JPH07315935A - Production of electric conductive ceramic sintered compact - Google Patents

Production of electric conductive ceramic sintered compact

Info

Publication number
JPH07315935A
JPH07315935A JP6115207A JP11520794A JPH07315935A JP H07315935 A JPH07315935 A JP H07315935A JP 6115207 A JP6115207 A JP 6115207A JP 11520794 A JP11520794 A JP 11520794A JP H07315935 A JPH07315935 A JP H07315935A
Authority
JP
Japan
Prior art keywords
boron nitride
producing
powder
conductive ceramic
electric conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6115207A
Other languages
Japanese (ja)
Inventor
Yoshio Sasaki
欣夫 佐々木
Kenichi Adachi
健一 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP6115207A priority Critical patent/JPH07315935A/en
Publication of JPH07315935A publication Critical patent/JPH07315935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce an electric conductive ceramic sintered compact capable of producing a heating element (boat) for evaporating a metal having a long service life. CONSTITUTION:A powdery mixture contg. boron nitride powder contg. pyrolytic boron nitride, titanium diboride powder and aluminum nitride powder is compacted and sintered in a nonoxidizing atmosphere to produce the objective electric conductive ceramic sintered compact used for producing a heating element for evaporating a metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に真空中で金属を蒸
発させる際に使用される金属蒸発用発熱体を製作するの
に好適な導電性セラミックス焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive ceramics sintered body suitable for producing a metal-evaporating heating element which is used particularly when vaporizing a metal in a vacuum.

【0002】[0002]

【従来の技術】従来より、この種の金属蒸発用発熱体と
しては、例えば特公昭53−20256号公報に示され
るようにキャビティを有する導電性セラミックス製のボ
ートがあり、その市販品の一例は電気化学工業社製商品
名「BNコンポジットEC」である。これの使用方法
は、ボートの両端をクランプで電極につなぎ電圧を印加
することによってそれを発熱させ、キャビティに入れら
れた金属を溶融・蒸発させて蒸着膜を得るものである。
2. Description of the Related Art Conventionally, as a heating element for metal evaporation of this type, for example, there is a boat made of conductive ceramics having a cavity as shown in Japanese Patent Publication No. 53-20256. The product name is "BN Composite EC" manufactured by Denki Kagaku Kogyo. The method of using this is to connect both ends of the boat with clamps to the electrodes to apply a voltage to generate heat, and melt and evaporate the metal contained in the cavity to obtain a vapor deposition film.

【0003】[0003]

【発明が解決しようとする課題】このようなボートは、
使用回数の増加にともなってボートが溶融金属により溶
損し次第に抵抗が大きくなって蒸着膜が薄くなりボート
寿命となる。金属がアルミニウムである場合の平均寿命
は約500回である。本発明の目的は、このボート寿命
を延ばすことのできる導電性セラミックス焼結体の製造
方法を提供することである。
[Problems to be Solved by the Invention]
As the number of times of use increases, the boat is melted and damaged by the molten metal, and the resistance gradually increases, so that the vapor deposition film becomes thin and the life of the boat becomes long. When the metal is aluminum, the average life is about 500 times. An object of the present invention is to provide a method for producing a conductive ceramics sintered body that can extend the life of the boat.

【0004】[0004]

【課題を解決するための手段】本発明は、熱分解窒化ほ
う素を含む窒化ほう素粉末、二硼化チタン粉末及び窒化
アルミニウム粉末を含有してなる混合粉末の成形物を非
酸化性雰囲気下で焼結することを特徴とする導電性セラ
ミックス焼結体の製造方法、及びこの製造方法におい
て、導電性セラミックス焼結体が金属蒸発用発熱体を製
作するためのものであることを特徴とする導電性セラミ
ックス焼結体の製造方法である。
According to the present invention, a molded product of a mixed powder containing a boron nitride powder containing pyrolytic boron nitride, a titanium diboride powder and an aluminum nitride powder is treated under a non-oxidizing atmosphere. And a method for producing a conductive ceramics sintered body, characterized in that the conductive ceramics sintered body is for producing a heating element for metal evaporation. It is a method for producing a conductive ceramics sintered body.

【0005】以下、更に詳しく本発明について説明する
と、本発明の特徴は、六方晶窒化ほう素粉末、二硼化チ
タン粉末及び窒化アルミニウム粉末を含む混合粉末を成
形し、それを非酸化性雰囲気下で焼結する従来法におい
て、六方晶窒化ほう素粉末として熱分解窒化ほう素を含
む窒化ほう素粉末を用いたことである。
The present invention will be described in more detail below. The feature of the present invention is that a mixed powder containing a hexagonal boron nitride powder, a titanium diboride powder and an aluminum nitride powder is molded, and the mixed powder is subjected to a non-oxidizing atmosphere. That is, in the conventional method of sintering at, the boron nitride powder containing pyrolytic boron nitride was used as the hexagonal boron nitride powder.

【0006】本発明において、熱分解窒化ほう素を含む
窒化ほう素粉末の熱分解窒化ほう素の割合としては50
重量%以上(100重量%を含む)であることが好まし
く、50重量%未満では溶融金属に対する耐食性が十分
に向上せずボート寿命の延長効果が小さい。熱分解窒化
ほう素は、例えば特公平4−56765号公報に記載の
ように、三塩化ほう素とアンモニアを化学気相蒸着室に
供給し熱分解させて黒鉛基体の表面に析出させることに
よって製造することができる。
In the present invention, the ratio of the pyrolytic boron nitride in the boron nitride powder containing the pyrolytic boron nitride is 50.
It is preferably at least wt% (including 100 wt%), and if it is less than 50 wt%, the corrosion resistance to molten metal is not sufficiently improved and the boat life extension effect is small. Pyrolytic boron nitride is produced by supplying boron trichloride and ammonia to a chemical vapor deposition chamber for thermal decomposition and precipitation on the surface of a graphite substrate, as described in, for example, Japanese Patent Publication No. 4-56765. can do.

【0007】熱分解窒化ほう素を含む窒化ほう素粉末、
二硼化チタン粉末及び窒化アルミニウム粉末を含有して
なる混合粉末の各成分の割合の一例を示すと、熱分解窒
化ほう素を含む窒化ほう素粉末15〜50重量%、二硼
化チタン粉末30〜60重量%及び窒化アルミニウム粉
末10〜45重量%である。熱分解窒化ほう素を含む窒
化ほう素粉末が50重量%をこえると溶融金属に対する
耐食性が低下し、また15重量%未満では耐熱衝撃性が
不足する。一方、窒化アルミニウム粉末が45重量%を
こえると耐熱衝撃性が低下し、また10重量%未満では
強度が不足する。混合粉末の粒径としては20μm以下
特に10μm以下が好ましい。
Boron nitride powder containing pyrolytic boron nitride,
An example of the ratio of each component of the mixed powder containing the titanium diboride powder and the aluminum nitride powder is as follows. Boron nitride powder containing pyrolytic boron nitride 15 to 50% by weight, titanium diboride powder 30 ˜60 wt% and aluminum nitride powder 10-45 wt%. If the content of the boron nitride powder containing pyrolytic boron nitride exceeds 50% by weight, the corrosion resistance to the molten metal decreases, and if it is less than 15% by weight, the thermal shock resistance becomes insufficient. On the other hand, when the aluminum nitride powder exceeds 45% by weight, the thermal shock resistance is lowered, and when it is less than 10% by weight, the strength is insufficient. The particle size of the mixed powder is preferably 20 μm or less, particularly 10 μm or less.

【0008】混合粉末の焼結は、ホットプレス焼結法が
好ましいが常圧焼結法、HIP焼結法等であってもよ
い。ホットプレス焼結法は、混合粉末を黒鉛ダイスに充
填し、アルゴン、窒素等の非酸化性雰囲気下において温
度1700〜2000℃程度、圧力50〜350Kg/
cm2 程度で行われる。
The sintering of the mixed powder is preferably a hot press sintering method, but may be an atmospheric pressure sintering method, a HIP sintering method or the like. In the hot press sintering method, the mixed powder is filled in a graphite die, and the temperature is about 1700 to 2000 ° C. and the pressure is 50 to 350 Kg / in a non-oxidizing atmosphere such as argon and nitrogen.
It is performed at about cm 2 .

【0009】得られた導電性セラミックス焼結体から金
属蒸発用発熱体を製作するには、常法により適宜形状の
成形体を該焼結体から切り出し、その中央部にキャビテ
ィを加工することによって行うことができる。
In order to manufacture a heating element for metal evaporation from the obtained conductive ceramics sintered body, a molded body having an appropriate shape is cut out from the sintered body by a conventional method, and a cavity is formed in the center thereof. It can be carried out.

【0010】[0010]

【実施例】【Example】

実施例1〜6 比較例1 TiB2 粉末(平均粒子径12μm)、六方晶窒化ほう
素(hBN)粉末(平均粒子径0.7μm)、市販の熱
分解窒化ほう素(PBN)成形体の粉砕物(平均粒子径
30μm)及びAlN粉末(平均粒子径10μm)を表
1に示す割合で混合した。得られた混合粉末を黒鉛ダイ
スに充填し、温度1750℃でホットプレスを行って直
径200mm×高さ6mmの焼結体を製造した。
Examples 1 to 6 Comparative Example 1 TiB 2 powder (average particle size 12 μm), hexagonal boron nitride (hBN) powder (average particle size 0.7 μm), commercially available pyrolytic boron nitride (PBN) pulverized product The substance (average particle diameter 30 μm) and AlN powder (average particle diameter 10 μm) were mixed at the ratio shown in Table 1. The obtained mixed powder was filled in a graphite die and hot pressed at a temperature of 1750 ° C. to manufacture a sintered body having a diameter of 200 mm and a height of 6 mm.

【0011】この焼結体から、幅6mm×厚み4mm×
長さ110mmの棒状体を切り出し、その表面の中央部
に幅4mm×深さ2mm×長さ60mmのキャビティを
加工し金属蒸発用発熱体(ボート)を製作した。
From this sintered body, width 6 mm × thickness 4 mm ×
A rod-shaped body having a length of 110 mm was cut out, and a cavity having a width of 4 mm, a depth of 2 mm and a length of 60 mm was processed in the center of the surface of the rod-shaped body to produce a metal evaporation heating element (boat).

【0012】得られたボートの寿命を評価するため、ボ
ートの端部をクランプで電極につなぎキャビティ中央部
の温度が1500℃となるように印加電圧を決定し設定
した。1回のアルミニウム量80mg、通電時間30
秒、真空度2×10-4torrとして蒸着試験を行い、
この操作を設定された一定印加電圧で繰り返し行った。
そして、ボート上方200mmの位置におけるアルミニ
ウム蒸着膜の厚みが2000A以下になったときの繰り
返し回数をボート寿命とした。それらの結果を表1に示
す。
In order to evaluate the life of the obtained boat, the applied voltage was determined and set so that the temperature at the center of the cavity was 1500 ° C. by connecting the end of the boat to the electrode with a clamp. Aluminum amount of 80mg per time, energizing time 30
Second, the vapor deposition test was performed at a vacuum degree of 2 × 10 −4 torr,
This operation was repeated at the set constant applied voltage.
The boat life was defined as the number of repetitions when the thickness of the aluminum vapor deposition film at a position 200 mm above the boat became 2000 A or less. The results are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】本発明によれば、金属蒸発を繰り返し行
っても長寿命の金属蒸発用発熱体(ボート)を製作する
ことのできる導電性セラミックス焼結体を製造すること
ができる。
According to the present invention, it is possible to manufacture a conductive ceramics sintered body capable of producing a metal evaporation heating element (boat) having a long life even if metal evaporation is repeatedly performed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱分解窒化ほう素を含む窒化ほう素粉
末、二硼化チタン粉末及び窒化アルミニウム粉末を含有
してなる混合粉末の成形物を非酸化性雰囲気下で焼結す
ることを特徴とする導電性セラミックス焼結体の製造方
法。
1. A molded product of a mixed powder containing a boron nitride powder containing pyrolytic boron nitride, a titanium diboride powder and an aluminum nitride powder is sintered in a non-oxidizing atmosphere. A method for producing a conductive ceramics sintered body.
【請求項2】 導電性セラミックス焼結体が金属蒸発用
発熱体を製作するためのものであることを特徴とする請
求項1記載の導電性セラミックス焼結体の製造方法。
2. The method for producing a conductive ceramics sintered body according to claim 1, wherein the conductive ceramics sintered body is for producing a heating element for metal evaporation.
JP6115207A 1994-05-27 1994-05-27 Production of electric conductive ceramic sintered compact Pending JPH07315935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6115207A JPH07315935A (en) 1994-05-27 1994-05-27 Production of electric conductive ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6115207A JPH07315935A (en) 1994-05-27 1994-05-27 Production of electric conductive ceramic sintered compact

Publications (1)

Publication Number Publication Date
JPH07315935A true JPH07315935A (en) 1995-12-05

Family

ID=14657019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6115207A Pending JPH07315935A (en) 1994-05-27 1994-05-27 Production of electric conductive ceramic sintered compact

Country Status (1)

Country Link
JP (1) JPH07315935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113465A1 (en) * 2004-05-24 2005-12-01 Denki Kagaku Kogyo Kabushiki Kaisha Ceramics, method for production thereof and use thereof
TWI743446B (en) * 2018-02-20 2021-10-21 美商應用材料股份有限公司 Pbn heaters for ald temperature uniformity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113465A1 (en) * 2004-05-24 2005-12-01 Denki Kagaku Kogyo Kabushiki Kaisha Ceramics, method for production thereof and use thereof
TWI743446B (en) * 2018-02-20 2021-10-21 美商應用材料股份有限公司 Pbn heaters for ald temperature uniformity

Similar Documents

Publication Publication Date Title
US4264803A (en) Resistance-heated pyrolytic boron nitride coated graphite boat for metal vaporization
US3954483A (en) Dense polycrystalline silicon carbide
JPH0930866A (en) Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JP4219325B2 (en) Method for producing porous titanium material article
GB2065713A (en) High density sintered refractory composites
US4693989A (en) Preparation and sintering of refractory metal borides, carbides and nitrides of high purity
JPS5913671A (en) Titanium carbonitride-metal boride ceramics material
JPH07315935A (en) Production of electric conductive ceramic sintered compact
JPS6311589A (en) Heat resistant tool and manufacture
JPH07315934A (en) Production of electric conductive ceramic sintered compact
JPH03208865A (en) Manufacture of refractory composite article
JP2614875B2 (en) Manufacturing method of high temperature corrosion resistant sintered material
JP4458692B2 (en) Composite material
JPS5846546B2 (en) Manufacturing method of metal evaporation container
JPH07316786A (en) Heating element for evaporating metal
JPS582260B2 (en) Container material for metal evaporation and its manufacturing method
JPH07316787A (en) Heating element for evaporating metal
JP2568521B2 (en) Composite sintered body
JP3688022B2 (en) Hexagonal boron nitride sintered body
JPH0438685B2 (en)
JPH01239067A (en) Production of aluminum nitride base
JPH07316785A (en) Heating element for evaporating metal
JPH0453829B2 (en)
JP3240130B2 (en) Thermistor material and thermistor element
JP3452741B2 (en) Method for producing aluminum nitride based composite material