JPH07316758A - Production of antenna element - Google Patents

Production of antenna element

Info

Publication number
JPH07316758A
JPH07316758A JP13385494A JP13385494A JPH07316758A JP H07316758 A JPH07316758 A JP H07316758A JP 13385494 A JP13385494 A JP 13385494A JP 13385494 A JP13385494 A JP 13385494A JP H07316758 A JPH07316758 A JP H07316758A
Authority
JP
Japan
Prior art keywords
antenna element
alloy
temperature
wire
characteristic diagram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13385494A
Other languages
Japanese (ja)
Inventor
Hideo Takaara
秀男 高荒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP13385494A priority Critical patent/JPH07316758A/en
Publication of JPH07316758A publication Critical patent/JPH07316758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

PURPOSE:To produce an antenna element for mobile object communication apparatus showing superelastic properties even at the transformation temp. or below by working a TiNiX (X=Cu, Cr, V, Mn and Zr) alloy at a specified working ratio and thereafter executing heat treatment at a specified temp. CONSTITUTION:A TiNiX alloy is worked at a working ratio of at least >=30%. The obtd. worked product such as a wire rod, pipe or the like is subjected to heat treatment at 280 to 300 deg.C for about 30min and is subjected to aging treatment. Thus, the wire or tubular antenna element for mobile object communication apparatus showing ultraelastic properties even at the transformation point (As point) of about -20 deg.C or below can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動体通信機器等に使
用されるアンテナ素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an antenna element used in mobile communication equipment and the like.

【0002】[0002]

【従来の技術】近年、自動車電話、携帯電話を中心とし
た移動体通信機器は、電波法の改正に伴い周波数の有効
利用、さらにはシステムの改良などにより著しい発展を
遂げている。情報化社会が進む中、特に携帯電話は利便
性、サービス料金の値下げ、サービスエリアの拡大等に
よってビジネスユースからパーソナルユースへの需要へ
着実に進んでいる。又、小型、軽量化の技術革新で当初
のショルダー型からハンドヘルド型へと小形化が進み、
現在では掌と同じ大きさにまでになっている。
2. Description of the Related Art In recent years, mobile communication devices such as car phones and mobile phones have been remarkably developed due to effective use of frequencies and improvement of systems in accordance with revision of the Radio Law. As the information-oriented society advances, the demand from business use to personal use is steadily progressing due to convenience, price reduction of service charges, expansion of service area, and so on. In addition, with the technological innovation of smaller size and lighter weight, the size of the original shoulder type has been reduced to the handheld type.
Now it is as large as the palm.

【0003】このような無線通信機器に欠かせないのは
電波を送受信するアンテナである。移動体通信機器の中
で携帯電話やトランシーバー等は、使用者が屋外を移動
しながら取り扱うことから振動、衝撃、温湿度等の環境
に対して過酷な信頼性が要求されている。特に機器の外
部に伸びるアンテナでは、使用者が誤って過度に曲げて
変形させてしまう恐れが十分ある。又、使用者に対して
の安全性を考慮して設計しておく必要がある。したがっ
て、アンテナ素子は、出来るだけ柔軟性が求められてお
りステンレスやピアノ線等のバネ材を工夫して加工して
ある。最近では、新素材である超弾性合金のTiNi系
合金が使用されている。
An essential element for such a wireless communication device is an antenna for transmitting and receiving radio waves. Among mobile communication devices, mobile phones, transceivers, and the like are required to have harsh reliability against environments such as vibration, shock, temperature and humidity because users handle them while moving outdoors. In particular, with an antenna extending to the outside of the device, there is a risk that the user may accidentally bend and deform it excessively. In addition, it is necessary to design in consideration of safety for users. Therefore, the antenna element is required to be as flexible as possible, and a spring material such as stainless steel or a piano wire is devised and processed. Recently, a new material, a superelastic alloy TiNi-based alloy, has been used.

【0004】一般のバネ材に使用されるステンレス線、
ピアノ線の弾性限界は、約0.5%で、それ以上の歪み
を加えると永久変形が起こり、もとの形には戻らない。
Stainless wire used for general spring material,
The elastic limit of a piano wire is about 0.5%, and if it is strained more than that, permanent deformation will occur and it will not return to its original shape.

【0005】これに対して、超弾性合金のTiNi系合
金は、前述のステンレス線、ピアノ線と比較して、弾性
限界がはるかに大きく約8%である。すなわち、8%ま
での伸びに対しても永久変形が起こらず元の形状に復元
するのである。この超弾性機能に注目し、歯列矯正線、
医療器具のカテーテルガイドワイヤー、衣服、メガネの
縁、そしてアンテナ素子などに使用されている。
On the other hand, the superelastic TiNi alloy has a much larger elastic limit of about 8% as compared with the above-mentioned stainless wire and piano wire. That is, even if the elongation is up to 8%, no permanent deformation occurs and the original shape is restored. Paying attention to this superelastic function, orthodontic line,
It is used for catheter guide wires of medical equipment, clothes, rims of glasses, and antenna elements.

【0006】しかしながら、従来のTiNi系合金を使
用したアンテナ素子は、応力誘起マルテンサイト相の発
生を利用したもので、超弾性特性に温度依存性があり、
変態温度以下では、超弾性の性質を失い、変形に対する
残留歪みの発生は避けられないという問題がある。従来
のTiNi系合金の変態温度は、約−20℃が限界で、
それ以下の温度環境で曲げ応力を加えると、歪みが残り
変形したままの状態になるという問題がある。
However, the conventional antenna element using the TiNi-based alloy utilizes the generation of the stress-induced martensite phase, and its superelasticity has temperature dependence.
Below the transformation temperature, there is a problem that the property of superelasticity is lost and the occurrence of residual strain due to deformation is unavoidable. The transformation temperature of conventional TiNi-based alloys is limited to about -20 ° C,
When bending stress is applied in a temperature environment below that, there is a problem that the strain remains and remains deformed.

【0007】[0007]

【発明が解決しようとする課題】これら従来のTiNi
系合金を使用したアンテナ素子の問題点を解決し、変態
温度(As点)以下においても超弾性特性を示す移動体
通信機器用アンテナ素子の製造方法を提供することであ
る。
These conventional TiNi
It is an object of the present invention to provide a method for manufacturing an antenna element for mobile communication devices, which solves the problems of the antenna element using a system alloy and exhibits superelasticity even at a transformation temperature (As point) or lower.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、T
iNiX(X=Cu、Cr、V、Mn、Zr)系合金か
ら成る線状又はパイプ状のアンテナ素子の製造方法にお
いて、前記合金を少なくとも30%以上の加工率で加工
し、280〜300℃の間で熱処理を施したことを特徴
としたアンテナ素子の製造方法である。
That is, according to the present invention, T
In a method of manufacturing a linear or pipe-shaped antenna element made of an iNiX (X = Cu, Cr, V, Mn, Zr) -based alloy, the alloy is processed at a processing rate of at least 30% or more and a temperature of 280 to 300 ° C. It is a method for manufacturing an antenna element, characterized in that heat treatment is performed between the antenna elements.

【0009】[0009]

【作用】加工率を30%以上にしたことにより、永久変
形となるスベリ変形の起きにくい加工組織となる。時効
処理温度を280〜300℃に限定したことにより、移
動体通信機器が使用される環境温度−30〜60℃すべ
てにおいて超弾性特性が得られる。
When the working rate is set to 30% or more, the working structure is such that sliding deformation, which is permanent deformation, is unlikely to occur. By limiting the aging temperature to 280 to 300 ° C, superelasticity characteristics can be obtained at all environmental temperatures of -30 to 60 ° C in which the mobile communication device is used.

【0010】[0010]

【実施例】本発明の実施例について、詳細に説明する。
まず、Ti−51Niat%合金を高周波真空溶解法に
よって溶解した。溶解して得られたインゴット表面を疵
取り加工し、その後900℃に加熱し、熱間溝ロール、
表面酸洗、冷間伸線工程を経て外径1mmの線材を得
た。この線材の加工率は30%とした。
EXAMPLES Examples of the present invention will be described in detail.
First, a Ti-51 Niat% alloy was melted by a high frequency vacuum melting method. The surface of the ingot obtained by melting is scratched, then heated to 900 ° C., hot groove roll,
A wire rod having an outer diameter of 1 mm was obtained through a surface pickling process and a cold wire drawing process. The processing rate of this wire was 30%.

【0011】この線引上がりの線材の変態温度を測定し
た結果−21℃であった。
As a result of measuring the transformation temperature of this drawn wire, it was -21 ° C.

【0012】次に、線引上がりの線材を長さ200mm
に切断して何本かの線片の試料を作製した。これらの試
料を数本ずつに分け250〜350℃の間の温度で30
分の時効処理を行なった。各々の試料を試料の温度を変
えて引っ張り試験を行なった結果を表1に示す。
Next, the drawn wire is 200 mm in length.
The sample was cut into several pieces of wire pieces. Divide each of these samples into several pieces at a temperature between 250 and 350 ° C.
Minute aging treatment was performed. Table 1 shows the results of tensile tests performed on each sample while changing the temperature of the sample.

【0013】[0013]

【表1】 ○:残留歪みなし ×:残留歪みあり −:測定不可[Table 1] ◯: No residual strain ×: Residual strain −: Not measurable

【0014】表1で、時効処理条件250℃の試料は、
軟化されておらず、引っ張り試験において破断してい
る。条件280℃と300℃の試料はすべて−30℃か
ら60℃まで超弾性を示した。又、条件320℃の試料
は−30℃で残留歪みが確認され、条件350℃の試料
は−30℃及び−20℃で残留歪みが確認された。これ
らの結果から条件280℃と300℃で処理された試料
が、アンテナ素子の使用される環境温度すべてにおいて
超弾性を有することが判明した。
In Table 1, the samples under the aging treatment conditions of 250 ° C.
Not softened and fractured in a tensile test. All the samples under the conditions of 280 ° C. and 300 ° C. exhibited superelasticity from −30 ° C. to 60 ° C. Further, the residual strain was confirmed at −30 ° C. for the sample under the condition of 320 ° C., and the residual strain was confirmed at −30 ° C. and −20 ° C. for the sample under the condition of 350 ° C. From these results, it was found that the samples treated under the conditions of 280 ° C. and 300 ° C. have superelasticity at all environmental temperatures in which the antenna element is used.

【0015】図1は、本発明の製造方法である時効処理
条件300℃×30分で処理した試料を温度を変えて引
っ張り試験機で測定し得られた荷重−伸び曲線を示す。
図1(a)の−30℃における特性曲線から図1(g)
の+60℃における特性曲線からわかるように、この試
料では−30℃から+60℃までほとんど荷重−伸び曲
線に変化がみられない。又、変形量と荷重の関係は、ほ
ぼ直線で比例している。すなわち本発明の製造方法で作
製されたTiNi系合金を使用したアンテナ素子は、−
30℃から+60℃間すべてで良好な超弾性特性を示
す。
FIG. 1 shows a load-elongation curve obtained by measuring a sample treated under an aging treatment condition of 300 ° C. for 30 minutes, which is a manufacturing method of the present invention, with a tensile tester at different temperatures.
From the characteristic curve at −30 ° C. in FIG.
As can be seen from the characteristic curve of the sample at + 60 ° C, the load-elongation curve hardly changes from -30 ° C to + 60 ° C in this sample. The relationship between the amount of deformation and the load is almost linear and proportional. That is, the antenna element using the TiNi alloy manufactured by the manufacturing method of the present invention is
Good superelastic properties are exhibited at all temperatures between 30 ° C and + 60 ° C.

【0016】図2は、時効処理条件350℃×30分で
処理した試料を引っ張り試験機で測定し得られた荷重−
伸び曲線を示す。図2(a)の−30℃における特性曲
線から図2(g)の+60℃における特性曲線からわか
るように、この試料では−30℃、及び−20℃で永久
歪みとなる残留歪みが確認され、−10℃から+60℃
まではほとんど荷重−伸び曲線に変化がみられない。し
かし、荷重−伸び曲線は、降伏応力を越えると、応力が
伸びに対してほぼ一定な方形型となっている。又、応力
が一定となる曲線が平行な部分は、温度に対して変化し
ており、温度依存性があることがわかる。すなわちこの
平行な部分は、組織的には応力マルテンサイト相の出現
により、平行部が出来ているもので温度依存性があり、
アンテナ素子としては350℃処理材は本発明の目的か
ら外れる。
FIG. 2 shows the load obtained by measuring the sample treated under an aging treatment condition of 350 ° C. for 30 minutes with a tensile tester.
An elongation curve is shown. As can be seen from the characteristic curve at −30 ° C. in FIG. 2A and the characteristic curve at + 60 ° C. in FIG. 2G, residual strain that is permanent strain was confirmed at −30 ° C. and −20 ° C. in this sample. , -10 ℃ to + 60 ℃
Until then, there was almost no change in the load-elongation curve. However, when the yield stress is exceeded, the load-elongation curve has a rectangular shape in which the stress is substantially constant with respect to the elongation. Further, it can be seen that the portions where the curves where the stress is constant are parallel to each other change with temperature and have temperature dependence. That is, this parallel part is structurally a parallel part due to the appearance of a stress martensite phase and has temperature dependence,
As an antenna element, a 350 ° C. processing material is out of the scope of the present invention.

【0017】[0017]

【発明の効果】本発明のアンテナ素子の製造方法によれ
ば、移動体通信機器が使用される環境温度の−30℃か
ら+60℃まですべてで良好な超弾性特性を示すアンテ
ナ素子を得ることが可能となる。
According to the antenna element manufacturing method of the present invention, it is possible to obtain an antenna element exhibiting excellent superelasticity characteristics in all environmental temperatures in which mobile communication equipment is used, from -30 ° C to + 60 ° C. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法における時効処理条件300
℃×30分で処理した試料の荷重−伸び曲線を示す特性
図。図1(a)は測定温度−30℃の場合の特性図。図
1(b)は測定温度−20℃の場合の特性図。図1
(c)は測定温度−10℃の場合の特性図。図1(d)
は測定温度0℃の場合の特性図。図1(e)は測定温度
20℃の場合の特性図。図1(f)は測定温度40℃の
場合の特性図。図1(g)は測定温度60℃の場合の特
性図。
FIG. 1 is an aging treatment condition 300 in the manufacturing method of the present invention.
The characteristic view which shows the load-elongation curve of the sample processed at 30 degreeC x 30 minutes. FIG. 1A is a characteristic diagram when the measurement temperature is −30 ° C. FIG. 1B is a characteristic diagram when the measurement temperature is −20 ° C. Figure 1
(C) is a characteristic diagram at a measurement temperature of -10 ° C. Figure 1 (d)
Is a characteristic diagram when the measurement temperature is 0 ° C. FIG. 1E is a characteristic diagram when the measurement temperature is 20 ° C. FIG. 1F is a characteristic diagram when the measurement temperature is 40 ° C. FIG. 1 (g) is a characteristic diagram when the measurement temperature is 60 ° C.

【図2】時効処理条件350℃×30分で処理した試料
の応力−歪み曲線を示す特性図。図2(a)は測定温度
−30℃の場合の特性図。図2(b)は測定温度−20
℃の場合の特性図。図2(c)は測定温度−10℃の場
合の特性図。図2(d)は測定温度0℃の場合の特性
図。図2(e)は測定温度20℃の場合の特性図。図2
(f)は測定温度40℃の場合の特性図。図2(g)は
測定温度60℃の場合の特性図。
FIG. 2 is a characteristic diagram showing a stress-strain curve of a sample treated under an aging treatment condition of 350 ° C. for 30 minutes. FIG. 2A is a characteristic diagram when the measurement temperature is −30 ° C. FIG. 2B shows a measured temperature of −20.
Characteristic diagram at ℃. FIG. 2C is a characteristic diagram when the measurement temperature is −10 ° C. FIG. 2D is a characteristic diagram when the measurement temperature is 0 ° C. FIG. 2E is a characteristic diagram when the measurement temperature is 20 ° C. Figure 2
(F) is a characteristic diagram when the measurement temperature is 40 ° C. FIG. 2G is a characteristic diagram when the measurement temperature is 60 ° C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 TiNiX(X=Cu、Cr、V、M
n、Zr)系合金から成る線状又はパイプ状のアンテナ
素子の製造方法において、前記合金を少なくとも30%
以上の加工率で加工し、280〜300℃の間で熱処理
を施したことを特徴としたアンテナ素子の製造方法。
1. TiNiX (X = Cu, Cr, V, M
In the method for manufacturing a linear or pipe-shaped antenna element made of an n, Zr) -based alloy, the alloy is at least 30%.
A method of manufacturing an antenna element, characterized in that the antenna element is processed at the above processing rates and heat-treated at 280 to 300 ° C.
JP13385494A 1994-05-23 1994-05-23 Production of antenna element Pending JPH07316758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13385494A JPH07316758A (en) 1994-05-23 1994-05-23 Production of antenna element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13385494A JPH07316758A (en) 1994-05-23 1994-05-23 Production of antenna element

Publications (1)

Publication Number Publication Date
JPH07316758A true JPH07316758A (en) 1995-12-05

Family

ID=15114593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13385494A Pending JPH07316758A (en) 1994-05-23 1994-05-23 Production of antenna element

Country Status (1)

Country Link
JP (1) JPH07316758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265680A (en) * 2005-03-25 2006-10-05 Toyohashi Univ Of Technology Superelastic material and its production method
CN102021364A (en) * 2010-10-20 2011-04-20 燕山大学 High-tensile strength and high-plasticity TiNi nanocrystal material and preparation method thereof
CN110373571A (en) * 2019-08-28 2019-10-25 浙江海洋大学 A kind of wave key preparation method of light alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265680A (en) * 2005-03-25 2006-10-05 Toyohashi Univ Of Technology Superelastic material and its production method
CN102021364A (en) * 2010-10-20 2011-04-20 燕山大学 High-tensile strength and high-plasticity TiNi nanocrystal material and preparation method thereof
CN110373571A (en) * 2019-08-28 2019-10-25 浙江海洋大学 A kind of wave key preparation method of light alloy

Similar Documents

Publication Publication Date Title
Chen et al. The elastic and anelastic behavior of a metallic glass
US20020185200A1 (en) Process for the improved ductility of nitinol
WO2007055155A1 (en) Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
EP1466026B1 (en) Superelastic element made of a copper alloy and method for imparting and preserving a curvature of a given geometry
JP5859132B2 (en) Hairspring material for mechanical watches and hairspring using the same
JPH07316758A (en) Production of antenna element
JP2801222B2 (en) Ferrite-martensitic stainless steel alloy
US6077368A (en) Eyeglass frame and fabrication method
JP3560907B2 (en) NiTi-based alloy wire, method for producing the same, and guide wire for catheter using the NiTi-based alloy wire
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPH10219404A (en) Antenna material and its production
EP0648856B1 (en) Eyeglass frame and fabrication method
JPH07126780A (en) Superelastic wire
Coluzzi et al. A new low-temperature internal friction peak in NiTi based alloys
JPH0860277A (en) Nickel-titanium alloy
JP2003089834A (en) Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION
JPH0867914A (en) Production of ic lead frame material
JP2005131358A (en) Ti-ni based super-elasticity alloy wire
JPS58217834A (en) Superelastic spring
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JP2000204458A (en) Wide strain range high elasticity antenna
JPS61279628A (en) Manufacture of fe-ni alloy plate or fe-ni-co alloy plate having superior repeated bendability
JPH02270941A (en) Fe-ni alloy excellent in etching workability and its production
JP2002182162A (en) Method of manufacturing spectacles frame using ultraelastic material
JPH0847710A (en) Manufacture of cold finished steel bar made of high-speed tool steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A02