given to the electrons inside, and these are accumulated to cause an increase in mass. (0007) Produces deuterium D and fast e from two ep particles. (0008) It is light hydrogen contained as an impurity in heavy water that reacts in this way, so by adding light water so that it does not disappear, heat generation can be maintained. (0009) (Example) An example will be described with reference to the drawings.
FIG. 1 shows a type in which a heat exchange pipe 2 is passed through an electrolytic cell 1. Magnet plates 3, 3 '... are arranged at equal intervals and NS are arranged in the same direction. The linear, grid, or plate-shaped cathodes 4, 4 '... Of palladium or the like are attached, and the anodes 5, 5' ... Of platinum, gold, etc. are attached on the opposite surface. (0010) FIG. 2 shows a type in which the heat exchanger 6 is provided outside the electrolytic cell 1. The cathodes 4, 4 '... and the anodes 5, 5' ... The coil 7 of the electromagnet is attached. The electromagnet 7 can be replaced with a U-shaped or tubular permanent magnet. (0011) When light water, which is the impurity, is added to heavy water and electrolyzed, when the amount of light water is too much, the black hydride covers the cathode surface, and the electric resistance gradually increases,
The current value drops. When caustic soda is used as the electrolyte, light water is limited to around a few percent including impurities. When potassium hydroxide or lithium hydroxide is used, the concentration can be increased to several times higher. (0012) If the hydride is removed at regular time intervals and the electrode is regenerated, it is possible to obtain an excess calorific value with only light water without heavy water. (0013) ep particles increase energy to mass by collision of electrons e from the outside, and grow to neutrons n. This is (0014) Produces tritium T and a gamma ray r, further comprising (0015) Generate helium He and electrons e, and gamma rays r. (0016) Deuterium D has a mechanism similar to that of ep particles.
Forming particles, (0017) Generate tritium T and fast electrons e. Tritium T also forms eT particles in the same manner (0018) Generate helium He and two fast electrons e.
Therefore, helium is finally accumulated in the apparatus. (0019) In the present invention, a helium removing device is incorporated at the top of the electrolytic cell 1. A palladium membrane reinforced with gold that separates hydrogen and helium.

【図面の簡単な説明】 (図1)電解槽の内部に磁石を配置した低温核融合装置
の断面図。 (図2)電解槽の外部に磁石を配置した低温核融合装置
の断面図。
BRIEF DESCRIPTION OF THE DRAWINGS (FIG. 1) A cross-sectional view of a low temperature nuclear fusion device in which a magnet is arranged inside an electrolytic cell. (FIG. 2) A cross-sectional view of a low temperature fusion device in which a magnet is arranged outside the electrolytic cell.

Claims (1)

【特許請求の範囲】 (請求項1) 陰極にパラジウム、チタン等の水素吸蔵
金属を用い、水を電気分解する装置において、電解槽の
内部または外部に、永久磁石または電磁石を配置し、陰
極に磁力線が通る構造とした電気分解式低温核融合装
置。 (請求項2) 電解液の重水に少量の軽水を添加し、あ
るいは、軽水だけを電気分解する請求項1の電気分解式
低温核融合装置。
Claims: (Claim 1) In a device for electrolyzing water using a hydrogen storage metal such as palladium or titanium for a cathode, a permanent magnet or an electromagnet is arranged inside or outside an electrolytic cell, and a cathode is used. Electrolytic low-temperature fusion device with a structure through which magnetic field lines pass. (Claim 2) The electrolytic low temperature nuclear fusion device according to claim 1, wherein a small amount of light water is added to the heavy water of the electrolytic solution or only the light water is electrolyzed.
JP4117907A 1992-03-26 1992-03-26 Electrolytic low temperature fusion reactor Pending JPH07318672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117907A JPH07318672A (en) 1992-03-26 1992-03-26 Electrolytic low temperature fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117907A JPH07318672A (en) 1992-03-26 1992-03-26 Electrolytic low temperature fusion reactor

Publications (1)

Publication Number Publication Date
JPH07318672A true JPH07318672A (en) 1995-12-08

Family

ID=14723145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117907A Pending JPH07318672A (en) 1992-03-26 1992-03-26 Electrolytic low temperature fusion reactor

Country Status (1)

Country Link
JP (1) JPH07318672A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004401A1 (en) * 1997-07-14 1999-01-28 Savic Trust Reg., Vaduz Device to obtain heat energy, working medium and electrodes to be used in this device, material for working medium and electrodes
ES2224848A1 (en) * 2003-05-07 2005-03-01 Jesus Arteaga Diaz Spaceship deuterium fusion reactor powered motor includes porous palladium cathode and platinum anode in magnetized vessel
CN105648513A (en) * 2015-12-31 2016-06-08 天津君议台科技发展有限公司 Heat pipe plating solution cooling system and working medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004401A1 (en) * 1997-07-14 1999-01-28 Savic Trust Reg., Vaduz Device to obtain heat energy, working medium and electrodes to be used in this device, material for working medium and electrodes
ES2224848A1 (en) * 2003-05-07 2005-03-01 Jesus Arteaga Diaz Spaceship deuterium fusion reactor powered motor includes porous palladium cathode and platinum anode in magnetized vessel
CN105648513A (en) * 2015-12-31 2016-06-08 天津君议台科技发展有限公司 Heat pipe plating solution cooling system and working medium

Similar Documents

Publication Publication Date Title
RU2242059C2 (en) Method for separating rare nuclear fission products and their extraction from spent nuclear fuel, application of these products (alternatives)
EP0473681B1 (en) Production of fusion energy
JPH03226694A (en) Method of electro-chemical low temperature nuclear fusion
JPH07318672A (en) Electrolytic low temperature fusion reactor
EP1345238A2 (en) Method of and appartaus for generating recoilless nonthermal nuclear fusion
EP0516622A1 (en) Element and energy production device
US20170069399A1 (en) Hall effect assisted electron confinement in an inertial electrostatic confinement fusion reactor
WO1991006959A2 (en) Media for solid state fusion
US20080159461A1 (en) Apparatus and process for generating nuclear heat
Bockris et al. Does tritium form at electrodes by nuclear reactions
JPH05134098A (en) Production method of useful element from water
KR940006153A (en) Energy production by control of probability through quantum level organic interaction
WO1996006434A1 (en) Hydride condensation process
US20050105664A1 (en) Process for generating nuclear heat
JPH072997U (en) Cold fusion reactor using capture terminal
JPH02275397A (en) Nuclear fusion apparatus
CN1277439A (en) Normal-temperature nuclear fusion energy convertor
JPH0335193A (en) Cathode for exothermic reaction to form tritium by electrolysis method
JPH02297094A (en) Hydrogen nuclear fusion method
WO2023248107A1 (en) Method for controlled thermonuclear fusion
JPH03100190A (en) Method for controlling exothermic reaction of heavy water
NL194522C (en) Electrolysis-nuclear fusion using magnetic field.
JPH0310195A (en) Method for low temperature nuclear fusion
JPH02281184A (en) Cathode for low temperature nuclear fusion reactor by electrochemical technique and nuclear fusion method using said cathode
JPH02280087A (en) Nuclear fusion reaction device