JPH07316785A - Heating element for evaporating metal - Google Patents

Heating element for evaporating metal

Info

Publication number
JPH07316785A
JPH07316785A JP6111427A JP11142794A JPH07316785A JP H07316785 A JPH07316785 A JP H07316785A JP 6111427 A JP6111427 A JP 6111427A JP 11142794 A JP11142794 A JP 11142794A JP H07316785 A JPH07316785 A JP H07316785A
Authority
JP
Japan
Prior art keywords
cavity
heating element
boat
ratio
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6111427A
Other languages
Japanese (ja)
Inventor
Yoshio Sasaki
欣夫 佐々木
Kenichi Adachi
健一 安達
Yasuo Imamura
保男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP6111427A priority Critical patent/JPH07316785A/en
Publication of JPH07316785A publication Critical patent/JPH07316785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the heating element having a long life. CONSTITUTION:This heating element consists of an electrically conductive ceramic boat of which cavity has gradually increasing cross-sectional area in the directions from the end parts toward the central part of the cavity and also a ratio of the resistance per unit length of each of the end parts to that of the central part of 1.1 to 1.5. The conductive ceramic product is obtained by forming a powdery mixture consisting of powdery hexagonal boron nitride in which the ratio of the weight of the crystallites having >=800Angstrom size (La) to the total crystallite weight is >=50wt.%, powdery titanium diboride and powdery aluminum nitride into a formed body and sintering the formed body in a non-oxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空中で金属を蒸発さ
せる際に使用される導電性セラミックスボートからなる
金属蒸発用発熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-evaporating heating element comprising a conductive ceramics boat used for evaporating a metal in a vacuum.

【0002】[0002]

【従来の技術】従来より、この種の金属蒸発用発熱体と
しては、例えば特公昭53−20256号公報に示され
るようにキャビティを有する導電性セラミックス製のボ
ートがあり、その市販品の一例は電気化学工業社製商品
名「BNコンポジットEC」である。これの使用方法
は、ボートの両端をクランプで電極につなぎ電圧を印加
することによってそれを発熱させ、キャビティに入れら
れた金属を溶融・蒸発させて蒸着膜を得るものである。
2. Description of the Related Art Conventionally, as a heating element for metal evaporation of this type, for example, there is a boat made of conductive ceramics having a cavity as shown in Japanese Patent Publication No. 53-20256. The product name is "BN Composite EC" manufactured by Denki Kagaku Kogyo. The method of using this is to connect both ends of the boat with clamps to the electrodes to apply a voltage to generate heat, and melt and evaporate the metal contained in the cavity to obtain a vapor deposition film.

【0003】[0003]

【発明が解決しようとする課題】このようなボートは、
使用回数の増加にともなってボートが溶融金属により溶
損し次第に抵抗が大きくなって蒸着膜が薄くなりボート
寿命となる。金属がアルミニウムである場合の平均寿命
は約500回である。本発明の目的は、このボート寿命
を延ばすことである。
[Problems to be Solved by the Invention]
As the number of times of use increases, the boat is melted and damaged by the molten metal, and the resistance gradually increases, so that the vapor deposition film becomes thin and the life of the boat becomes long. When the metal is aluminum, the average life is about 500 times. The purpose of the present invention is to extend this boat life.

【0004】[0004]

【課題を解決するための手段】本発明は、キャビティ部
の断面積がキャビティの端部から中央部にかけて次第に
大きくなっており、しかもキャビティ中央部の単位長さ
当たりの抵抗に対するキャビティ端部のそれとの比が
1.1〜1.5である導電性セラミックスボートからな
ることを特徴とする金属蒸発用発熱体、及び上記導電性
セラミックスが、結晶子の大きさ(La)が800A以
上の割合が50重量%以上である六方晶窒化ほう素粉
末、二硼化チタン粉末及び窒化アルミニウム粉末を含む
混合粉末を成形し、それを非酸化性雰囲気下で焼結して
得られたものであることを特徴とする金属蒸発用発熱体
である。
According to the present invention, the cross-sectional area of the cavity portion is gradually increased from the end portion to the center portion of the cavity, and the cavity end portion has a resistance to the resistance per unit length of the cavity center portion. Of the conductive ceramics boat having a ratio of 1.1 to 1.5, and the conductive ceramics, the crystallite size (La) is 800 A or more. It is obtained by molding a mixed powder containing 50% by weight or more of hexagonal boron nitride powder, titanium diboride powder and aluminum nitride powder, and sintering it in a non-oxidizing atmosphere. A characteristic heating element for metal evaporation.

【0005】以下、更に詳しく本発明について説明する
と、本発明の特徴は、導電性セラミックスにキャビティ
が設けられてなるボートにおいて、キャビティ部の断面
積をキャビティの端部から中央部にかけて連続的に変化
させることによってボートの発熱(温度)分布を全体に
均一化させ、長寿命化を図ったことである。
The present invention will be described in more detail below. The feature of the present invention is that in a boat in which a cavity is provided in a conductive ceramic, the cross-sectional area of the cavity portion changes continuously from the end portion to the central portion of the cavity. By doing so, the heat generation (temperature) distribution of the boat is made uniform throughout and the life of the boat is extended.

【0006】本発明で使用されるボートの材質は導電性
セラミックスであり、二硼化チタン(TiB2 )、窒化
アルミニウム(AlN)及び六方晶窒化ほう素(BN)
の複合焼結体が一般的であるが、導電物質のTiB2
ZrB2 であってもよい。
The material of the boat used in the present invention is conductive ceramics, such as titanium diboride (TiB 2 ), aluminum nitride (AlN) and hexagonal boron nitride (BN).
The composite sintered body is generally used, but the conductive material TiB 2 may be ZrB 2 .

【0007】しかしながら、溶融金属に対する耐食性を
高めてボート寿命を更に延ばすために、上記BN粉末と
して、結晶子の大きさ(La)が800A以上特に90
0A以上の割合が50重量%以上特に80重量%以上で
あるものを用いて製造された導電性セラミックスが好適
である。
However, in order to improve the corrosion resistance against molten metal and further extend the boat life, the BN powder has a crystallite size (La) of 800 A or more, particularly 90 or more.
A conductive ceramic produced by using a material in which the proportion of 0 A or more is 50% by weight or more, particularly 80% by weight or more is suitable.

【0008】混合粉末の各成分の割合としては、BN粉
末15〜50重量%、TiB2 粉末30〜60重量%及
びAlN粉末10〜45重量%が好ましく、またその成
形物の焼結条件は、窒素、アルゴン等の非酸化性雰囲気
下、温度1700〜2000℃、時間30〜120分で
あることが好ましい。
The proportion of each component of the mixed powder is preferably 15 to 50% by weight of BN powder, 30 to 60% by weight of TiB 2 powder and 10 to 45% by weight of AlN powder. The temperature is preferably 1700 to 2000 ° C. and the time is 30 to 120 minutes in a non-oxidizing atmosphere such as nitrogen or argon.

【0009】本発明の金属蒸発用発熱体(ボート)は、
上記導電性セラミックスから適宜形状の成形体を切り出
しその表面にキャビティを加工するが、その際、キャビ
ティ部の断面積がキャビティの端部から中央部にかけて
次第に大きくし、しかもキャビティ中央部の単位長さ当
たりの抵抗に対するキャビティ端部のそれとの比が1.
1〜1.5となるように加工されているものである。こ
のような構造とすることによってボートの発熱(温度)
分布を全体に均一化でき、長寿命化が図れるものであ
る。
The heating element (boat) for metal evaporation of the present invention is
A molded body of an appropriate shape is cut out from the above-mentioned conductive ceramics, and a cavity is processed on the surface thereof. At that time, the cross-sectional area of the cavity portion is gradually increased from the end portion of the cavity to the central portion, and the unit length of the central portion of the cavity is increased. The ratio of the resistance per hit to that at the end of the cavity is 1.
It is processed so as to be 1 to 1.5. With such a structure, heat generation (temperature) of the boat
The distribution can be made uniform throughout and the life can be extended.

【0010】すなわち、従来の構造のように、単にキャ
ビティが設けられたボートからなる金属蒸発用発熱体に
あっては、その発熱による温度分布は図5のようにな
り、キャビティ中央部が最も高くキャビティ両端部が最
も低い放物線状となる。キャビティ中央部の温度が15
00℃である場合にはその両端部は1200℃程度とな
りその差は実に約300℃である。
That is, as in the conventional structure, in the case of the metal-evaporating heating element which is simply a boat provided with a cavity, the temperature distribution due to the heat generation is as shown in FIG. 5, and the cavity central portion has the highest temperature distribution. Both ends of the cavity have the lowest parabolic shape. The temperature in the center of the cavity is 15
When the temperature is 00 ° C., both ends are about 1200 ° C., and the difference is about 300 ° C.

【0011】このような温度差のあるボートのキャビテ
ィに蒸着用金属を入れ電圧を印加すると、金属は溶融し
キャビティ内全体に渡ってその濡れが広がるが、金属の
蒸発は温度が最も高いキャビティの中央部で激しくな
る。蒸着の終期になると、キャビティの中央部から溶融
金属が干し上がり始めるが、この段階ではまだキャビテ
ィの両端部には溶融金属が残っている。そのため、溶融
金属の抵抗は導電性セラミックスのそれよりも小さいの
でキャビティ両端部の溶融金属中を流れる電流分だけキ
ャビティ中央部に負荷がかかり、約500回程度の寿命
となる。
When a metal for vapor deposition is put in a cavity of a boat having such a temperature difference and a voltage is applied, the metal is melted and the wetting spreads throughout the cavity, but vaporization of the metal is caused in the cavity having the highest temperature. Intense in the central area. At the end of the vapor deposition, the molten metal begins to dry from the center of the cavity, but at this stage the molten metal still remains at both ends of the cavity. Therefore, since the resistance of the molten metal is smaller than that of the conductive ceramics, the load is applied to the central portion of the cavity by the amount of the current flowing in the molten metal at both ends of the cavity, and the life is about 500 times.

【0012】そこで、本発明者らは、上記温度差を可能
なかぎり小さくする、例えば250℃以下特に200℃
以下となるボート構造について種々検討し、上記の構造
を見いだしたものである。
Therefore, the present inventors have made the above temperature difference as small as possible, for example, 250 ° C. or less, especially 200 ° C.
Various studies were made on the following boat structure, and the above structure was found.

【0013】本発明においては、キャビティ部の断面積
をキャビティの端部から中央部にかけて次第に大きくす
ることが必要であるが、その一例を図1〜図3に示し
た。すなわち、キャビティ部をわずかにこえたキャビテ
ィ隣接部からキャビティ中央部にかけて緩いテーパーを
もたせた溝をボート裏面に連続的に形成させ断面積を変
化させることである。このような連続した溝の加工は何
もボート裏面に限られることはなく、ボートの側面又は
キャビティ内面に施されていてもよい。
In the present invention, it is necessary to gradually increase the cross-sectional area of the cavity portion from the end portion to the center portion of the cavity, one example of which is shown in FIGS. That is, the cross-sectional area is changed by continuously forming a groove having a slight taper from the cavity adjacent portion slightly beyond the cavity portion to the cavity central portion on the back surface of the boat. The processing of such continuous grooves is not limited to the back surface of the boat, and may be performed on the side surface of the boat or the inner surface of the cavity.

【0014】特公昭54−42676号公報には、溶融
金属がキャビティから這い上がるのを防止するためにキ
ャビティ隣接部を切欠させることによってその断面積を
キャビティ部のそれよりも小さくすることが提案されて
いるが、このものはキャビティ部自体の断面積を連続的
に変化をさせていないので本発明のような長寿命化を達
成することはできない(比較例3参照)。
Japanese Patent Publication No. 54-42676 proposes to make the cross-sectional area smaller than that of the cavity by notching the adjacent portion of the cavity in order to prevent the molten metal from creeping up from the cavity. However, since this does not continuously change the cross-sectional area of the cavity itself, it is not possible to achieve a long life as in the present invention (see Comparative Example 3).

【0015】次に、本発明においては、キャビティ中央
部の単位長さ当たりの抵抗に対するキャビティ端部のそ
れとの比が1.1〜1.5であることが必要である。こ
の比が1.1未満では温度差を小さくする効果は十分で
なくなり、また1.5をこえると逆にキャビティ内の両
端近傍部の温度がキャビティ中央部の温度よりも高くな
り、過剰な発熱によってボートが損傷する恐れがある。
Next, in the present invention, it is necessary that the ratio of the resistance per unit length of the central portion of the cavity to that of the end portion of the cavity is 1.1 to 1.5. If this ratio is less than 1.1, the effect of reducing the temperature difference becomes insufficient, and if it exceeds 1.5, the temperature in the vicinity of both ends inside the cavity becomes higher than the temperature in the center of the cavity, and excessive heat generation occurs. May damage the boat.

【0016】このような抵抗の比をもたせるには、上記
の連続した溝を加工する際に、キャビティ中央部の断面
積に対するキャビティ端部の断面積の比を0.7〜0.
9とすることによって行うことができる。
In order to provide such a resistance ratio, the ratio of the cross-sectional area of the cavity end to the cross-sectional area of the cavity center is 0.7 to 0.
It can be performed by setting 9.

【0017】[0017]

【実施例】【Example】

実施例1 TiB2 粉末(平均粒子径12μm)45重量%、BN
粉末(平均粒子径0.7μm、結晶子の大きさ(La)
が215A)30重量%及びAlN粉末(平均粒子径1
0μm)25重量%の混合粉末を黒鉛ダイスに充填し、
温度1750℃でホットプレスを行って直径200mm
×高さ6mmの焼結体を製造した。
Example 1 TiB 2 powder (average particle diameter 12 μm) 45% by weight, BN
Powder (average particle size 0.7 μm, crystallite size (La)
215A) 30% by weight and AlN powder (average particle size 1
0 μm) 25 wt% mixed powder was filled in a graphite die,
200mm diameter by hot pressing at 1750 ℃
× A sintered body having a height of 6 mm was produced.

【0018】この焼結体から、幅6mm×厚み4mm×
長さ110mmの棒状体を切り出し、その表面の中央部
に幅4mm×深さ2mm×長さ60mmのキャビティ
を、またその反対の裏面には溝を設け、図1〜図3に示
すようなボートを作製し、本発明の金属蒸発用発熱体と
した。
From this sintered body, width 6 mm × thickness 4 mm ×
A 110 mm long rod-shaped body is cut out, a cavity of 4 mm width x 2 mm depth x 60 mm length is provided in the center of the surface, and a groove is provided on the opposite back side, and a boat as shown in Figs. Was prepared as a heating element for metal evaporation of the present invention.

【0019】なお、溝は、図2及び図3に示されるよう
に、キャビティ端部で0.8mmの深さがありキャビテ
ィ中央部ではそれが0mmとなる幅4mmのテーパー状
であり、キャビティ部をわずかにこえたキャビティ隣接
部から形成されている。このボートは、キャビティ中央
部の単位長さ当たりの抵抗に対するキャビティ端部のそ
れとの比は1.21であり、キャビティ中央部の断面積
に対するキャビティ端部のそれとの比は0.80であ
る。また、キャビティ中央部の温度が1500℃に発熱
したときにはキャビティ両端部の温度が1320℃にな
るものである(図4参照)。
As shown in FIGS. 2 and 3, the groove has a taper shape with a width of 4 mm having a depth of 0.8 mm at the end of the cavity and 0 mm at the center of the cavity. It is formed from the part adjacent to the cavity that is slightly over. In this boat, the ratio of the cavity end to the resistance per unit length of the cavity center is 1.21, and the ratio of the cavity end cross section to the cavity end is 0.80. When the temperature of the central portion of the cavity heats up to 1500 ° C., the temperature of both ends of the cavity becomes 1320 ° C. (see FIG. 4).

【0020】このボートの寿命を評価するため、ボート
の端部をクランプで電極につなぎキャビティ中央部の温
度が1500℃となるように印加電圧を決定し設定し
た。1回のアルミニウム量80mg、通電時間30秒、
真空度2×10-4torrとして蒸着試験を行い、この
操作を設定された一定印加電圧で繰り返し行った。そし
て、ボート上方200mmの位置におけるアルミニウム
蒸着膜の厚みが2000A以下になったときの繰り返し
回数をボート寿命とした。その結果は、910回であっ
た。
In order to evaluate the life of the boat, the applied voltage was determined and set so that the temperature at the center of the cavity was 1500 ° C. by connecting the end of the boat to the electrode with a clamp. Aluminum amount 80mg per time, energizing time 30 seconds,
A vapor deposition test was performed at a vacuum degree of 2 × 10 −4 torr, and this operation was repeated at a set constant applied voltage. The boat life was defined as the number of repetitions when the thickness of the aluminum vapor deposition film at a position 200 mm above the boat became 2000 A or less. The result was 910 times.

【0021】実施例2〜3、比較例2 溝加工の深さを種々変化させ、上記の温度差、抵抗の比
及び断面積の比を表1のようにかえたこと以外は、実施
例1と同様にしてボートを作製し評価した。その結果を
表1と図6に示す。
Examples 2 to 3 and Comparative Example 2 Example 1 was repeated except that the groove depth was variously changed and the temperature difference, the resistance ratio and the cross sectional area ratio were changed as shown in Table 1. A boat was prepared and evaluated in the same manner as in. The results are shown in Table 1 and FIG.

【0022】比較例1 溝加工を施さなかったこと以外は、実施例1と同様にし
てボートを作製し評価した。その結果を表1と図5に示
す。
Comparative Example 1 A boat was prepared and evaluated in the same manner as in Example 1 except that no groove was formed. The results are shown in Table 1 and FIG.

【0023】比較例3 溝加工を施さないかわりにキャビティ隣接部に1.5m
mの切欠部を設け、キャビティ部の断面積に対するキャ
ビティ隣接部のそれとの比を0.94としたこと以外
は、実施例1と同様にしてボートを作製し評価した(特
公昭54−42676号公報相当品)。その結果を表1
に示す。
COMPARATIVE EXAMPLE 3 Instead of grooving, 1.5 m was formed in the vicinity of the cavity.
A boat was prepared and evaluated in the same manner as in Example 1 except that a notch of m was provided and the ratio of the cross-sectional area of the cavity to that of the adjacent cavity was 0.94 (Japanese Patent Publication No. 54-42676). Publication equivalent). The results are shown in Table 1.
Shown in.

【0024】実施例4 BN粉末として、平均粒子径3μm、結晶子の大きさ
(La)が900Aであるものを用いたこと以外は、実
施例1と同様にしてボートを作製し評価した。その結果
を表1に示す。
Example 4 A boat was prepared and evaluated in the same manner as in Example 1 except that BN powder having an average particle size of 3 μm and a crystallite size (La) of 900 A was used. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明によれば、長寿命の金属蒸発用発
熱体(ボート)が提供される。
According to the present invention, a heating element (boat) for metal evaporation having a long life is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金属蒸発用発熱体の斜視図。FIG. 1 is a perspective view of a heating element for metal evaporation according to the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B断面図。3 is a sectional view taken along line BB of FIG.

【図4】実施例1の金属蒸発用発熱体におけるキャビテ
ィ中央部からの距離と温度との関係図。
FIG. 4 is a diagram showing the relationship between the distance from the center of the cavity and the temperature in the metal-evaporating heating element of Example 1.

【図5】従来例(比較例1)の金属蒸発用発熱体におけ
るキャビティ中央部からの距離と温度との関係図。
FIG. 5 is a relationship diagram between the distance from the center of the cavity and the temperature in the metal evaporation heating element of the conventional example (Comparative Example 1).

【図6】比較例2の金属蒸発用発熱体におけるキャビテ
ィ中央部からの距離と温度との関係図。
FIG. 6 is a diagram showing the relationship between the distance from the center of the cavity and the temperature in the metal-evaporating heating element of Comparative Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 キャビティ部の断面積がキャビティの端
部から中央部にかけて次第に大きくなっており、しかも
キャビティ中央部の単位長さ当たりの抵抗に対するキャ
ビティ端部のそれとの比が1.1〜1.5である導電性
セラミックスボートからなることを特徴とする金属蒸発
用発熱体。
1. The cross-sectional area of the cavity gradually increases from the end to the center of the cavity, and the ratio of the resistance per unit length at the center of the cavity to that at the end of the cavity is 1.1 to 1. A heating element for metal evaporation, characterized by comprising a conductive ceramics boat of 0.5.
【請求項2】 導電性セラミックスが、結晶子の大きさ
(La)が800A以上の割合が50重量%以上である
六方晶窒化ほう素粉末、二硼化チタン粉末及び窒化アル
ミニウム粉末を含む混合粉末を成形し、それを非酸化性
雰囲気下で焼結して得られたものであることを特徴とす
る請求項1記載の金属蒸発用発熱体。
2. The conductive ceramics is a mixed powder containing hexagonal boron nitride powder, titanium diboride powder and aluminum nitride powder in which the ratio of crystallite size (La) of 800 A or more is 50% by weight or more. The heating element for metal evaporation according to claim 1, wherein the heating element is obtained by molding a metal and sintering it in a non-oxidizing atmosphere.
JP6111427A 1994-05-25 1994-05-25 Heating element for evaporating metal Pending JPH07316785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6111427A JPH07316785A (en) 1994-05-25 1994-05-25 Heating element for evaporating metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6111427A JPH07316785A (en) 1994-05-25 1994-05-25 Heating element for evaporating metal

Publications (1)

Publication Number Publication Date
JPH07316785A true JPH07316785A (en) 1995-12-05

Family

ID=14560916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6111427A Pending JPH07316785A (en) 1994-05-25 1994-05-25 Heating element for evaporating metal

Country Status (1)

Country Link
JP (1) JPH07316785A (en)

Similar Documents

Publication Publication Date Title
US4264803A (en) Resistance-heated pyrolytic boron nitride coated graphite boat for metal vaporization
KR101170397B1 (en) High-heat-conduction composite with graphite grain dispersed and process for producing the same
CA1068994A (en) Assembly of metal-coated carbon fibers, process for producing thereof, and method for use thereof
US4526840A (en) Bar evaporation source having improved wettability
US4721878A (en) Charged particle emission source structure
US4795723A (en) Electrically conductive ceramic product and process for its production
US4482839A (en) Thermionic emission cathode and preparation thereof
US6645572B2 (en) Process for producing a ceramic evaporation boat having an improved initial wetting performance
US20230086662A1 (en) Method of producing composite material
JPH07316785A (en) Heating element for evaporating metal
JP7369046B2 (en) Method for manufacturing scandium aluminum nitride powder and method for manufacturing target
US3582611A (en) Apparatus and method of metal evaporation including an evaporation boat having lower electrical resistivity ends than the center thereof
JPH07316786A (en) Heating element for evaporating metal
US6081652A (en) Ceramic flash TV evaporator
JPH07316787A (en) Heating element for evaporating metal
JPH07315965A (en) Electrically conductive ceramics and its use
US3803707A (en) Method of making an improved refractory boat for metal vaporization
JP3926245B2 (en) Heating element for metal evaporation
JPH07315934A (en) Production of electric conductive ceramic sintered compact
US3607613A (en) Electrically conductive refractory bodies
JP2000093788A (en) Ceramic evaporation boat having improved initial wetting performance and its production
JPH07315935A (en) Production of electric conductive ceramic sintered compact
JPS5846546B2 (en) Manufacturing method of metal evaporation container
JPH09213462A (en) Silicon carbide heating element
JPH0740509B2 (en) Heating element