JPH07318195A - Absorption type refrigerating equipment - Google Patents

Absorption type refrigerating equipment

Info

Publication number
JPH07318195A
JPH07318195A JP6115193A JP11519394A JPH07318195A JP H07318195 A JPH07318195 A JP H07318195A JP 6115193 A JP6115193 A JP 6115193A JP 11519394 A JP11519394 A JP 11519394A JP H07318195 A JPH07318195 A JP H07318195A
Authority
JP
Japan
Prior art keywords
combustion gas
refrigerant
bottom plate
combustion
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6115193A
Other languages
Japanese (ja)
Inventor
Hideyuki Jinno
秀幸 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP6115193A priority Critical patent/JPH07318195A/en
Publication of JPH07318195A publication Critical patent/JPH07318195A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable execution of a high-load operation by a small-sized generator and also reduction of production of a nitrogen oxide by a construction wherein a flat combustion chamber having aerated combustion type burner provided is combined with a large number of combustion gas flow passage pipes juxtaposed inside a heating vessel. CONSTITUTION:A totally aerated burner 6 is used as a heating source in absorption type refrigerating equipment, and therefore the dimension in the vertical direction of a combustion chamber 60 can be minimized. The flat combustion chamber 60 is combined with multipipe type combustion gas flow passage pipes 55 provided inside a vertical type cylindrical heating vessel 5 for a bottom plate 52 of which the ceiling wall of the combustion chamber 60 is used, and therefore a combustion gas flows rapidly into the combustion gas flow passage pipes 55 to be subjected to heat exchange and cooled down. Therefore a time of staying of the combustion gas in a high- temperature state is shortened and a nitrogen oxide is produced little. Since the center of the bottom plate 52 is formed in the shape of a spherical shell being protruberant upward, the combustion gas flows to the center along a spherical surface and flows smoothly into the combustion gas flow passage pipes 55. Accordingly, production of the nitrogen oxide is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、アンモニア、リチウ
ム・ブロマイドなどの水溶液を作動液として用いた吸収
式冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system using an aqueous solution of ammonia, lithium bromide or the like as a working fluid.

【0002】[0002]

【従来の技術】アンモニア、リチウム・ブロマイドなど
の水溶液を用いた吸収式冷凍装置は、水溶液を発生器で
加熱してアンモニアなど冷媒の蒸気を発生させ、この冷
媒の蒸気を凝縮器で液化させ、膨張弁を経て低圧の蒸発
器に流し込み、冷凍作用を行わせる。蒸発器で再び蒸発
した冷媒は吸収器において、冷媒の蒸発により希薄にな
った水溶液に吸収させる。この吸収により高濃度となっ
た水溶液をポンプで前記発生器に循環させる。この型式
の吸収式冷凍装置は、作動液が発生器で10気圧以上、
200℃程度の高温高圧となるため比較的大型の冷凍装
置に適用されている。
2. Description of the Related Art An absorption refrigerating apparatus using an aqueous solution of ammonia, lithium bromide or the like heats the aqueous solution with a generator to generate a vapor of a refrigerant such as ammonia, and liquefy the vapor of the refrigerant with a condenser, It flows into the low-pressure evaporator through the expansion valve, and the freezing action is performed. The refrigerant evaporated again in the evaporator is absorbed in the aqueous solution diluted by the evaporation of the refrigerant in the absorber. The aqueous solution having a high concentration due to this absorption is circulated through the generator by a pump. In this type of absorption refrigeration system, the working fluid is generated by the generator at 10 atm or more,
Since it has a high temperature and high pressure of about 200 ° C, it is applied to relatively large refrigeration equipment.

【0003】[0003]

【発明が解決しようとする課題】しかるに、吸収式冷凍
装置を高負荷化、小型化して家庭用の空調・給湯装置に
適用することが望まれている。この発明の目的は、小型
の発生器で高負荷運転できるとともに、窒素酸化物の発
生を低減できる吸収式冷凍装置の提供にある。
However, it is desired to increase the load of the absorption refrigeration system and reduce the size of the absorption refrigeration system to apply it to a home air conditioner / hot water supply device. An object of the present invention is to provide an absorption refrigeration system that can be operated under a high load with a small generator and that can reduce the generation of nitrogen oxides.

【0004】[0004]

【課題を解決するための手段】この発明は、冷媒と吸収
液とを混合した作動液から冷媒と吸収液の混合作動液蒸
気を発生させる発生器と、該混合作動液蒸気を精留して
冷媒成分を濃縮する精留器と、該濃縮された混合作動液
蒸気のガス冷媒成分を凝縮させる凝縮器と、該凝縮器で
凝縮させた液冷媒を蒸発させる蒸発器と、該蒸発器で蒸
発した冷媒蒸気を希作動液中に吸収させる吸収器とを備
えた吸収式冷凍装置において、前記発生器は、内部に作
動液が収容されるとともに、底板を備えた立て型筒状の
加熱容器と、該加熱容器の底板の下に設けられて内部に
全一次(空気燃焼式)バーナが設置された偏平な燃焼室
と、前記底板に開けられた多数の下側穴および前記加熱
容器の上部に形成された上側穴とを連結して前記加熱容
器内に並設された多数の燃焼ガス流路管とからなること
を特徴とする。請求項2に記載の構成では、前記底板は
上方に膨出した中央球殻部を有し、前記多数の下側穴は
該中央球殻部に開けられ、前記多数の上側穴は前記加熱
容器の外周上部に形成されたことを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, a generator for generating a mixed working fluid vapor of a refrigerant and an absorbing fluid from a working fluid obtained by mixing a refrigerant and an absorbing fluid, and rectifying the mixed working fluid vapor. A rectifier for concentrating the refrigerant component, a condenser for condensing the gas refrigerant component of the concentrated mixed working fluid vapor, an evaporator for evaporating the liquid refrigerant condensed by the condenser, and an evaporator for the evaporator In an absorption type refrigerating apparatus including an absorber that absorbs the refrigerant vapor in diluted working fluid, the generator contains the working fluid therein, and a vertical cylindrical heating container provided with a bottom plate. , A flat combustion chamber provided under the bottom plate of the heating container and having a full primary (air combustion type) burner installed therein, and a number of lower holes formed in the bottom plate and the upper part of the heating container. Connected with the formed upper hole and arranged side by side in the heating container Characterized in that comprising a number of combustion gas flow pipe. In the configuration according to claim 2, the bottom plate has a central spherical shell portion that bulges upward, the plurality of lower holes are opened in the central spherical shell portion, and the multiple upper holes are the heating container. It is characterized in that it is formed on the outer peripheral upper part.

【0005】[0005]

【発明の作用・効果】この吸収式冷凍装置では、加熱源
として全一次バーナを用いているため、燃焼室の上下方
向の寸法を最小限にできる。そして、上記偏平な燃焼室
と、加熱容器として燃焼室の天井壁を底板とする立て型
筒状の加熱容器内に多管式の燃焼ガス流路管とを組み合
わせているので、燃焼ガスは迅速に燃焼ガス流路管に流
れ込んで熱交換がなされ燃焼ガスは冷却される。このた
め、高温状態の燃焼ガスの滞留時間が短くなり、窒素酸
化物の発生が少ない。請求項2の構成では、底板の中央
を上方に膨出した球殻状としたため、燃焼ガスは球面に
沿って中央に流れる傾向にあり、円滑に燃焼ガス流路管
に流れる。従って前記滞留時間は更に小さくなり、窒素
酸化物の発生が低減できる。
In this absorption refrigerating apparatus, since all primary burners are used as the heat source, the vertical dimension of the combustion chamber can be minimized. Further, since the flat combustion chamber is combined with the multi-tube combustion gas passage pipe in the vertical cylindrical heating container having the bottom wall of the ceiling wall of the combustion chamber as the heating container, the combustion gas is quickly discharged. Then, the heat is exchanged by flowing into the combustion gas passage pipe to cool the combustion gas. Therefore, the residence time of the combustion gas in the high temperature state is shortened, and the generation of nitrogen oxide is small. In the configuration of claim 2, since the center of the bottom plate is formed in a spherical shell shape that bulges upward, the combustion gas tends to flow to the center along the spherical surface, and smoothly flows into the combustion gas passage pipe. Therefore, the residence time is further shortened, and the generation of nitrogen oxide can be reduced.

【0006】[0006]

【実施例】図7および図8は、アンモニア水溶液を作動
液とする吸収式冷凍装置を用いた冷暖房給湯装置100
を示す。冷暖房給湯装置100は、アンモニアガスを発
生させる発生器1、図7に示す冷房運転時には凝縮器と
して作用し、図8に示す暖房運転時には蒸発器として作
用する熱源側熱交換器11、冷房運転時には蒸発器とし
て作用し、暖房運転時には凝縮器として作用する利用側
熱交換器3、および吸収器4を備える。
EXAMPLE FIG. 7 and FIG. 8 show a cooling and heating water heater 100 using an absorption type refrigeration system using an aqueous ammonia solution as a working fluid.
Indicates. The heating / cooling water heater 100 is a generator 1 for generating ammonia gas, a heat source side heat exchanger 11 that acts as a condenser during the cooling operation shown in FIG. 7, and acts as an evaporator during the heating operation shown in FIG. 8, and during the cooling operation. A utilization side heat exchanger 3 that functions as an evaporator and a condenser during heating operation, and an absorber 4 are provided.

【0007】熱源側熱交換器11と利用側熱交換器3と
の間には、液冷媒とガス冷媒とを熱交換させる冷媒間熱
交換器2が配設されている。発生器1の上方には順に精
留器12および分縮器13が重ねて設けられている。
An inter-refrigerant heat exchanger 2 for exchanging heat between the liquid refrigerant and the gas refrigerant is arranged between the heat source side heat exchanger 11 and the use side heat exchanger 3. A rectifier 12 and a dephlegmator 13 are sequentially stacked above the generator 1.

【0008】これら機器は作動液流通路で連結され、分
縮器13、熱源側熱交換器11、冷媒間熱交換器2、利
用側熱交換器3を連結する作動液流通路には流路切換の
ための第1四路切換弁21および第2四路切換弁22が
介装されている。冷媒間熱交換器2は、内管2aと外管
2bとからなる二重管式熱交換器であり、内管2a内は
液冷媒専用流通路とされ、外管2b内はガス冷媒専用流
通路となっている。
These devices are connected by a working liquid flow passage, and a passage is formed in the working liquid flow passage that connects the demultiplexer 13, the heat source side heat exchanger 11, the inter-refrigerant heat exchanger 2, and the use side heat exchanger 3. A first four-way switching valve 21 and a second four-way switching valve 22 for switching are provided. The inter-refrigerant heat exchanger 2 is a double-tube heat exchanger composed of an inner pipe 2a and an outer pipe 2b. The inner pipe 2a has a liquid refrigerant dedicated flow passage, and the outer pipe 2b has a gas refrigerant dedicated flow. It is a road.

【0009】第1四路切換弁21は、冷房運転時には発
生器1からのガス冷媒を熱源側熱交換器11へ流入さ
せ、かつ冷媒間熱交換器2の外管2bからのガス冷媒を
吸収器4へ流入させる。暖房運転時には、切り換えられ
て、発生器1からのガス冷媒を利用側熱交換器3へ流入
させ、且つ熱源側熱交換器11からのガス冷媒を吸収器
4側へ流入させる。
The first four-way switching valve 21 allows the gas refrigerant from the generator 1 to flow into the heat source side heat exchanger 11 during the cooling operation, and absorbs the gas refrigerant from the outer pipe 2b of the inter-refrigerant heat exchanger 2. Flow into vessel 4. During the heating operation, the gas refrigerant from the generator 1 is switched into the utilization side heat exchanger 3 and the gas refrigerant from the heat source side heat exchanger 11 is caused to flow into the absorber 4 during the heating operation.

【0010】第2四路切換弁22は、冷房運転時には利
用側熱交換器3からのガス冷媒を冷媒間熱交換器2の外
管2b側へ流入させ、かつ冷媒間熱交換器2の外管2b
からガス冷媒を吸収器4へ流入させる。暖房運転時に
は、切り換えられて、発生器1からのガス冷媒を利用側
熱交換器3へ流入させ、かつ冷媒間熱交換器2の外管2
bからのガス冷媒を吸収器4へ流入させる。
The second four-way switching valve 22 allows the gas refrigerant from the use side heat exchanger 3 to flow into the outer pipe 2b side of the inter-refrigerant heat exchanger 2 during the cooling operation, and to the outside of the inter-refrigerant heat exchanger 2. Tube 2b
A gas refrigerant is caused to flow into the absorber 4. During the heating operation, the gas refrigerant from the generator 1 is switched to flow into the utilization side heat exchanger 3 and the outer pipe 2 of the inter-refrigerant heat exchanger 2 is switched during the heating operation.
The gas refrigerant from b is allowed to flow into the absorber 4.

【0011】発生器1は、図1〜図5に示す如く、加熱
容器5およびガスバーナ6を備える。加熱容器5は、希
溶液となっているアンモニア水溶液(アンモニア希溶
液)を10〜20気圧、200℃程度に加熱して沸騰さ
せ、アンモニアと水の混合蒸気を発生させる。加熱容器
5は、上方が全面開口して後述する精留器に連通させる
立て型円筒体51と、該円筒体51の下部に溶接された
底板52とを備える。
As shown in FIGS. 1 to 5, the generator 1 includes a heating container 5 and a gas burner 6. The heating container 5 heats an aqueous ammonia solution (ammonia dilute solution), which is a dilute solution, to about 200 ° C. at 10 to 20 atmospheres to boil and generate a mixed vapor of ammonia and water. The heating container 5 is provided with a vertical cylinder body 51 having an entire upper surface opened to communicate with a rectifier to be described later, and a bottom plate 52 welded to a lower portion of the cylinder body 51.

【0012】底板52は、上方に膨出した中央球殻部5
aと、該中央球殻部5aの外周から下方に延設された円
筒部5bと、該円筒部5bの下端から外側に展長された
鍔状部5cからなり、該鍔状部5cの外周が円筒体51
の下部内周壁に溶接されている。なお、底板52は平板
状でも良いが、本実施例において底板52の中央部を球
殻状に形成したのは、薄い肉厚で加熱容器内の高圧に耐
えるためである。
The bottom plate 52 has a central spherical shell 5 bulging upward.
a, a cylindrical portion 5b extending downward from the outer periphery of the central spherical shell portion 5a, and a collar-shaped portion 5c extending outward from the lower end of the cylindrical portion 5b, the outer periphery of the collar-shaped portion 5c. Is the cylindrical body 51
Is welded to the lower inner wall of the. The bottom plate 52 may have a flat plate shape, but the reason why the central portion of the bottom plate 52 is formed in a spherical shell shape in this embodiment is that the bottom plate 52 has a thin thickness and can withstand the high pressure in the heating container.

【0013】加熱容器5の中心にはアンモニア希溶液を
流出させ、吸収器4に供給するための希溶液流出管20
が上方から底部にまで差し込まれている。底板52の下
は、前記ガスバーナ6の燃焼室60となっており、燃焼
室60の底部には強制送風式の全一次燃焼板式ガスバー
ナ6が装着されている。底板52の中央球殻部5aに
は、4重の同心円上に等間隔で8個ずつ、計32個の下
側穴53が開けられている。立て型円筒体51の上部に
は上下4段に等間隔で8個ずつ、計32個の上側穴54
が開けられている。この実施例の如く、上側穴54を上
下4段に等間隔で8個ずつ形成することにより、管同士
の間隔を適正に維持しながら配管スペースのコンパクト
化および管径の増大(熱交換面積の増大)が可能にな
る。
A dilute solution outflow pipe 20 for letting out a dilute ammonia solution into the center of the heating vessel 5 and supplying it to the absorber 4.
Is inserted from the top to the bottom. Below the bottom plate 52 is a combustion chamber 60 of the gas burner 6, and a forced draft type primary combustion plate type gas burner 6 is attached to the bottom of the combustion chamber 60. The central spherical shell portion 5a of the bottom plate 52 is provided with a total of 32 lower holes 53 on the quadruple concentric circles, eight at equal intervals. In the upper part of the vertical cylindrical body 51, eight upper and lower holes 54 are vertically arranged in four stages at a total of 32 upper holes 54.
Has been opened. As in this embodiment, by forming the upper holes 54 in four stages in the upper and lower four steps at equal intervals, the pipe space is made compact and the pipe diameter is increased (heat exchange area of the heat exchange area while maintaining proper intervals between the pipes). Increase) is possible.

【0014】加熱容器5の外周には、該加熱容器5の外
周に円筒状閉空間70を形成する外筒7が同軸的に設け
られている。外筒7は、筒体71と、その上端を塞ぐ環
状上板72、下端を塞ぐ環状下板73とからなり、筒体
71の内周壁には断熱材74が張られている。筒体71
および断熱材74の下端には、円筒状閉空間70に設け
た後述の燃焼ガス滞留通路77の下端に連通される排気
口75が開けられ、排気筒76が水平方向に突設されて
いる。なお、排気口75は、環状下板73に設けて排気
筒76を下方に突設しても良い。
On the outer circumference of the heating container 5, an outer cylinder 7 forming a cylindrical closed space 70 is coaxially provided on the outer circumference of the heating container 5. The outer cylinder 7 includes a cylindrical body 71, an annular upper plate 72 that closes the upper end of the cylindrical body 71, and an annular lower plate 73 that closes the lower end of the cylindrical body 71. A heat insulating material 74 is stretched on the inner peripheral wall of the cylindrical body 71. Cylinder 71
Further, an exhaust port 75 communicating with a lower end of a combustion gas retention passage 77, which will be described later, provided in the cylindrical closed space 70 is opened at the lower end of the heat insulating material 74, and an exhaust pipe 76 is provided so as to project in the horizontal direction. The exhaust port 75 may be provided in the annular lower plate 73 and the exhaust cylinder 76 may be provided so as to project downward.

【0015】断熱材74の内周壁と加熱容器5の外周壁
との間は環状の燃焼ガス滞留通路77となっている。加
熱容器5の外周壁の中間部には吸熱フィンとしてのコル
ゲートフィン56が、半ピッチをずらして上下方向に5
段にろう付け等で接合されて燃焼ガス滞留通路77内に
位置している。加熱容器5内には、逆L字形に曲げられ
た32本の燃焼ガス流路管55が垂直に平行して並設さ
れている。各燃焼ガス流路管55は、下端が下側穴53
に溶接され上端が上側穴54に溶接されて、燃焼室60
と燃焼ガス滞留通路77の上部との間を連通している。
An annular combustion gas retention passage 77 is formed between the inner peripheral wall of the heat insulating material 74 and the outer peripheral wall of the heating container 5. Corrugated fins 56 as heat absorption fins are provided in the middle of the outer peripheral wall of the heating container 5 in the vertical direction by shifting a half pitch.
It is located in the combustion gas retention passage 77 joined to the step by brazing or the like. In the heating container 5, 32 combustion gas passage tubes 55 bent in an inverted L shape are arranged in parallel vertically. The lower end of each combustion gas passage pipe 55 is a lower hole 53.
And the upper end is welded to the upper hole 54.
And the upper part of the combustion gas retention passage 77.

【0016】この発生器1では、ガスバーナ6の全一次
空気燃焼による燃焼ガスが、燃焼室60から、32本の
燃焼ガス流路管55を通過して燃焼ガス滞留通路77の
上部に流通される。燃焼ガス滞留通路77に入った燃焼
ガスはコルゲートフィン56に接触しながら通って降下
し、排気口75から排気筒76を経て外部に排出され
る。この間において、ガスバーナ6での発熱は、加熱容
器5の底板52を介して内部の作動液に伝達され、つぎ
に燃焼ガス流路管55の管壁を介して作動液を加熱し、
残余の熱エネルギーはコルゲートフィン56および円筒
体51に吸熱されて作動液に供給される。
In this generator 1, the combustion gas generated by the all-primary air combustion of the gas burner 6 flows from the combustion chamber 60 to the upper portion of the combustion gas retention passage 77 through the 32 combustion gas passage pipes 55. . The combustion gas that has entered the combustion gas retention passage 77 comes down while coming into contact with the corrugated fins 56, and is discharged to the outside through the exhaust port 75 and the exhaust pipe 76. During this time, the heat generated by the gas burner 6 is transmitted to the internal working fluid via the bottom plate 52 of the heating container 5, and then heats the working fluid via the tube wall of the combustion gas passage tube 55.
The remaining thermal energy is absorbed by the corrugated fins 56 and the cylindrical body 51 and is supplied to the hydraulic fluid.

【0017】このように発生器1は、小さな体格で極め
て大きい伝熱面積を有するとともに、燃焼ガスと伝熱面
との接触時間が大きくとれるため、熱効率を最大80%
程度にまで高めることができる。これとともに、燃焼負
荷が大きくでき、冷凍装置として高い冷凍能力が得られ
る。そして、偏平な燃焼室60と、加熱容器5として燃
焼室60の天井壁を底板52とする立て型筒状の加熱容
器5内に多管式の燃焼ガス流路管55とを組み合わせて
いるので、燃焼ガスは迅速に燃焼ガス流路管55に流れ
込んで熱交換がなされ、燃焼ガスは冷却されるため、高
温状態の燃焼ガスの滞留時間が短くなり、窒素酸化物の
発生が少ない。とくに、底板52は中央を上方に膨出し
た球殻状としたため、燃焼ガスは球面に沿って中央に流
れる傾向にあり、円滑に燃焼ガス流路管55に流れる。
従って前記滞留時間は更に小さくなり、窒素酸化物の発
生が低減できる。
As described above, the generator 1 has a small physique and an extremely large heat transfer area, and since the contact time between the combustion gas and the heat transfer surface is long, the heat efficiency is 80% at maximum.
Can be increased to the extent. Along with this, the combustion load can be increased, and a high refrigerating capacity as a refrigerating device can be obtained. Since the flat combustion chamber 60 is combined with the multi-tube combustion gas passage pipe 55 in the vertical cylindrical heating container 5 having the ceiling wall of the combustion chamber 60 as the bottom plate 52 as the heating container 5. The combustion gas quickly flows into the combustion gas passage pipe 55 for heat exchange, and the combustion gas is cooled. Therefore, the residence time of the combustion gas in a high temperature state is shortened, and the generation of nitrogen oxides is small. In particular, since the bottom plate 52 has a spherical shell shape with the center thereof bulging upward, the combustion gas tends to flow to the center along the spherical surface, and flows smoothly into the combustion gas passage pipe 55.
Therefore, the residence time is further shortened, and the generation of nitrogen oxide can be reduced.

【0018】図6は、混合気の空燃比と窒素酸化物の発
生の測定データのグラフである。図中イは燃焼ガスを加
熱容器5の外周に流して熱交換を行うもので、燃焼ガス
流路管55を備えない場合、ロは本発明の偏平の燃焼室
60の天井壁となる底板52に燃焼ガス流路管55の下
側穴53を設けた場合を示す。このグラフから、本発明
のガスバーナ6は理論空燃比に近い予混合気でも窒素酸
化物の発生は少ないことが判る。このため、空気過剰率
が1.0に近い燃焼条件においても窒素酸化物の発生を
低い水準に維持できる。
FIG. 6 is a graph of measured data of the air-fuel ratio of the air-fuel mixture and the generation of nitrogen oxides. In the figure, a is a flow of the combustion gas to the outer circumference of the heating container 5 for heat exchange, and when the combustion gas flow pipe 55 is not provided, a is a bottom plate 52 serving as a ceiling wall of the flat combustion chamber 60 of the present invention. The case where the lower hole 53 of the combustion gas passage pipe 55 is provided in FIG. From this graph, it can be seen that the gas burner 6 of the present invention produces less nitrogen oxides even with a premixed gas that is close to the stoichiometric air-fuel ratio. Therefore, the generation of nitrogen oxides can be maintained at a low level even under the combustion condition where the excess air ratio is close to 1.0.

【0019】ガスバーナ6は、図1、図4、図5に示す
如く、多数の炎孔が所定のパターンで開けられたセラミ
ック製で円形の燃焼板61と、該燃焼板61を前記円筒
体51の下端に取り付けるための燃焼板保持枠62とを
備える。燃焼板保持枠62は、中心部に嵌め込み用円筒
部6Aが設けられ、外周は前記円筒体51の下端面に設
けたフランジ57への締結縁6Bとなっている。嵌め込
み用円筒部6Aへは、燃焼板61およびその下方に混合
気の均一分布を図る多孔板63が嵌め込まれ、燃焼板6
1の上面の縁は円環状の縁金61Aで押さえている。燃
焼板61の上方には、前記円筒体51を貫通して、点火
用電極Sおよび失火検出用フレームロッドFが装着され
ている。
As shown in FIG. 1, FIG. 4 and FIG. 5, the gas burner 6 is a ceramic circular combustion plate 61 in which a large number of flame holes are formed in a predetermined pattern, and the combustion plate 61 is formed into the cylindrical body 51. And a combustion plate holding frame 62 for attaching to the lower end of the. The combustion plate holding frame 62 is provided with a fitting cylindrical portion 6A at the center thereof, and has an outer periphery serving as a fastening edge 6B to a flange 57 provided on the lower end surface of the cylindrical body 51. A combustion plate 61 and a perforated plate 63 for achieving a uniform distribution of the air-fuel mixture are fitted into the fitting cylindrical portion 6A, and the combustion plate 6 is inserted into the fitting plate 6A.
The edge of the upper surface of 1 is pressed by an annular edge metal 61A. Above the combustion plate 61, an ignition electrode S and a misfire detection frame rod F are mounted so as to penetrate the cylindrical body 51.

【0020】燃焼板保持枠62の下面には、燃焼用空気
と燃料ガスとの混合管を兼ねたケーシング64が締結さ
れている。ケーシング64には接線方向に矩形筒状の空
気導入通路65が設けられ、該空気導入通路65には下
流側に複数のガス噴出穴6Cが列設されたガスノズル管
66が交差するように差し込まれている。空気導入通路
65にはブロワBから燃焼用空気が供給され、ガスノズ
ル管66にはガス源Gから燃料ガスが供給される。
On the lower surface of the combustion plate holding frame 62, there is fastened a casing 64 which also serves as a mixing pipe for combustion air and fuel gas. A rectangular cylindrical air introduction passage 65 is provided in the casing 64 in the tangential direction, and a gas nozzle pipe 66 having a plurality of gas ejection holes 6C on the downstream side is inserted into the air introduction passage 65 so as to intersect with each other. ing. Combustion air is supplied from the blower B to the air introduction passage 65, and fuel gas is supplied from the gas source G to the gas nozzle pipe 66.

【0021】ケーシング64内には、前記燃焼板61の
下面に対向する上側開口6Dを有するカップ状部6E
と、該カップ状部6Eの側壁に開口した内外連通口6F
と、該内外連通口6Fの縁から外側に突設された縦板状
の仕切り壁板6Gとを備えた混合気流路形成部材67が
嵌め込まれている。仕切り壁板6Gは、前記空気導入通
路65の一方の最下流端縁に接触してケーシング64内
を仕切り、前記空気導入通路65からカップ状部6Eの
外周とケーシング64の内周との間の環状流路68を一
周して連通口6Fからカップ状部6E内に入り、前記多
孔板63を通過して燃焼板61の下面に到る混合流路6
9が形成されている。
A cup-shaped portion 6E having an upper opening 6D facing the lower surface of the combustion plate 61 is provided in the casing 64.
And an inner / outer communication port 6F opened on the side wall of the cup-shaped portion 6E
A mixture gas flow path forming member 67 including a vertical plate-shaped partition wall plate 6G protruding outward from an edge of the inner / outer communication port 6F is fitted. The partition wall plate 6G comes into contact with one of the most downstream end edges of the air introducing passage 65 to partition the inside of the casing 64, and between the air introducing passage 65 and the outer periphery of the cup-shaped portion 6E and the inner periphery of the casing 64. The mixing flow path 6 that goes around the annular flow path 68, enters the cup-shaped portion 6E from the communication port 6F, passes through the porous plate 63, and reaches the lower surface of the combustion plate 61.
9 is formed.

【0022】この混合流路69は、環状流路68により
長く形成されているので、予混合が完全になされるため
の長さをコンパクトな体格で形成することができる。こ
の結果、均一且つ希薄な空燃比の混合気の燃焼が可能と
なり、窒素酸化物の発生を低減できる。前記底板の円筒
部5bの外周と円筒体51の内周との間の円環状の空間
は、作動液によって満たされており、前記燃焼室60の
外周を囲むウォータージャケット50となっている。こ
のウォータージャケット50は、燃焼室60の外周の円
筒体51を覆うことによって燃焼室60内の燃焼ガスの
熱をウォータージャケット50に吸熱させることによっ
て、燃焼ガスの熱が円筒体51に吸熱されて外部に放出
されるロスを防止し、高い熱効率が得られるようにして
いる。
Since the mixing channel 69 is formed longer by the annular channel 68, the length for complete premixing can be formed in a compact size. As a result, it is possible to burn the air-fuel mixture with a uniform and lean air-fuel ratio, and it is possible to reduce the generation of nitrogen oxides. The annular space between the outer periphery of the cylindrical portion 5b of the bottom plate and the inner periphery of the cylindrical body 51 is filled with hydraulic fluid to form a water jacket 50 that surrounds the outer periphery of the combustion chamber 60. The water jacket 50 covers the cylindrical body 51 on the outer periphery of the combustion chamber 60 so that the heat of the combustion gas in the combustion chamber 60 is absorbed by the water jacket 50, so that the heat of the combustion gas is absorbed by the cylindrical body 51. The loss released to the outside is prevented and high thermal efficiency is obtained.

【0023】つぎに、冷暖房給湯装置100の作動を説
明する。ガスバーナ6によって発生器1の加熱容器5内
の作動液を加熱すると、該作動液から冷媒であるアンモ
ニアと吸収液である水との混合蒸気が発生し、この混合
蒸気が精留器12を通って上昇する。この精留器12で
は、5段の貯液棚1A〜1Eが形成されており、吸収器
4から発生器1に供給される作動液(アンモニア濃溶
液)が上段の貯液棚から順次下段の貯液棚へ流下する。
Next, the operation of the cooling / heating water heater 100 will be described. When the working fluid in the heating container 5 of the generator 1 is heated by the gas burner 6, a mixed vapor of ammonia as a refrigerant and water as an absorbing fluid is generated from the working fluid, and the mixed vapor passes through the rectifier 12. Rise. In this rectification unit 12, five storage tanks 1A to 1E are formed, and the working liquid (ammonia concentrated solution) supplied from the absorber 4 to the generator 1 is sequentially transferred from the upper storage tank to the lower tank. Run down to the storage shelf.

【0024】精留器12では、下方から上昇するアンモ
ニアと水の混合蒸気が各貯液棚を通過するたびに、上方
からのアンモニア濃溶液との接触とによる温度降下によ
り水が凝縮して混合蒸気中のアンモニア濃度が上昇す
る。そして精留器12で濃縮された混合蒸気は、さらに
上段の分縮器13で吸熱され水が凝縮して分離されて約
99.8%のアンモニアガスとなる。
In the rectifier 12, every time the mixed vapor of ammonia and water rising from below passes through each storage rack, the water is condensed and mixed due to the temperature drop caused by the contact with the concentrated ammonia solution from above. Ammonia concentration in steam rises. The mixed vapor concentrated in the rectifier 12 is further endothermic by the upper partial condenser 13 and water is condensed and separated to become about 99.8% ammonia gas.

【0025】〔冷房運転、図7参照〕図7に示す如く、
このガス冷媒は矢印Lで示すように第1四路切換弁21
を経て凝縮器として作用する熱源側熱交換器11へ供給
される。熱源側熱交換器11では、ファンFaにより空
冷されて凝縮熱を放出して液化しアンモニア液(液冷
媒)となる。この液冷媒は、冷媒間熱交換器2の内管2
aを通って減圧機構として作用するキャピラリチューブ
23で減圧された後、二重管構造の利用側熱交換器(蒸
発器として作用する)3へ流入する。
[Cooling operation, see FIG. 7] As shown in FIG.
This gas refrigerant is supplied to the first four-way switching valve 21 as indicated by an arrow L.
And is supplied to the heat source side heat exchanger 11 which functions as a condenser. In the heat source side heat exchanger 11, it is air-cooled by the fan Fa to release the heat of condensation and liquefy to become ammonia liquid (liquid refrigerant). This liquid refrigerant is the inner tube 2 of the heat exchanger 2 between refrigerants.
After being decompressed by the capillary tube 23 acting as a decompression mechanism through a, it flows into the utilization side heat exchanger (acting as an evaporator) 3 of the double pipe structure.

【0026】液冷媒は、利用側熱交換器3で室内機から
ポンプP1 の駆動により利用側熱媒体流路31を介して
供給される利用側熱媒体(本実施例では、水)と熱交換
して蒸発し(水は冷却されて冷房用冷熱源となる)、再
度ガス冷媒となる。このガス冷媒は、第2四路切換弁2
2を通って冷媒間熱交換器2の外管2bに送られ、そこ
で熱源側熱交換器11からの液冷媒(内管2a内を通
る)を予冷し且つ自らは予熱された後、第1四路切換弁
21および第2四路切換弁22を経て、吸収器4へ送給
される。
The liquid refrigerant exchanges heat with the use side heat medium (water in this embodiment) supplied from the indoor unit in the use side heat exchanger 3 by driving the pump P1 through the use side heat medium passage 31. Then, it evaporates (water is cooled and becomes a cooling heat source for cooling), and again becomes a gas refrigerant. This gas refrigerant is used in the second four-way switching valve 2
2 is sent to the outer pipe 2b of the inter-refrigerant heat exchanger 2 through which the liquid refrigerant (passing inside the inner pipe 2a) from the heat source side heat exchanger 11 is pre-cooled and itself preheated, and then the first It is fed to the absorber 4 via the four-way switching valve 21 and the second four-way switching valve 22.

【0027】このガス冷媒は、吸収器4において発生器
1から吸収器4に供給された作動液中に再度吸収させ
る。すなわち、吸収器4の容器41内の最上段部には作
動液の散布器42が設けられており、散布器42に対し
て矢印L1 で示すように発生器1から精留器内熱交換器
26で冷却され減圧機構として作用するキャピラリチュ
ーブ24を介して作動液(3%アンモニア希溶液)が供
給される。
This gas refrigerant is again absorbed in the working fluid supplied from the generator 1 to the absorber 4 in the absorber 4. That is, a sprayer 42 for the working fluid is provided at the uppermost stage in the container 41 of the absorber 4, and the heat exchanger from the generator 1 to the heat exchanger in the rectifier is provided to the sprayer 42 as indicated by an arrow L1. The working liquid (3% ammonia dilute solution) is supplied through the capillary tube 24 that is cooled by 26 and acts as a pressure reducing mechanism.

【0028】このアンモニア希溶液は容器41内で散布
器42から散布され、利用側熱交換器3から容器41内
に供給されるガス冷媒を吸収して容器41の底部にある
液溜まり43に落下する。液溜まり43の作動液(アン
モニア濃溶液)は、ポンプP2 により図7中の矢印L2
、L3 で示すように圧送される。この間において、分
縮器13の熱交換器25および吸収熱回収用の吸収器4
内の熱交換器44で熱交換して加熱された後、精留器1
2内の最上段の貯液棚1Aへ供給される。
The diluted ammonia solution is sprayed from the sprayer 42 in the container 41, absorbs the gas refrigerant supplied from the heat exchanger 3 on the use side into the container 41, and drops into the liquid pool 43 at the bottom of the container 41. To do. The working liquid (concentrated ammonia solution) in the liquid pool 43 is supplied by the pump P2 to the arrow L2 in FIG.
, L3 is pumped. During this period, the heat exchanger 25 of the partial condenser 13 and the absorber 4 for recovering absorbed heat
After being heat-exchanged and heated by the heat exchanger 44 inside, the rectifier 1
It is supplied to the uppermost liquid storage shelf 1A in 2.

【0029】〔暖房運転、図8参照〕図8に示す如く、
第1四路切換弁21および第2四路切換弁22が切り換
わり、冷凍回路を流通するガス冷媒(アンモニアガス)
の流れ方向が切り換えられる。分縮器13で生成された
ガス冷媒(濃度99.8%)は矢印L4 で示すように第
1四路切換弁21および第2四路切換弁22を通って凝
縮器として作用する利用側熱交換器3に流入し、利用側
熱媒体流路31を通って室内機から供給される利用側熱
媒体(本実施例では、水)と熱交換して凝縮する。水は
これにより加熱され、室内機での暖房用熱源となる。
[Heating operation, see FIG. 8] As shown in FIG.
The first four-way switching valve 21 and the second four-way switching valve 22 are switched, and the gas refrigerant (ammonia gas) flowing through the refrigeration circuit
The flow direction of is switched. The gas refrigerant (concentration 99.8%) generated in the partial condenser 13 passes through the first four-way switching valve 21 and the second four-way switching valve 22 as shown by the arrow L4, and is used side heat acting as a condenser. The heat flows into the exchanger 3, passes through the use-side heat medium flow passage 31, exchanges heat with the use-side heat medium (water in this embodiment) supplied from the indoor unit, and condenses. The water is heated by this and becomes a heat source for heating in the indoor unit.

【0030】利用側熱交換器3で液化した冷媒は、キャ
ピラリチューブ23で減圧されたあと、冷媒間熱交換器
2の内管2aを通って蒸発器として作用する熱源側熱交
換器11に供給されて蒸発し、さらに第1四路切換弁2
1、冷媒間熱交換器2の外管2b、第2四路切換弁22
を経て吸収器4に供給される。なお、発生器1などでの
水−アンモニア混合蒸気の発生・精留・分縮と、吸収器
におけるアンモニアガス冷媒の吸収とは、図7に示す冷
房運転時と同様であり、その間の作動液(アンモニア濃
溶液とアンモニア希溶液)の流れも図7と同様である。
The refrigerant liquefied in the use side heat exchanger 3 is decompressed by the capillary tube 23, and then is supplied to the heat source side heat exchanger 11 acting as an evaporator through the inner pipe 2a of the inter-refrigerant heat exchanger 2. And evaporates, and further the first four-way switching valve 2
1, outer tube 2b of heat exchanger 2 between refrigerants, second four-way switching valve 22
And is supplied to the absorber 4. The generation, rectification, and partial condensation of the water-ammonia mixed vapor in the generator 1 and the like and the absorption of the ammonia gas refrigerant in the absorber are the same as in the cooling operation shown in FIG. The flow of (concentrated ammonia solution and diluted ammonia solution) is the same as in FIG. 7.

【0031】この実施例では、吸収器4内には吸収熱回
収用の熱交換器44のほかに、給湯などの熱源用の熱交
換器45および冷暖兼用熱交換器46が設けてある。給
湯など熱源用の熱交換器45は、給湯タンク14、風呂
15、浴室乾燥器16などにポンプP3 を介して接続さ
れて湯を熱媒体とした給湯サイクルを構成している。
In this embodiment, in the absorber 4, in addition to the heat exchanger 44 for recovering the absorbed heat, a heat exchanger 45 for a heat source such as hot water supply and a heat exchanger 46 for both cooling and heating are provided. The heat exchanger 45 for a heat source such as hot water supply is connected to the hot water supply tank 14, the bath 15, the bathroom dryer 16 and the like via the pump P3 to form a hot water supply cycle using hot water as a heat medium.

【0032】冷暖兼用熱交換器46の入口側と出口側に
は、利用側熱交換器3の出口における利用側熱媒体流路
31から三方切換弁V1 を介して分岐された分岐往路3
2と、三方切換弁V1 の下流側に合流する分岐復路33
側とがそれぞれ接続されている。また、放熱用熱交換器
34およびポンプP4 を接続する冷却水流路35におけ
るポンプP4 の出口側は、分岐往路32に対して三方切
換弁V2 を介して接続される一方、前記冷却水流路35
における放熱用熱交換器34の入口側は、分岐復路33
に対して三方切換弁V3 を介して接続されている。
On the inlet side and the outlet side of the cooling / heating heat exchanger 46, the branch outward path 3 branched from the use side heat medium flow path 31 at the outlet of the use side heat exchanger 3 via the three-way switching valve V1.
2 and a branch return path 33 that joins the downstream side of the three-way switching valve V1.
And the sides are connected respectively. The outlet side of the pump P4 in the cooling water flow path 35 connecting the heat radiation heat exchanger 34 and the pump P4 is connected to the branch outward path 32 via the three-way switching valve V2, while the cooling water flow path 35 is connected.
The inlet side of the heat dissipation heat exchanger 34 is
Is connected via a three-way switching valve V3.

【0033】ここで三方切換弁V2 、V3 は、冷房運転
時においては図7に示すように、冷却水流路35側が
開、分岐往路32および分岐復路33側が閉となり、暖
房運転時においては図8に示すように、冷却水流路35
側が閉、分岐往路32および分岐復路33が開となるよ
うに制御されることとなっている。従って、冷房運転時
においては、冷暖兼用熱交換器46へは利用側熱媒体は
供給されず、放熱用熱交換器34からの冷却水が供給さ
れ、暖房運転時においては、熱交換器46へは利用側熱
媒体が供給され、放熱用熱交換器34からの冷却水は供
給されない。なお、上記実施例では、加熱容器5の底板
52を上方に膨出した構造としたが、下方に放出した構
造としても本発明の目的である窒素酸化物の低減は可能
である。
In the cooling operation, the three-way switching valves V2 and V3 are opened on the cooling water flow path 35 side and closed on the branch outward path 32 and branch return path 33 sides as shown in FIG. As shown in FIG.
It is controlled so that the side is closed and the branch outward path 32 and the branch return path 33 are opened. Therefore, during the cooling operation, the heat medium for heating / cooling 46 is not supplied with the heat medium on the use side, but the cooling water is supplied from the heat exchanger 34 for heat radiation, and during the heating operation, the heat exchanger 46 is supplied to the heat exchanger 46. Is supplied with the heat medium on the use side, and the cooling water from the heat exchanger 34 for heat radiation is not supplied. Although the bottom plate 52 of the heating container 5 is bulged upward in the above embodiment, the nitrogen oxide can be reduced, which is the object of the present invention, if the bottom plate 52 is bulged upward.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる吸収式冷凍装置の発生器の正
面断面図である。
FIG. 1 is a front sectional view of a generator of an absorption refrigerating apparatus according to the present invention.

【図2】加熱容器の上部の斜視図である。FIG. 2 is a perspective view of an upper portion of the heating container.

【図3】図1のA−A断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】図1のB−B断面図である。FIG. 4 is a sectional view taken along line BB of FIG.

【図5】ガスバーナの組付図である。FIG. 5 is an assembly diagram of a gas burner.

【図6】ガスバーナの窒素酸化物の発生量のデータを示
すグラフである。
FIG. 6 is a graph showing data on the amount of nitrogen oxides generated in a gas burner.

【図7】吸収式冷凍装置を用いた冷暖房装置の概略構成
図である。
FIG. 7 is a schematic configuration diagram of an air conditioner using an absorption refrigeration system.

【図8】吸収式冷凍装置を用いた冷暖房装置の概略構成
図である。
FIG. 8 is a schematic configuration diagram of a cooling / heating apparatus using an absorption refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1 発生器 4 吸収器 5 加熱容器 6 ガスバーナ 7 外筒 5a 中央球殻部 5b 円筒部 5c 鍔状部 12 精留器 13 分縮器(凝縮器) 52 底板 53 下側穴 54 上側穴 55 燃焼ガス流路管 60 燃焼室 DESCRIPTION OF SYMBOLS 1 Generator 4 Absorber 5 Heating container 6 Gas burner 7 Outer cylinder 5a Central spherical shell part 5b Cylindrical part 5c Collar part 12 Fractionator 13 Fractionator (condenser) 52 Bottom plate 53 Lower hole 54 Upper hole 55 Combustion gas Flow tube 60 Combustion chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒と吸収液とを混合した作動液から冷
媒と吸収液の混合作動液蒸気を発生させる発生器と、該
混合作動液蒸気を精留して冷媒成分を濃縮する精留器
と、該濃縮された混合作動液蒸気のガス冷媒成分を凝縮
させる凝縮器と、該凝縮器で凝縮させた液冷媒を蒸発さ
せる蒸発器と、該蒸発器で蒸発した冷媒蒸気を希作動液
中に吸収させる吸収器とを備えた吸収式冷凍装置におい
て、 前記発生器は、内部に作動液が収容されるとともに、底
板を備えた立て型筒状の加熱容器と、該加熱容器の底板
の下に設けられて内部に全一次バーナが設置された偏平
な燃焼室と、前記底板に開けられた多数の下側穴および
前記加熱容器の上部に形成された上側穴とを連結して前
記加熱容器内に並設された多数の燃焼ガス流路管とから
なることを特徴とする吸収式冷凍装置。
1. A generator for generating a mixed working fluid vapor of a refrigerant and an absorbing fluid from a working fluid obtained by mixing a refrigerant and an absorbing fluid, and a rectifier for rectifying the mixed working fluid vapor to concentrate a refrigerant component. A condenser for condensing the gas refrigerant component of the concentrated mixed working fluid vapor; an evaporator for evaporating the liquid refrigerant condensed by the condenser; and a refrigerant vapor evaporated by the evaporator in a diluted working fluid. In an absorption type refrigerating apparatus having an absorber for absorbing the liquid, the generator contains a working liquid contained therein, a vertical cylindrical heating container having a bottom plate, and a bottom plate of the heating container. The heating container provided with a flat combustion chamber in which all primary burners are installed, and a number of lower holes formed in the bottom plate and an upper hole formed in the upper part of the heating container are connected to each other. Characterized by a number of combustion gas flow passages arranged side by side Absorption type refrigerating apparatus to.
【請求項2】 請求項1において、前記底板は上方に膨
出した中央球殻部を有し、前記多数の下側穴は該中央球
殻部に開けられ、前記多数の上側穴は前記加熱容器の外
周上部に形成されたことを特徴とする吸収式冷凍装置。
2. The bottom plate according to claim 1, wherein the bottom plate has a central spherical shell portion bulging upward, the plurality of lower holes are formed in the central spherical shell portion, and the plurality of upper holes are formed by the heating. An absorption type refrigerating apparatus, which is formed on an upper part of an outer periphery of a container.
JP6115193A 1994-05-27 1994-05-27 Absorption type refrigerating equipment Pending JPH07318195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6115193A JPH07318195A (en) 1994-05-27 1994-05-27 Absorption type refrigerating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6115193A JPH07318195A (en) 1994-05-27 1994-05-27 Absorption type refrigerating equipment

Publications (1)

Publication Number Publication Date
JPH07318195A true JPH07318195A (en) 1995-12-08

Family

ID=14656661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6115193A Pending JPH07318195A (en) 1994-05-27 1994-05-27 Absorption type refrigerating equipment

Country Status (1)

Country Link
JP (1) JPH07318195A (en)

Similar Documents

Publication Publication Date Title
KR19990023967A (en) Absorption Chiller
JP2627381B2 (en) Absorption refrigerator
JP2806798B2 (en) Absorption refrigeration equipment
KR890004393B1 (en) Air cooling type absorption cooler
JPH07318195A (en) Absorption type refrigerating equipment
JP2806797B2 (en) Absorption refrigeration equipment
JPH07318194A (en) Absorption type refrigerating equipment
JP2728362B2 (en) Absorption refrigeration equipment
JPH10122688A (en) Chiller
JP4266697B2 (en) Absorption refrigerator
JP3896355B2 (en) Absorption-type high-temperature regenerator with a narrow combustion zone mechanically and an absorption-type chiller / heater using the same
JP2000320925A (en) High-temperature regenerator for absorption refrigerator
JPH09303901A (en) Absorption freezer device
JP2957112B2 (en) Regenerator for absorption refrigeration system
JP3904726B2 (en) Absorption refrigeration system
KR100428317B1 (en) High Temperature Generator of The Absorption Chiller and Heater
KR100213781B1 (en) Absorption type cooler system with water supply function
KR100314471B1 (en) Generator of absorption heat pump using ammonia
JP3178678B2 (en) Hydrogen gas discharge device of absorption refrigerator
JP2898202B2 (en) Absorption cooling system
KR100213794B1 (en) Ammonia absorption type cooler
JPH1026302A (en) Steam generating equipment
KR19990064984A (en) Gas-liquid separation device for high temperature regenerator for absorption air conditioner
JPH09303902A (en) Absorption freezer device
JPH05231741A (en) Absorption type refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees